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Abstract: This study presents, a framework for decomposing strongly interacting complex electric power

systems to controllable sub-umits using the development of linear programming. The proposed algorithm

relies on a characteristic subsystem description, which reduces the complex power plant to a set of scalar
representations and provides the user with the same control flexibility as that associated with single-input

single-output system configuration.
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INTRODUCTION

The essence of process control in large-scale electric
power plants (Obmabo, 2008, Wang ef al., 1993) is to
maintain system frequency and voltage levels, while
guaranteeing security of supply at minumum cost. The
interconnection has evolved over several decades to meet
the needs of an ever-growing demand for electricity. The
basic topology of modem electric power plants has been
configured into, large-scale umts, which are often remote
from load centres, utilities supplying their customers
without depending much on the neighbouring utilities and
utilities interconnecting for reliability reasons to help each
other during major equipment failures. Consequently, the
electric power grid (Ilic, 2007) has several voltage levels,
converted from one to the other step-up and step-down
transformers. This has led to an extra high voltage meshed
transmission backbone network and distribution (local)
lower voltage networks closer to the power consumers.

Tt can be seen from the foregoing that the
mterconnection of power systems in order to provide
security of supply, economic operation and to reduce
capital costs of system expansion has introduced more
complex control problem, for example, frequency does not
suffice any longer as the only index of unbalance between
area load and generation. To coordinate these
activities, centralized control schemes have been
proposed (L et al, 2007), which ensure that global
information of the entire system is available. However,

centralized controllers are very difficult to design and
implement in complex large-scale plants due to technical
and economic Furthermore, the coupled
scheduling and planning formulation (Contreras and Whu,
1999, Armbruster and Gosnell, 2005) poses a complex
operations and planning as a single optimization problem
evolving at the same time. The centralized controller
designs are also, dependent upon the system structure
and cannot handle the structural changes. To overcome
these problems, the distributed nature of the plant is taken
into consideration when specifying criteria for optimal
performance. This is done by splitting, the plant into
suitable areas and controlling each area locally. However,
because interaction exists between the areas, it cannot be
certain that the overall system control 13 optimal. To
overcome this, it may be necessary to retain some
unsolved local variables in the sub-problems and if a
central computer 1s made to exercise control over them, it
can modify the local controls in order to optimize the
overall system.

In this study, the problem of real power dispatch
in electric power systems is formulated as a linear
program by splitting the plant into a number of the
constituent elements and recombining their solutions to
obtain an overall solution of the original problem. The
study sets the problem in a suitable form for
decomposed solution from which a general formulation of
optimization of dynamic systems by linear programming
is obtained.
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THE CONCEPT OF LINEAR PROGRAMMING

The problems of design and control of large-scale
electric power systems can be reduced to one of
determining optimum cost or operating conditions
(De Farias and Van Roy, 2003; Denardo, 1970) for
minimum cost with product cost depending on a large
number of mterrelated control parameters. Mathematically,
the approach (Fletcher, 1987) would be to minimize the
integral of the squared difference between a specified
function and an approximation to it generated as a
function of the control parameters.

Process optimization problems by linear programming
(Hordijk and Kallenberg, 1979, Manne, 1960) are
formulated for erther maximization or mimmization and are
expressed mathematically as:

n
¢' = Z u‘mxl
1=1

subject to a number of linear constraints,

1
Zotoix1 <oy, j=1,2,..,n
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and non-negative restrictions x>0, j =1, 2, .., n. The
constraints are transformed mto a system of Eq.

1
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by introducing the slack variable, x,,;, which must also,
satisfy the additional non-negativity restrictions x,,;=0,
j =1, 2, .., n If only two variables characterize the
problem, we will, without loss
considering a system split into 2 subsystems (Fig. 1
and 2),

of generality, be

Where:

m = Vector of manipulated vanables.

m; = Vector of manipulated variables for subsystem 1.

v = Vector of output variables.

y; = Vector of output variables for subsystem 1.

x, = Vector of interaction variables from subsystem 1-2.

x, = Vector of mteraction variables from subsystem
2-1.

The mteractions between the 2 subsystems are
unbalance, that 1s,

X, % 7, (2

xl

Subsystem 2
G, (Mg, Yo X5 2,) =0

Subsystem 1 =
G, (m, ¥, %, 2)=0 ?
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Fig. 1: Decomposition of the original problem into 2
subsystems
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Subsystem 1
G, (1, y,, %, 2)=0 ¢ G, (ty, ¥, %, 2) =0
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Fig. 2: Interaction decoupling: Min P(m, y, x) = P,(m,, ¥,
x,) + Pm,, v, x;), subject to the conditions
mdicated for 1 and 2

Subsysiem 2
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Min P(m,y,x):Pl(mPYI’Xl)

+P2(m2>y2=‘x2)
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The second level problem must therefore attempt to
force the mteractions mto balance, that 1s,

—z (5)
2 =%, ©)

at the same time as optimizing the objective functions.
This may be done by the mclusion of a penalty term

P(my x,z A)=F(m, vy, x)
+P,(m,, v,. %, )+ A" (x-z)

(7

where, A is a vector of weighting parameters (positive or
negative as needed), which penalize any unbalance.
Expanding the penalty term

Wi x—z) =2 H(x, =z )+, (x,—2,) (&)

we arrive at the coordination strategy in which the goals
of the subsystems have been modified to achieve
coordmation. Solution would proceed by iteration
between the 2 levels. The overall objective function is
additively separable,
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P(m,y,x):P1 (m1 yl,xl)—i-P2 (mz,yz,xz) )

Now for the time being fixed, the mnteractions at any
arbitrary value z is:

Constraint x=z (10)

We now split the problem into first and second level
problems, such that the first level chooses m and vy to
minimize P with the given interaction z and the second
(higher) level chooses a new z to minimize H. The co-
ordination proceeds by modifying the subsystem process
models. The minimization proceeds sequentially, with the
first and second level problems being solved alternatively.
Generally, the optimization problem would be to maximize
the objective function,

T
¢':§R§ (11
subject to
Ax=a, (12)
x=0
where,
T
X = (X Koo Ky )
and
T —
QR 7(3'0173'027""aon’ao,n+17""ao,n+m)
and
E]'o,n+1 = ao,n+2 == ao,n+m = 0

A is an mx (m+n) matrix given by

[a, a, ..a, 10..0
8, Ay .8y, 01...0

A=|. (13)
|y By e 8y, 001

Thus, the constraint system of Eq. 12 consists of m
equations in (m+n) unknown

X.X,,..X, n=M+N (14

If A has rank m, a set of n variables can always be
chosen from among the (m+n) variables X, X, ..., Xy, SUCh
that the system

Ax=a (15)

27 Ze

1s uniquely solvable mn terms of the remaining m variables.
If the problem requires that the problem is to maximize the
function

L=>c'x (16)
1=1
subject to
Aix1 = b (17)
1=1
Bx =b,i=1..n (18)
X, =0 (19)

where, A 15 an m>*n matrix, B, 1s an m;*n, matrix. C, and x,
are n, vectors, b 1s an m vector. Also, b,is an m ;vector.
We define a bounded convex domain S,

S ={x,/x, 20, Bx,=b} (20)

Let, the set of all corner points of the domain S, be
denoted by

W = {xﬂ, Xyps oo xlki} (21)

1

If we introduce new variables z, we can represent
any point x; in 3, by a convex combination of the corner
points x, Le.,

k)
X = Z Zy Xy (22)
k=1
k;
Zzik =1, foralli. (23)
|
z, =0, forallk. (24)

This is analogous to attaching weights z to the
corners of the hyper-surface and the finding its centre of
gravity. We now have a way of representing all the
feasible points in the sub problem in terms of some new
variables z,. The rest of the linear, program 1s now
transformed mto an equivalent form by introducing some
new control problems

P, =Ax,. k=1..k 25)

andi=1,...n
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¢, =¢'X (26)

Through these quantities, P, and ¢, the effect of the
new variables z, on the original problem’s cost function
and overall constraints is clearly obvious. We now have
a linear program, which is a linear transformation of the
original problem

n

Min}' > ¢z, (27)
i=1 k=1
Subject to
n k
ZplkZﬂ( = b (28)
i=1 k=1
K
>z, =1 foralli (29)
le=1
7, =0, foriandk (30)

Theorem: Let the quantities z, be the solution to
Eq. (27-30).
Then the vectors

ky
X, =D XyZy, i=l..n
k=1

form the solution of Eq. (16-19)

Proof: Let problem Eq. (16-19) be denoted by Iand
Eq. (27-30) by 1I. Then we need to show only that the
minima of the objective functions ¢, and ¢; are the same
and that each feasible point of T corresponds uniquely to
a feasible point of IT.

Let %, be the solution of T, then by Eq. (17 and 18) we
have %, € S, Hence, %, can be represented by:

; 5
>z xy,with >z, =1, 2, =0 (31)

k=1 k=1

and Eq. (17) changes to

n n k; n Kk
ZAlxi =b= ZAizzlkxlk = Z Zzikpik (32)
i=1 k=1

i=1 i=1 k=1

Thus, the constraint of IT are satisfied and we have

n n I n K
o T o T o =
CI - ch X1 - ZC1 Zzlkxlk - chﬂczﬂc = C]I
1=1 k=1

1=1 =1 k=1

(33)

Conversely, it is easy to show that the optimal point
of II comesponds to a feasible pomnt of I and that
therefore,

Cp =¢; (34)

DECOMPOSITION OF THE REAL
POWER DISPATCH

A linearized state space representation of a
multivariable power system with voltage and frequency
dependent loads is considered in this study. The system
was assumed to consist of n generating nodes and m load
nodes comected by transmission lines and transformers.
The linearization was achieved by assuming negligible
transformer voltages and stator resistances. Saturation
was ignored and machine damping, mcluding the effect of
damper windings was taken into account by introducing
a damping constant in the swing equation. A system of
equations was consequently obtained, which can be
written as (Brucoli ef al., 1985, Obimnabo, 2008):

%= Ax+Br (35)

where, x 18 a composite state vector of dimension 3n x m
and r a 2n- dimensional composite input vector. A and B
are constant matrices of appropriate dimensions. The
presence of frequency-dependent loads implies a system
description, which mn addition to the 3n state variables
characterizing the n generating units, includes m state
variables relative to m loads.

The control problem under consideration is to set the
demanded active power dispatch of each generator in a
system, such that the production cost is minimized and at
the same time security of supply and operational limits are
adequately satisfied. The overall problem is therefore, a
very large scale constraints static optimization. The
dynamics of the system are assumed to be slow so that
they can be accommodated by repetitive mtervention by
the control computers. The problem is linearized as a
reascnable approximation and to keep it manageable with
the available time. Firstly, the production cost is
approximated by a lmnear function to be minimized as
follows:

min QT X (36)

The elements of x are the power of the generator
elements of ¢ are their incremental cost in f per WM. This
minimization must be carried out subject to operational
constraints, which divide naturally into individual
constants, group constraints and overall constraints. The
output of each generator must be within upper and lower
limnits.
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LONES'ES. o (37)

111!
The sum of the outputs of generators in one station

or group must also be within limits, often derived from
boiler or network hmitation:

Spw <X, €S, (38)
1=1

The total generation, must equal the total P,

% =P (39)

It is also, possible to represent spare capacity and
network flow limitations as linear constraints.
The spare capacity is be represented
S, < Ky

SiSK11+1,]11X‘1

S« Ky —hy x

3S, =8, (40)
1=1

and the network constramts.

%, =G, (import constraint) (41)
certain i

> x, <G, (export constraint) (42)
certain i

The vectors ¢" x are the generator costs. The vectors
A, are the overall constraints (overall generation
requiremnent, umport-export restriction and total spare). The
matrices B; are the sub-system and mdividual constraints
(station and generator effective maxima and minima).

CONCLUSION

The results established in this study are, compared
with  those and parallel
decomposition of large-scale composite systems from the
assoclated transfer functions to equivalent state
equations (Obinabo, 2008). First, our result is seen
strictly as a system theoretic approach of decomposing
linear multimachine mterconnections mto equvalent

obtained for cascade

controllable sub-units using the development of linear
programming. In parallel decomposition, a state set 1s
decomposed  into direct  summand machines
(Hartmantis and Stearns, 1966; Kalman et al., 1969), each
summand operating independently of the others so that
the next state of the machine depends only on the input
and its own curent state. The curent state in this
application 1s restructured by some functions of the
current states of the component machines. The basic
feature here is to decompose a linear system X into
simpler linear systems by finding sub modules I and A of
the state module X such that I'm A = 0. Subsequently, X
is embedded in X1 @ X/A and a new system X’ is
constructed with this state set, the input/output
properties of X and X being identical. The problem is
thus, to find T' and A that lead to simplification in the
description of %°. For real power dispatch m electric
power systems, this means decomposing the state module
into a direct sum of, say, R(z) module. On the other hand,
cascade decomposition emphasizes simulation of the
original machine by simpler machines that do not
necessarily operate independently. Tn particular, the
component machines are conceived as an arrangement
in chain where the next state of a given machine depends
not only on the input and its own current state, but also
on the current state of the preceding machine in the cham.
Intuitively therefore, it should seem reasonable the
linear programming decomposition of the interconnected
composite system considered in this study can be
achieved under much simpler and straightforward
conditions than those for parallel and serial
decomposition since, the feature of
independence is slackened.

We have shown that the problem of controlling
interconnected multi-machine power systems can be set
in suitable form for decomposed solution and formulated
as a linear program. This was accomplished by setting the
desired real power of each generator in the system such
that the production cost was minimized, while satisfying
security of supply and operational limits. The study has
given the fundamental theoretical inmsight mnto the
operation of a large class of dynamic systems of the type
considered by Obinabo (2008). More importantly, the
method can be used as a starting pomt for mvestigating
systems with more detailed structures and can be applied
to situations, where the network constraints are finite.

absolute
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