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Abstract: This study presents a methodology, for bidding strategies of electricity participants in a congestion
environment. This problem is modeled, as a 2 steps optimization problem. At the 1st step, a bidding strategy
is solved to maximize its expected profit and at the second step, a curtailment strategy will be perform to
maximize the participant’s profit when the system occurs the transmission congestion. An Refined Immune
Algorithm (RIA) 18 proposed to solve the optimization problem. RIA proposes a Scale Scheme System (355)
to improve crossover and mutation mechanism with a competition and auto-adjust scheme by using
counterweight parameter. Using this SSS algorithm, RIA has advantages and some characteristics to show a
better performance than many other algorithms. The TEEE 30 Bus is selected for test. Simulation results have
a good result with this standard to obtain an optimal bidding strategy for electricity suppliers under the

congestion environment.
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INTRODUCTION

The competitive environment of electricity markets
creates competition and trading mechanism for
Independent Power Producers (IPPs). IPPs will use the
existing transmission to sell power at a market price. IPPs
are also seeking chances to be connected the lower price
of existing transmission for obtaining their profits. The
existing transmission owner could be considered as a 3rd
party to provide the electricity wheeling for seller/buyers.
The electricity wheeling cost ncluding the congestion
charges will affect the bid price of IPPs under the
deregulated environments. While IPPs provide the power
mto the transmission system, the congestion will
influence the market clearing price during the bidding
process (Peng and Tomsovic, 2003).

In the pool model, the Independent System Operator
(IS0O) performs the power dispatch based on bids to geta
market clearing price (MCP) (Hao, 2000, Zhang et al.,
2000). Each market participant bids its energy to expect
the optimizing its own benefit. If the bidding energy
makes the transmission congestion, ISO will mtervene to
curtail a small percentage of the bidding energy until the
system is without security problems. A part of market
participants will be forced to curtail the power output for
satisfying the security limit. It 1s obvious that the benefit
gained of participants is affected by the congestion. In
this case, the participants have opportunities to re-submit
the bids to ISO for maximizing its own benefit. It is clear

that the new economic and security problems will
simultaneously occur in the competitive market In
Gountis and Balkirtzis (2004) and Rodriguez and Anders
(2004), a methodology is presented for the development
of bidding strategies, which the IS0 makes the decisions
on curtailment by considering economic and security. The
electricity participants must be curtailed the transactions
to meet the system security limit. At this time, the
generators of some participants may be led to an unsafe
operation. In fact, there are many curtailment strategies,
which are derived dependent upon participants’
willingness (Fang and David, 1999).

In the past, most researches have included the
congestion as constramts or ignored congestion in
bidding process. Tt is difficult to represent a practical
market rule. When the congestion occurs in the marlkets,
a noncompetitive situation will exist i the clearing price
auction. Choosing a bidding process with considering
congestion is complicated, especially finding the best
strategy in a world of uncertainty. Mathematical
methodologies used (Guan et af., 2001; Lamont and Rajan,
1997; Richter and Sheble, 1998; Park ef ai., 2001; He and
Song, 2002), such as Lagrangian relation method, linear
programming, game theory, etc., have been proposed to
solve this problem. With the non-linearity and discrete
nature considered in bidding strategy, the problem
becomes more difficult to solve. Solution strategies
proposed by most algorithms may be faster, they are very
often lirmited by the problem structure and may diverge or
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could lead to a local minimum. Recently, new algorithms
based on the Artificial Intelligence (Al) have been
developed, such as Simulated Annealing (SA)
(Wong and Wong, 1996), Genetic Algorithm (GA)
(Park et al, 1998; Hong and Li, 2000), evolutionary
programming (Nguyen and Wong, 2000, Wen et al.,
2003) and Tmmune Algorithm (IA) (Chun ez al., 1997, 1998;
Huang, 2000). Solution strategies proposed by most Al
algorithms need to consider a large solution space.
Extensive numerical computation, is often required
especially when the load flow technique has to be used.
This study presents an Refined Tmmune Algorithm (RTA)
based Immune Algorithms to solve the bidding strategy
problems.

In this study, a maximal profit will be solved in the
bidding process by use of the RIA and tabu search under
deregulated environment. The bidding problem without
line limit is first derived to solve the market clear price, the
market clear capacity and the participants’ profit by using
proposed Al method. With the bidding results, the flows
for each line are calculated by using the DC load flow
program. When the power system occurs the congestion
after the bidding process, participants will regulate the
power output to meet the security constraints. A
curtailment strategy will be used in the bidding process
dependent upon participants’ willingness. Numerical
analysis will clarify congestion’s influence on price and
bidding strategy. The simulations have a good result with
this standard and makes possible an optimal centrol
strategy to obtain the maximal profit under security
operation.

MODEL OF BIDDING STRATEGY

The pool model: The bidding problem consists of price
offers and the amount of loads to be satisfied i the
competitive market. The bid price curves for GenCos and
DisCos are quadratic convex and concave functions,
respectively. All participants submit a bidding strategy to
maximize the social welfare. The model by aggregate
function can be first formulated as:

Max. Social Welfare= [ (0, =7, ) dP (1)
Where:
Ay = Market Clearing Price (MCP).
Ay = The aggregated demand bids.
MCC = The market clearing capacity.
dP = Power exchange demand.

After the auction close, the MCP 1s determined as the
price of the highest accepted bids and all power suppliers
will be compensated at the MCP. Thus, the profit of
GenCos can be described mn Eq. (2).
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Profit, = A, *B — f(P) (2)
Where:
Profit, = The profit of GenCo 1.
P = The trading power of GenCo 1.
f(P) = The cost function of GenCo 1.

The regulation of bidding strategy due to congestion: In
a pool model, GenCos submit bids to the ISO, who
computes the MCP. If the power system occurs the
congestion after the unconstramned dispatch, ISO waill
adjust the output schedule of GenCos to meet the security
constraints. GenCos will be decreased the power output
to relieve the congestion. A curtailment algorithm with
GenCos” willingness factors 1s formulated as:

Min, objif:Z[Wix(Pi—Pi“)z} (3)
i=1
st B™ <P <P )
Lf™ < Lf <Lf™ 3
Where:
W, = Willingness factor of GenCo 1 for avoiding
curtailment.
P = The generation of GenCo i after dispatch.
P, = The initial generation of GenCo i.
Lt = The line flow of i-th line.
m = The number of GenCos.
| T The lower and upper of power generation
for GenCo 1.
L™, Lf* = The lower and upper of i-th line.

It 1s clear that the curtailed power will result in the
lost profits of suppliers and their cost must be allocated
among market participants. Thus, the new profit of
GenCos can be re-written after curtailment algorithm such
as Eq. (6).

Profit, = A, x B —f(B)— AP x W, xy (6)
Where:
Ap; = The deviation of power dispatch for GenCo i.
¥ = The proportional factor of power dispatch.

Ap, 1s the increased/decreased output of GenCo 1. If
Ap=0, GenCo i must increase its output. Ether increasing
output or decreasing output, the curtailed power must
sum up to 0.

SOLUTION ALGORITHM

1A is a search algorithm, based on the mechanism of
nature selection and genetics. Antigens and antibodies
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Fig. 1: Chromosome string of the antibody

can be viewed as objective functions and feasible
solutions, respectively. The process of genetic structure
mcludes crossover, mutation and reproducton To
enhance the performance of TA, a refined TA (RIA) was
developed as follows.

Encoding: The coding scheme can be illustrated in
Fig. 1, where each antibody indicates a combination of
generation power output. Th e antibody 1s encoded as a
chromosome string, which is produced by Eq. (7). When
RIA search 1s terminated, the chromosome will then be

decoded.
_ pmin l
D2B{HPi P1 )/resoli—‘j )
resol, = (Em -p™ )/(Qb“ - 1)
Where:
D2B Decimal to binary conversion.
bit = The number of bits in a chromosome.

Affinity and diversity evaluation: Immune system
generates different antibodies according to the affinity re-
organization between antigens and antibodies or between
2 antibodies. There are 2 classes of affinity in TA. One is
the affimty between antigens and antibodies. It represents
the combination intensity between antigen and an
antibody. The other one is the affimty between 2
antibodies; it shows the similarity between 2 antibodies.
From Information theory, the entropy can be applied to
measure diversity of antibodies. Tt can be computed by:

N
E*(N) = 72 P, log, P, (®)
i=1
Where:
N = Ts the number of antibodies.
P,s = The probability of the i-th allele coming out of

the k-th allele.

For example, if all alleles at the k-th antibody are the
same, B (N) = 0. Thus the total diversity of the k-th
antibody is:

E(N) = ﬁi E* (N (9)

where, M Ts the number of gene of the le-th antibody.
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Two affinity forms must be taken into account in the
proposed RTA. One is the affinity between 2 antibodies,
1.e., J-th and k-th. It can be calculated by:

(AFE)* = (1+E@2))" (10)

where, E(2) is the diversity of the j-th and k-th antibody
only. Note that if two antibodies are the same, (Aff,)* is
equal to 1. (Aff.Y* is set between 0 and 1. Another, 1 is
applied to investigate the affinity between antibodies and
antigens with:

(AL, =(1+0bj_f,)" ()

Obyj_f, is the objective function for the k-th antibody.
If 1 violate their limits, the
corresponding chromosome will be put mnto the tabu list
to avoid generating the same infeasible solution again.

or more variables

Antibody re-composition: New chromosomes, will be
obtained {rom crossover and mutation. Crossover 1s a
structured recombination operation by exchanging genes
of 2 parent antibodies. Mutation is the occasional random
alteration of genes. An Improved Crossover and Mutation
(ICM) scheme 1s proposed in this study.

Simple Crossover and Mutation scheme (SCM): The
crossover process randomly (uniform distribution) selects
two parents to exchange genes with a crossover rate P,.
The location of the gene within the chromosome 1s called
locus. The crossover point is also randomly chosen from
the loci. If 1 or both offspring is infeasible, another
mate will be chosen again for crossover. The mutation
process randomly (umform distribution) selects one
parent with a mutation rate P, We could randomly select
a locus to mutate. If the offspring is infeasible, another
parent will be chosen wntil a feasible solution can be
obtaned.

Improved Crossover and Mutation scheme (ICM):
Crossover generally executes before mutation throughout
searching process. In original IA | a higher crossover rate
allows the exploration of solution space around the parent
solution. The mutation rate controls the rate new genes
are mntroduced and explores new solution territory. If it 1s
too low, the solution might settle at a local optimum. On
the contrary, a high rate could generate too many
possibilities. The offspring lose their resemblance to the
parents; the algorithm won’t learn from the past and
could become unstable. It i3 a dilemma to choose
suitable crossover and mutation rate for SCM. The ICM
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Fig. 2. Probability map of erossover and mutation in ICM
for SS8 =05

proposes a Scale Scheme System (SS5S) to improve
crossover and mutation scheme for avoiding the
difficulty.

¢ Randomly select two parents and generate offsprings
by introducing 3SS (g) with

¢ If Ran<SSS (g): use mutation.
» If Ran=SSS (g) use crossover.

where:

Rand = The uniform random number in (0,1)

S35 = 0.1<385 (g)<0.95, the control parameter with
initial value set to 0.5.

g = The current generation number.

The offspring will be generated until all parents are
processed. Figure 2 shows the wutial relationship of
crossover and mutation in ICM. If the best current
solution comes from crossover, there 1s a more likelihood
for crossover to generate better offsprings for the next
population. On the contrary, there is a more likelihood for
mutation to generate better offsprings. If the best solution
remains the same, the operation of crossover or mutation
needs to hold back. The probability of crossover and
mutation is sum to 1.

« If ob f. (g) comes from crossover, the control
parameter SS5S (g + 1) will decrease. We have

SSS(g+1) = SSS(g)—D (12)

where,

be ‘SSS(g)fszS(gfl)|

In the Scale Scheme System, the counterweight D is
added in crossover process such as Fig. 3. Thus, the
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higher probability for crossover operation will produce
the next offsprings.

» If oby f,.. (g) comes from mutation, the control
parameter 333 (g + 1) will mcrease. We have

SSS(g +1)=8388(g)+ D (13)

In SSS, the counterweight D 1s added in mutation
process such as Fig. 4. Thus, the higher probability for
mutation operation will produce the next offsprings.

o If oby £ (g-1) = oby £ (g) the control parameter
needs to hold back. Tf S35(g) > S35 (g-1), we have

SSS(g+1)=888(g)-D (14
else,

S8S(g+1)=888(g)+D (15)

Tabu list: A tabu list will be constructed to define
forbidden moves, such as:
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¢ The solutions just visited except the best solution in
the current generation.

¢ The local optima ever visited.

¢ The antibody violating electric constraints.

Elitism selection: The antibodies including parents and
oftsprings are then ranked in ascending order according
to their objective function. One half of antibodies with the
best value are kept as the parents for the next generation.

Stopping rule: The process of generating new antibody
with the best affinity between antibody and antigen will
continue until the affinity values are optimized or the
maximumm generation number 1s reached.

CASE STUDY

In this study, the TEEE 30-bus is used as examples to
show the effect of the proposed method. There are 5
competitive generators (GenCos) and 20 distribution
Companies (DisCos) interconnected by forty transmission
lines is used for test as shown in Fig. 5. The associated
cost functions for GenCos are listed in Table 1.

Generation level and MCP: To analyze the congestion’s
influence on the bidding strategy and price, the situation
is first performed when the transmission line has not
congestion. Based on GenCos and DisCos bid curves, the
ISO determine a MCP after the auction close such as
Fig. 6. The profits of all GenCos will be compensated at
the MCP. The bid quantities and profits for GenCos can
be obtained by using proposed algorithm such as in
Table 2. In this study, the MCP and social welfare are
8.5669% and 321.726 $/h, respectively.

L .98
~

The bidding strategy for GenCol: After auction close, a
DC load-flow 15 applied to solve for the network
conditions. Tn our study, the line flow of line 1-2 is
301.085024 MW after DC load-flow and the system
occurred the congestion. Due to the line 1-2 is overload,
IS0 has to curtail the power in order to keep the security
operation. GenCos will be regulated the power output to
relieve the congestion such as Eq. (3). From the GenCol s
view, three willingness factors are adopted to show the
results as shown in Table 3. From the Table 3, if the
willingness factor of GenCol is 4, the profit and trading
power of GenCol are 239.41 59 $/MW and 305.9629 MW,
respectively. When the willingness factor of GenCol
increases to 8, the trading power of GenCol increases to
309.2864 MW and the profit of GenCol decreases to
239.2562 $/h. It 1s obvious that the lager generation of
GenCol will get the smaller profit due to the higher
willingness factor.

Table 1: The cost function of GenCos

Generators Cost function (%) P Ppyax
GenCol 330+ 5.3225P, + 0.0045P2 200 (MW) 400 (MW)
GenCo2 260 + 5.5025P, + 0.0060P2 200 (MW) 400 (MW)
GenCo3 200 + 5.6075P, + 0.0070P2 200 (MW) 400 (MW)
GenCod 300 + 5.3055P, + 0.0044P2 200 (MW) 400 (MW)
GenCo5 340 + 5.4125P; + 0.0060P2 200 (MW) 400 (MW)
GenCo6 220 + 5.7035P, + 0.0050P2 200 (MW) 400 (MW)
Table 2: The bid quantities and profits for GenCos

Output (MW) Profit ($h)
GenCol 360.4861 254.7761
GenCo2 255.3646 131.2665
GenCo3 211.3839 112.7822
GenCod 370.6108 304.3505
GenCoS 262.8616 74.5868
GenCob 286.3375 189.9459
Total 1747.0475 1067.7080
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Fig. 5: The IEEE 30-bus power system

47



bt J Elect Fower Bng, 3 (1): 43-49, 2009

Tabk = Smilatiorresuke wih fhree wrillvess factor:

Cret il Genlod Crry Cod Cren Cod CrenlCos Cret Lot Total
The profits of gerwrstors witunadt live Tnite d
Profits () 254 78 13127 11278 30435 T4.50 18995 107e+03
Chatpnat (I 36047 25537 21138 37041 262.86 286.34 1.74e+03
The profits of gerwerstors 1mder d¥ferent willigpess factor
Profits () 23716 128491 107 52 302.10 7221 187 .94 104e+03
Chatpnat (W) 29990 27570 237 54 34005 28133 304.62 1.75e+03
W (RROED 2 2 2 2 2 2
Profite () 23042 13097 11222 30398 6551 189.51 104e+03
Chatpndt (I 30596 249 66 21916 37701 300.29 20407 1.75e+03
W ROED 4 2 2 2 2 2
Profits (Fd) 23026 11245 112458 30418 444 189 .85 104e+032
Chatpnat (W) 30929 300.10 21408 37517 25024 28912 1.75e+03
W ORI ] 2 2 2 2 2
Table 4: Cormmerzerce test
Dlaxdrrsl Dlirdmal Aerag
Cormrerged copmerged cormerged

Alzoritten devdating devriation dewviatiom :
[E1Y 2524 10" 2.514 10" 2519 10" Mnim
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EI& 1.124=10" 1.163=10° 1.175=10"
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Fig.é: The acoumwlated bids cwves of GenZos and
DiaCos

Figure 7 shows the bhidding strategy swface of
GenCol By considering the transmission congestion, the
hidding strategy of GenC ol isrequired to adopt a desired
willingness factor in order to get a hi gher expected profit.
If the GenZol considers the operation security of units,
the higher willingness factor will get the more hids to
outpt the power. It can be shown that the optimal
hidding strategy for GenCol isrecommend inFig 7.

Convergence test: Figuwre & illustrates the cotrrer getice
chatacteristics of RIA, [4 and GaA. It shows the
improvem ert of the RIA over GA andIA AnIBMPC with
PIVI2GHzCPU and 512 WIB 3DR AN izused in ourted.
Table 4 shows the maximum, mindmum and average
optitnized devd ati oryweith 100 randoen indtial parertstested.
The popalation size of each trial is 30, Although, the
solution impr overt et is subtle, it did show the capability
of RI& in exploring a more likely global optisom .

Tomer sotarg (B0 —0 20

Fig 7: The Widding strategy suface of GenCol
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Fig &: The comvergence characteristics of RIA TA and
G

CONCLUSION

This study presents a Wdding strategy of electricity
suppliers in a congestion ervirorsmert. The model by
ageregate function is used to solve the MCP for
determining the electricity owmpuat of all participants. &
cuttailment dgoritten  is formodated to perform the
cotigestion o ahagemert. In this appeoach, GenDos can
try to maximize its profit by considering their curtailed
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willingness and their system security. RTA is adopted to
solve the optimal problem. The methodology has been
tested on TEEE 30-Bus system and has proved effective in
finding the optimal bidding strategy. The effective of
RIA has been successfully demonstrated by numerical
example. RIA has great potential to be further applied to
many ill-conditioned problems in power system planning
and operations.
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