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Abstract: In this study, two prominent methods for detection and classification of power quality disturbance

are proposed. The first one, based on the statistical analysis of adaptive decomposition signals is proposed,

the second one is a new technique for detecting and characterizing disturbances in power systems based on

wavelet transforms. The voltage signal under investigation 13 often corrupted by noises, therefore the signal

is first de-noised and then wavelet transform is applied. Using the first detail wavelet coefficients, voltage

disturbance 1s detected and 1ts duration 1s determined. The combination of an adaptive prediction filter based
sub-band decomposition structure with a rule based histogram analysis block produce successful detection

and classification results on our real life power system transient data. In this study, voltage sag is considered

for comparing both approaches. Proposed scheme 1s implemented using MATLAB (7.0.1), Sunulink, DSP and

Wavelet toolboxes.
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INTRODUCTION

Nowadays, the electricity dependence of industries
commerce and services has provoked the regulation of
power quality. The objective is to reduce damages or
misbehaviors to consumer devices and/or processes.
Basically, four parameters are used to measure and
characterize the supplied voltage waveform (sine wave
of 50/60 Hz). frequency, amplitude, shape and
symmetry. However, from generators to customers, these
parameters can suffer alterations that affect quality. The
origin of such alterations can be the electrical facility
operation, external agents or due to the operation of
specific loads. This alteration of the smusoidal wave 1s
usually transmitted to the electrical system (Bollen, 2000)
and the responsibility of possible damages caused to
customers is usually assigned to distribution companies.
Consequently, these are interested mn monitoring their
power systems. Once,
waveforms are captured and stored, an automated post

the wvoltage and/or curent

event analysis 1s needed. Recent contributions n the area
of PQ analysis use various wavelets such as

daubechies wavelets, Morlet wavelets, etc., to analyze the

distirbances, while pre-event voltage or current
waveforms are assumed to be sinusoid by Gaouda et al.
(1999). A specific wavelet may be designed to detect, for
example, arcing faults in a sinusoidal prefault waveform .

The sources and causes of disturbances must be
known before appropriate mitigating action can be taken
and continuous recording of distwrbance waveforms is
necessary. Unfortunately, most of these recorders rely on
visual inspection of data record creating an
unprecedented volume of data to be inspected by
engineers. Wavelet Transform (WT) is a mathematical
tool, which provides an automatic detection of Power
Quality Disturbance (PQD) waveforms, especially using
Daubechies family. Several types of wavelets network
algorithms have been considered for detection of power
quality problems. But both time and frequency
information are available by Multi Resolution Analysis
(MRA) alone (Sushama et al., 2007).

In this research, a new event detection scheme for
power quality analysis based on the statistical analysis of
adaptive decomposition signals is proposed. The
adaptive method 13 developed to detect and classify
power quality disturbances regardless of the type of the
pre-event voltage or current waveforms. The sigmificance
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of the proposed method is that it provides a way of
detecting variety of events without changing the
structure.

If we do not have any prior information on whether,
the waveform is pure sinusoid, or not, the steady state
properties of a waveform can be well approximated using
adaptive systems. The only assumption is that the pre-
event steady state waveform has varations of relatively
lower frequency as compared to the noise imposed
waveform due to a transient event. This 1dea 1s utilized to
construct a decomposition filter bank structure which
operates on the current or voltage waveforms and at the
same time, adapts its filter bank according to the
waveform behavior.

Least Mean Squared (ILMS) type adaptive filters are
used m our filter bank structure. These filters are time
varying Finite duration TImpulse Response (FIR)
filters whose coefficients are continuously updated
according to, the minimization of an error sequence,
which corresponds to one of the sub-bands i our case.
When the adaptation converges to a steady state, the
disturbance contribution of any transient event on the
waveform will take some time for the adaptive filter bank
to adapt. Meanwhile, the decomposition structure will
exhibit large adaptation error signals in the high-pass sub-
band (Haykin, 1986). Tiune length of this large adaptation
error signal is expected to be short for transient-type
events, such as arcing line-to-ground faults, sags and
swells and the adaptation time is expected to be longer for
dynamic changes in load (Bollen, 2000). The theoretical
background of the statistical properties of this structure
1s explained in detail in (Rioul ef al., 1991).

Wavelet Transform provides the time-scale analysis
of the non-stationary signal Sidney et «l. (2007) and
Ecel and Nezih (2003). It decomposes the signal to time
scale representation rather than time- frequency
representation. Wavelet Transform (WT) expands a signal
mto several scales belonging to different frequency
regions by wsing translation (shift in time) and dilation
(compression in time) of a fixed wavelet function known
as Mother Wavelet. Wavelet based, signal processing
techmque is one of the new tools for power system
transient analysis and power quality disturbance
classification and alse transmission line protection. The
Discrete Wavelet Transform (DWT) and Multi Resolution
Analysis (MRA) provides a short window for high
frequency components and long window for low
frequency components and hence provides an excellent
time frequency resolution. This allows wavelet transform
for analysis of with
components.

During the detection process, the event data 1s
applied to the system, which is a combination of an

signals localized  transient
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adaptive prediction filter based sub-band decomposition
structure and a rule based histogram analysis block.

Two methodologies have been integrated in this
study m order to characterize one specific type of short
duration faults (voltage sags).

WAVELET TRANSFORMS

Fourier Transforms gives information about the
frequency contents of the signal. But it does not give
information about the time of occurrence of the frequency.
Hence, suitable for stationary signal analysis where
frequency component doesn’t vary with time.

A wavelet is a transient signal that can be defined as
an oscillatory function, or a non-stationary signal which
has a zero mean and decays quickly to zero. The wavelets
are functions that satisfy certain mathematical
requirements and are used mn representing data or other
functions. The fundamental idea behind wavelets is to

analyze according to scale as discussed by Sidney
(1998) in introduction to wavelets and wavelet
transforms).

The wavelet transform procedure is to adopt a
wavelet prototype function, called an analyzing wavelet
or mother wavelet. Frequency analysis is performed with
contracted, high frequency version of the prototype
wavelet and a dilated, low frequency version of the
prototype wavelet (Fig. 1a).

Other applied fields that are making use of wavelets
are astronomy , acoustics , nuclear engineering, sub-band
coding, signal and image processing neurophysiology,
music  magnetic  resonance  lmaging,  speech
discriminations, optics earthquake predictions, radar,
human vision and in pure mathematics applications such
as solving partial differential equations.

The wavelet transform, as frequencies mcreases, the
time resolution increases; like wise, as frequency
decrease, the frequency resolution increases. A low
frequency component can be located more accurately in

(®
: .
Wavelgmm?nlysis
®)
Sine wave Wavelet (db 10)

Fig. 1. a) Wavelet transform, b). Comparison between
sinusoidal wave and a wavelet
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the time and a low frequency component can be located
more accurately in frequency compared to high frequency
component (Fig. 1b).

The extensive use of the wavelet transform in various
fields is due to its variety of properties.

Scaling and shifting: Scaling a wavelet simply means
stretching (or Compressing) it. The parameter scale
in the wavelet analysis is similar to the scale used in
maps.

As the case of maps, high scales corresponding to a
non detailed global view and low scales correspond to a
detail view. Similarly, in terms of frequency, low
frequencies correspond to global information of the
signal, where as high frequencies correspond to detailed
information of hidden pattern in the signal.

To go beyond colloquial descriptions such as
stretching, we introduce the scale, often denote by the
letter o.

Shifting: Shifting a wavelet means delaying its onset.
Mathematically, delaying a function f(t) by k represented
by f (t-k).

DISCRETE WAVELET TRANSFORM (DWT) AND
MULTI-RESOLUTION ANALYSIS (MRA)

Wavelets have been applied successfully in a wide
variety of research areas such as signal analysis, image
processing, data compression, de-noising and numerical
solution
wavelet

of differential equations. In recent years,
analysis techniques have been proposed
extensively in the literature as a new tool for fault
detection, localization and classification of different power
system transients.

In this study, we present the wavelet-multi-resolution
analysis as a new tool for extracting the distortion
features. The MRA is a tool that utilizes the DWT to
represent the time domain signal f(t) that can be mapped
into the wavelet domain and represented at different
resolution levels in terms of the following expansion
coefficients:

Csignal = [C()‘d()|dl| and -t d‘f—ll|] (1)
Where:
d, = Represent the detail coefficients at different

resolution levels.
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Fig. 2: Four level multi resolution signal decomposition
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C, = Presents the last approximate coefficients. Wavelet
transform can be achieved by convolution and
decimation.

The detail coefficients d; and the approximated
coefficients ¢; can be used to reconstruct a detailed
version D, and an approximated version A,, of signal f(t)
at that scale. Effectively, the wavelet coefficients h(n) and
the scaling function coefficients hy(n) will act as high pass
and low pass digital filters, respectively. The frequency
responses hy(w) and h,(w) of the mother wavelet
Daubechies (db4) and its scaling function are shown in
Fig. 2. These two functions divide the spectrum of the
input signal f(t) equally (Gaouda et al., 1999; Jaideva and
Chan, 1983).

Decimation (or down sampling) is an efficient multi-
rate digital processing technique for changing the
sampling frequency of a signal in the digital domain and
efficiently compressing the data. As indicated in Fig. 2,
the sampling rate compression and data reduction in detail
coefficients are achieved by discarding every second
sample resulting from convolution process. Since, half of
the data is discarded (decimation by 2), there is a
possibility of losing information (aliasing); however, the
wavelet and the scaling function coefficients (h,(n) and
hy(n)) will act as digital filters that limit the band of the
input ¢, and prevent aliasing.

DAUBECHIES FAMILY WAVELETS

As per IEEE standards, Daubechies wavelet
transform is very accurate for analyzing Power Quality
Disturbances among all the wavelet families, for transient
faults. The names of the Daubechies family wavelets are
written as dbN, where N is the order and db the surname
of the wavelet (Fig. 3).

FILTER BANK STRUCTURE

The signal decomposition consists of an adaptive
prediction filter in a poly phase structure . In this aspect,
the overall scheme resembles the lifting-style wavelet
decomposition due to its filter bank implementation
(Greek and Cieten, 2002). Adaptive Polyphase Sub-band
Decomposition  Structure in Image Compression).
However, the basic idea is to produce decomposition
signals, which converge to a minimal residual signal that
can be considered as the non-predictable content of the
steady state signal. This idea is also, very new in the
signal processing field and quite recently it has been
applied to signal compression (Haykins, 1986). Normally,
the wavelet filter banks decompose the signal according
to the frequency content of the filters with fixed
coefficients. Here, the frequency content or spectral
decompositions are irrelevant due to the fact that the
adaptive prediction filter constantly changes the filter
coefficients.

The analysis structure is illustrated in Fig. 4. Both
the lower resolution and non-predictable parts are
produced using the two poly phase components of the
original signal:

x,[n] = x[2n] 2
X,[n] = x[2n + 1] 3)

These components can be thought of as even and
odd indexed terms of the discrete-time signal. For a signal
with slow variations, the two poly phase components
have strong correlation. Therefore one of the polyphase
components, let’s say X,[n], can be successfully
approximated using the other component samples x,[n]
and a prediction filter, say, P,(.). In that case, one can

0 2 4
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Fig. 3: Daubechies family wavelets
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expect the difference between the prediction output and
x,[n] to be relatively small:

€ =x[n]-P, (x,[n-m], ..., x)[n-m]) 4
Comparing the above difference with Fig. 2, it can be

seen that the difference sequence corresponds to the
lower branch output: x,[n].

SIMULINK IMPLEMENTATION OF THE
ADAPTIVE FILTER BANK

We developed an integrated detection tool using
DSP block sets. This portion can be easily matched to the
structure shown in Fig. 4. Notice that the signal 1s first
decomposed mto poly phase components by down
sampler and integer delay modules. The above polyphase
component, x,[n], is directly fed into the LMS block as the
mput signal. The other component, x;[n], 1s delayed by a
factor of 10, which 1s half of the filter tap size of the LMS
block and compared to the LMS output. The result of this
difference corresponds to x,[n] and it is fed back to the
error input part of the LMS block, by which the adaptation
occurs. The rest of the simulink layout deals with the
analysis of the produced x,[n] is shown in Fig. 5.

Statistical analysis: The residual output, x,[n |, generated
by the adaptive decomposition block carries clearly
visible information about the detection of various types
of events. Therefore, it may be sufficient to present the
above decomposition which produces necessary features
for detection and leave the detection part to the practicing
engineer. Nevertheless, we give a sample detection
method to post-process the adaptive decomposition

output with satisfactory results. In this research, we have
developed an experimental histogram-based analysis
stage which provides automated detection. The analysis
stage consists of a windowed-listogram generation block
and the statistical analysis of the histogram. Statistically,
the windowed-histogram provides short
approximation of the density function, Probability Density
Function (PDF). The PDF naturally carries all the
statistical information of a process, therefore its
approximation, the histogram, is also observed to be
useful for generating the detection rule.

In the adaptive decomposition structure explanations,
we have seen that the residual error x,[n] becomes large in
magnitude when an event happens. This is clearly the
point that must be detected. If we momtor x,[nn] signal n
a time-windowed manner, we can see that the histogram
is well centered when the magnitudes of x,[n] samples are
small. This is the case, when the waveform exhibits no
event. As soon as, an event happens, due to large-in
magnitude samples of x,[n], its histogram becomes no
longer centered. Instead, the tails of the histogram
becomes heavy as shown in Fig. 6.

a time

X(n) ¢ X,(n) x{n)
> 2 >
- “\;\
z* !
(o)
| 2 é g

Fig. 4: Analysis stage of the 2-channel adaptive filter bank

Err Taps
LMS
£ udaptive filter
Downsample 1 Integer delay 1
Signal from

Fig. 5: Sumulink layout of the system for analysation
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Fig. 6: Histogram for the voltage sag

Table 1: Voltage sag

PQ Class
disturbances symbol Model Pararmeters
Pure sinusoidal 1 (L) = sinlrot)
Momentaneols sag 2 x(t) = Al-a(uit-t;)
-u(t-t)sin(ot)
ti<t,, ult)=1, 0.1=x<0.9;
t=0=0,t< 0 T«ty-t,<9T
Temporary sag 3 (L) = A(l-a(uit-t,)
-u(t-t)sin(wot) 01009
Long-term sag
(Under voltage) C4 (L) = A(l-a(uit-t,)
-uit-ty)singot) 0.1<a<0.2

DIFFERENT CONDITIONS OF
VOLTAGE SAG EVENTS

Several typical PQ disturbances are taken into
consideration in this study. Using MATLAB 7.0, the most
commonly occurring disturbances are mitially simulated.
The categories that are simulated are normal sinusoid,
sag, categorized as Momentary, Temporary and long term
sag as listed m Table 1.

GENERATION OF VOLTAGE SIGNALS

The voltage signals generated are sampled at a
frequency of 4 kHz The unique attributes for each
distwrbance type are used and allowed to change
randomly, within specified limits, m order to create
different disturbances. The frequently occurring power
quality events like sags, swells, mterruption, harmonics
and combination of these events are chosen.

PURE SINUSOIDAL

Tt is the ideal voltage waveform generated by pure
sinusoidal signal. The signal is generated at 50 Hz having
1 pumagnitude as shown in Fig. 7.

1n Input sighal-pure sinusoidal
AT
0.6+
0.4+
% 02-
Q-
= 02
2 044
0.6
IR
-1 T T T T T 1
0 50 100 150 200 250 300
Time (m sec)

Fig. 7: Pure sinusoidal wave form

Input signal-SAG with 30% load
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Fig. 8 a: Sag with 30% load
VOLTAGE SAG

Voltage sag 1s described as a drop of 10-90% of the
rated system voltage lasting for half a cycle to one minute.
The causes of voltage sag are:

s Voltage sags are caused by system faults.
s Tt can also be caused by energisation of heavy loads.

The 10, 20 and 30% sag disturbances lasting for
15 cycles are shown in the Fig. 8, are generated with the
simulation diagram as shown i Fig. 9.

In the sag wave form obtained by adaptive
decomposition, can be observed that there 1s a decrease
in value of RM.S voltage during sag. The error signal will
show spikes during sag period and finally the adoption
error will be reduced to zero.

Detection of any type of event using an adaptive
decomposition scheme, wavelet transformation and other
frequency domain techniques would become easier if
there is some high frequency noise at the start of an
event. However, as shown m Fig. 10, voltage variation
during the sag event 13 very smooth and free of noise.
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Even in this case, there is a large adaptation error
which triggers the RMS voltage measurement block and
a sharp drop of RMS voltage magnitude is seen as given
in the middle waveform of Fig. 10. This sharp drop of RMS
magnitude of the voltage should be compared with the
reduction with noisy steps as observed in arcing fault.

CLASSIFICATION USING BACK PROPAGATION
A single-layer network of S logsig neurons having R

number of inputs is shown in Fig. 11. Feed forward
networks often have one or more hidden layers of sigmoid

Decomposition at level 4: s=a,+d, +d, +d,+d,
sy

;\ i
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< ob
2

1

«

<0
1k
0.5

g 0
_0'5 5

P
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Fig. 8 b: Wavelet decomposition of voltage sag (Db4)
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neurons followed by an output layer of linear neurons.
Multiple layers of neurons with nonlinear transfer
functions allow the network to learn nonlinear and linear
relationships between input and output vectors. The
linear output layer lets the network produce values
outside the range —1 to +1. On the other hand, if one want
to constrain the outputs of a network (such as between
0 and 1), then the output layer should use a sigmoid
transfer function (such as logsig).

Simulation and analysis: The simulation data was
generated in MATLAB based on the model in Table 2 as
per IEEE standards. All the four classes (C1-C4) of
different voltage sag events or disturbances, namely
undisturbed sinusoid (normal), sag and its different
categories. Table 2 gives the signal generation models
and their control parameters.

Seventy five cases of each class with different
parameters were generated for training and another
25 cases were generated for testing. Both the training and
testing signals are sampled at 200 points/cycle and the
normal frequency is 50 Hz. Fifteen power frequency cycles
which contain the disturbance are used for a total of
300 points. Daubechies4 (Db4) wavelets with four levels
of decomposition were used for analysis (1 =4). Based on
the feature extraction shown above, 4-dimensional
feature sets for training and testing data were constructed
(Wilkinson and Cox, 1996; Collins and Hurley, 1994;

Table 2: Types of sag (As per IEEE standards)

Type of SAG Time duration Typical amplitude
Momentaneous sag 30 cycles to 3 sec 0.1-0.9 pu
Temporary sag 3 sec to 1 min 0.1-0.9 p.u
Long-term Under >1 min 0.8-0.9 p.u

Cl—Pure sinusoidal, C3—Temporary sag, C2—>Momentary sag, C4—Long-
term sag or (Under voltage)

L
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Fig. 9: Circuit for creating power quality disturbance signals using simulink
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Fig. 10: Wave forms during sag

Layer of logsig
Input neurons
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Fig. 11: Single layer network
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Fig. 12: Tramming the BPNN

Ghosh and Lubkeman, 1995; Lovisolo ef al., 2002;
Ibrahim and Morcos, 2002).

The dimensions here describe different features
resulting from the wavelet transform, that is to say, the

Table 3: Sirmulation results

C1 Cc2 C3 C4
C1 100 0 0 0
C2 0 93 0 0
C3 0 4 92 1
c4 0 0 20 80

total size of the training data or testing data set 15 100x4,
where 400 comes from 100 cases per class multiplied by
4 classes and 4 is the dimension of the feature size of each
case. All data sets were scaled to the range of (1-200)
before being applied to Feed-Forward Back Propagation
Network (FFBPNN) for traiming as m Fig. 12 and testing.
The results are tabulated for all the 4 events in Table 3.

According to, the simulation results shown in
Table 3 the accuracy of classification can be
approximately 97%.

CONCLUSION

Digital Signal Processing based analysis of the
adaptive decomposition outputs can clearly distinguish
events such as faults and abrupt changes from the steady
state waveforms. The central and tail histogram portions
are then fed into comparators for an event detection. By
applying proper thresholds for the final comparator
output, power quality events can be classified and
dynamic changes in load can be distinguished. For
different types of voltage sag conditions like momentary
sag, temporary sag and long term under voltage sag, the
classification has also been done with the help feature
extraction using Multi Resolution Analysis (MRA) and
Feed Forward Back Propagation Neural Network
(FFBPNN) training Algorithm. In both methodologies
detection and classification can be done with higher
accuracy levels. This study has presented, 2 effective
methods to detect the disturbed voltage waveforms of
arbitrary sampling rate and number of cycles. Hence, it
can be conclude that the wavelet MRA and adaptive
decomposition techniques can be efficiently used to

detect and classify any type of power quality
disturbances at a faster rate.
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