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Abstract: A method for computing rational transfer function matrices for linear constant multimachine power
systems defined by the relation y (s) =G (s)x(s),x(s) =u(s)-F (s) y (s) directly from the Markov parameters

1s presented, where,

G(s) é (g, (80

represents the plant and

F(s) A diag (f1 (s),...,fn (s))

the controller. Smce, computational modeling provides a potentially powerful way of mtegrating structural
properties of dynamic systems given in state space, an algorithm is described which enables transfer function
matrices of constant multimachine power systems to be obtained by inversion. The result of this study confers
several advantages over the other methods reported i the literature and can be applied directly to differential
systems with mnput-output parameters without having to derive state space realization.
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INTRODUCTION

Coupled dynamic systems described by multiple
mput-output configurations oceur essentially in modern
power plants where typically a change in any cause or
mput, give rise to many effects or output changes.
Extensive studies of determmustic and stochastic
processes (Ji and Kim, 2007, Kalman et al., 1969,
Rosenbrock, 1970; MacFarlane, 1974) report structural
decomposition of linear multivariable systems which can
be represented by transfer function matrices using
spectral factorization (Meyer, 1990, Femando and
Nicholson, 1982; Whalley, 1978). The unportance of this
problem has necessitated many research studies some of
which have been focused on determming the internal
structure of the mteractive process (Kerckhoffs et al,
2006; Kalman et al., 1969) often characterized by a matrix
of rational functions in the Laplace transform variables
and used to synthesize the Wiener-Hopf optimum filter in
communications theory, or compensating networks in
control engineering directly from the msight gamed from
analysis of such systems.

Use of simplified transfer function matrices m
multivariable control system design (Bengiamin and Chan,
1982) offers considerable savings in computation time and
analysis and leads to much effort towards reduction of the
order of a mathematical model in some systematic
manners. One of the powerful synthesis techniques for
the scalar case which also provides much insight into
the problem on hand 1s the root-locus techmque
(Nwokah, 1983). A single variable root locus method was
extended to the
multivariable formulations with a single gain (Owens,
1978; MacFarlane, 1980) and multiple gain (Bymmes, 1981,
Nwokah, 1981) parameters multiplying the open-loop
transfer matrix G (s). Tt is shown that for a transfer
function matrix of order n, a separately adjustable
parameter a,, k =1, ..., n constructed as a feedback loop
across a multivariable system yields an asymptotic
behaviour of the closed-loop system under simultaneous

originally developed and later

variation of the adjustable parameter such that as a,- e for
k=1, .., n, the fimite poles of G (s) either terminate or
remain 1n the left hand of the complex frequency plane.
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The use of scalar feedback loops constructed over
multivariable systems (Obinabo, 2008} enables the
controller dynamics to be chosen in such a manner to
vield the desired performance and sensitivity of the
system to large parameter uncertamty.

Since, each input-output pair in any given situation
generally leads to a different root locus family, sufficient
conditions are desired under which the matrix of Markov
parameters of the open-loop transfer function matrix will
guarantee acceptable performance for every gain matrix.
The results presented in this study, provide a good basis
for operating the multimachine power plant, choosing an
put-output pairing configuration that will guarantee
certain types of closed-loop asymptotic behaviour as p is
varied from 0 to . An algorithm is described which
enables transfer functions of linear multimachine power
systems to be obtamned by mversion.

MATHEMATICAL PRELIMINARIES
Definition: Given a formal power series

fE=C+Cx+Cx*+ ... (D
the rational function p,, (x)/Q,, (x), where, p,, (x) and Q,, (x)
are polynomials of degree m and n, respectively,
symbolically denoted by (m, n), is said to be a Pade
approximant of f (x), if and only if the power series
expansion of (m, n) is identical with that of £ (x) up to and
including terms of orders s™™ Tet the function to be
approximated be defined by Hq. (1) and let the
approximant be defined by:

P (x a,+a,x+...+a_x"

- (2)
Q, (x) by+b x+.+ bn_lxn_1 +x*

where, the power series expansion of Eq. (2) is to agree

with that of Eq. (1) as far as and including, the term in s™™.
Consider a linear multimachine power system with

zero initial conditions described by the relations given:

x(3)~uG)F )y () 3)

Yy () =GG)xs) 4

where, u (s), x (s)and y (s) are Laplace transforms of u, x

and y, defined by the transfer function matrix H (s) that

relates the function y tou(ie,y (s) = H(s)u (s)) as:

H(s)=G () [1+F ()G ()] (%)

If G (s) is nonsingular, we obtain an alternative
relation:
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I:I(s):F(s)+é(s) &

Where,
TEINCHE IS
H(s)A (Hkl (s)): H(s)' (8)

The system Eq. (3) and (4) is embedded in a feedback
configuration (Fig. 1) with the square linear open-loop
system S (A, B, C) and described by the relations:

X =

Ax+Bu ©)

Cx

|~

where, X, u

> A ==

and y are the n-, m- and m- dimensional state-,
input-and output-vectors, respectively and A, B and C are
constant matrices of appropriate dimensions. The
function 1 18 an m- dimensional reference mput-vector, K
is a constant nonsingular feedback controller matrix, while
k is a variable scalar gain.

In the single parameter multivaniable root locus
problems (MacFarlane, 1980), the open-loop transfer
function matrix of the system with n mputs and n outputs
is assumed to be of the form:

Q ()= pQy (8) (10)
where, p is a scalar parameter (Obinabo, 2008) and the
matrix Q (s) 18 usually taken to include both the effects of
any precompenstor, actuator and sensor dynamics as well
as the plant itself. The root locus is then obtamed by
plotting the roots of the characteristic equation:

det(T+Q(s)=0 an
in the s plane as p is varied from 0 to <. To allow for

different gains in the various loops, the function Q (s) in
Eq. (10) is replaced by:

Q(5) = pAQ, (5) (12)
where, A is a constant diagonal matrix
A = diag (a, ..., a,) (13)
with a,> O forlk =1, ..., n, Eqg. (11) then becomes
det (1 +pAQ, (s))=0 (14)

whose roots for a particular selection of the matrix A
yields one member of a root locus family.



Int. J. Elec. Power Eng., 2 (6): 403-408, 2008

Theorem 1: If the function f (n), given in Eq. (1), reduces
to a rational function p,, (x) q,, (x) given in Eq. (2), then the
following recursive relationship must hold:

1 E
C, :_szjCK*J’ k>m (15)

o j=l

Proof: It should be noted that in the statement of the
theorem b, is normalized to unity and that:

C,=0,k=<0 (16)
The proof of the theorem 1s very simple and relation

Eq. (15) 18 shown to hold simply by considering the power
series expansion of the given rational function. Thus let,

P
m(x):co+clx+c2x2+--- (17
Q, ()
Then using Eq. (2) we get:
C, = Ao (18)
0
and 1n general
1 K
Co=—laz—».bC |, k>0 (9
b, K1
witha, =0, k>m
Hence Eq. (19) reduces to,
1 K
Cp=——>DbC , k>m (20)
1

b, &

which proves the theorem.

Now consider the problem when the power series
expension for f (x) 1s given by Eq. (1) and we would like to
obtain the two polynomials:

PO ax 1)
and -
Q, (x):iblx‘, b, =1 (22)
such that
)= Lm () (23)
Q.. (x)
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assuming that m < nlet:

c, ¢ G - Cen
¢, G G -Gy

CK,K =|C, Cs C, . CK+3 (24)
Crrr Ciao Cras - O

We can determine the value of n using the following
theorem.

Theorem 2: If Eq. (23) is satisfied, then there exists a
unigue n such that:

det C, %0 (25)

det C 0 (26)

nta, nt a=

Thus having determined the value of n by
theorem (2), the coefficients of the denominator of Eq. (2)
are given by:

Cn, n b - _Q (27)

Where,
h = (bnﬂa bn—Z: Tt b[l) (28)
c=1(c,, ¢y ..., C) (29

The coefficients of P,, (x) were determined using the
first (m+1) of the set of the linear equations which define
the given problem.

REPRESENTATION OF THE
INVERSE MULTIMACHINE POWER
SYSTEM

Given a power series expansion of a linear constant
multimachine power system which is reducible to a
transfer function and it 15 known that the order of the
numerator does not exceed that of the denominator, then
an algorithm is desired to determine the transfer function.
The transfer function so determined will be in a reduced
form and will consequently not have any common zeros
in the numerator and denominator. The mverse of the
system is described as that whose input vector is the
vector y of the relation y = Cx (t) and the output vector
the vector u of the relati_ong () = Ax (t) + Bx (t). The
poles and zeros are described by the configuration of Fig.
1, where, A, = NAM, A= VAU, B, =NAU, C, = V,.AM,
B,=VB,C,=CU,
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Fig. 1: Representation of the nverse multimachine electric
power system with the input vector y and the
output vector u

It 15 verified (Nwokah, 1983) that certain relation
exists between the angles of the loci that correspond to
the finite zeros in S (A, B, C) and the angle of departure,
from the poles, of the root loci in the inverse system. The
angle of approach is also shown to equal the angle of
departure of the root locus from the pole of the system as
shown in Fig. 2, where r 1s an m-dimensional reference
input-vector, K is a constant nonsingular feedback
controller matrix and k 1s a variable scalar gain.

The characteristics polynomial of the above closed-
loop system is given by:

A5 K)ASI-A,| = ST, —A+KBKC|

=[SI- Al =1, +kC@EI-A)'BK| (30
=[SI-A| =1, +k G (K]

where,
A=A -KkBKC
GE)=C@GL-A)"'B

The closed loop state matrix.
The open loop transfer fimction
matrix.

In order to prevent D (s) from losing rank identically
(independently of ), which corresponds to the case of
depended control action and/or outputs, it is henceforth
assumed that B and C, the input-and output-coupling
matrices have full rank. For a given K, the solution of the
equation

A.(s, k)=0 (3D

for s m terms of k determnes implicitly the dependence of
the closed-loop poles, p,i=1, .., n, on the feedback
gan k.

Let the problem be described generally by the
following linear time-mvariant dynamical system:

X(1)=Ax(t)+Bu(t)
y(t)=Cx(t)+Du(t)

(32)

where, u 1s the m-dimensional input vector, y 1s the r-
dimensional cutput vector and x is the n-dimensional state
vector. The matrices A, B, C and D have dimensions
compatible with x, y and u.

Fig. 2: The proper part of the mverse system (Fig. 1) 1s
represented here as the feedforward path

A procedure whereby a stable multimachine power
system can be designed using the theorem has been
established. First, it 1s required to obtain Nyquist
contours and this is possible if the transfer function
matrices can be obtained. Thus, by taking TLaplace
transforms Eq. (32) 1t can shown that:

y(s)=(CsI- A B+D)u(s)
=T(s)u(s)

(33)

Where,
T(s)=(C(sI—A) ' B+D] (34)

T (s) 1s a rational transfer function matrix of
dimension (rxm). Various methods are available for
computing T (8) and they involve computation of the
characteristic matrix (sI + A)~' using Fadeeva’s algorithm
{(Gantmacher, 1959) and then using Eq. (34) to compute
T (8) by first determming det (sI + A), which gives the
common denominator of each entry of T (), while the
numerator of each entry is given in terms of the Marlov
parameters of the system (Shamash, 1972). In this study,
we compute T (s) directly from the Markov parameters of
the system. The approach has advantage of giving each
entry of T (s) in reduced form and also it is directly
applicable to system described by mput/output data. Eq.
34 may be rewritten in the form:

T(s)=C(sI—A)Y'B+D

=D+C(s)=
C(sl+s7 A+s 7 ATA +-)B (35)
=D+CBs_, +CABs ™’
+CA*Bs ™ -
=D+ys ' Fays T+ (36)
Where, v, =CAB, +ys™+ ... (37)

They’s are the so-called parameters of the systems.
In the case whenm =r=1, Dandy, 1 =0, 1, ...) are
constant scalars and T (s) 13 sunply an mfimte series in
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negative powers of s. Since, the system Eq. (32) is finite in
dimension, the power series for T (s3) 15 equivalent to a
rational transfer function. Thus, let

TE)=C+Cs' +Cs 4. (38)
Where, C,=D 39
Ci=vi,1=1,2 .. (40)

Then it is easily seen that by letting z=s ', Eq. (38)
is similar to Eq. (1) and thus Fadeeva’s algorithm
(Gantmacher, 1959) was used to construct the unique
rational transfer function for T (s).

Example 1: Consider a linear constant multimachine power
system for which the system equation arose naturally in
the matrix form X (t) = Ax (t) +u (1), with

0o —2 1 1
A= 0,B= 0|,
0 0 1
2 0 1 0
C = , =
0 — 2 01
The transfer function 1s obtained as:
1 0] |2 0 0 2 —4 0
T(s) = + g7 s+ =
01 |0 2 -2 0 0o -2
0 —4 8 0 0 8
+ s g7 4+ g7
4 0 0 4 -8 0
B t, (s) [ (s)
t,, (s) t,, (s)

The Markov parameters were computed as follows:
y= CA™)B
Y= C (A (A"'B)), k< 0

Using theorem 2 we obtain:

2s 2
t“(s)zlJrisz_._z, t, (s):ft21 (s): T
2s* +2
t, (8) = v +1

22(5) 5(52—0—2)

Therefore,

s +2s+2 2
242 g2 42
Ts= & 425 +2542
st +2 s(sz+2)

Example 2: For the multimachine electric power system S
(A, B, C) defined (Fig. 1 and 2) by the matrices:

-4 7 =1 13 0 1
o 3 0o 2 1 0
A= , B = >
4 7 -4 4 2 0
0 -1 0 0 -2 0
0o =5 2 =2
C= , K=1
-4 7 0 3
Tt can be shown easily that
0
CBK = Sland

0O -5 2 =2

BKC = )
0 —10 4 —4
0 10 —4 4

With N chosen as:
0 0 1 1
N =

[0 -2 1 0]

the matrix M that also satisfies NM = I 1s then found to be

11 13
1| 8 16
T12016 —20]
4 20

The system resulting from the NAM is shown to
have two complex zeros at z, =1 +iand z, =1 +1i. These
results have been rigorously determined and they satisfy
the conditions laid out in the theorems.

CONCLUSION

The transfer fimction matrices of linear multimachine
power systems were computed directly form the Marlcov
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parameters by inversion using the algorithm due to
Fadeeva. The study shows that by letting z = s, Eq. (38)
1s reduced to a form similar to Eq. (1) giving each entry of
T (s) n reduced form. The advantage mherent m this
approach, is that each entry of T (3) will be easily applied
to systems described by their input-output parameters
without having to derive a state space realization. For
systems described by a set of constant differential
equations:
L(s)y - M (sl (a1
where,
L (s)and M (3):  Are (r<r) and (r*m) polynomial matrices
derived for Eq. (41) is obtained as:
yE=LE) ME)u6)=T6u) (42)
Where,
T (s)=L (s) "M (s) (43)
The transfer function T (3) was obtained by inverting
L (s) and post multiplying by M (s). More directly, the
Markov parameters or the time moments of Eq. (41) were
obtained as outlined by Shamash (1972) and then the
method of Gantmacher (1959) was used to compute the
transfer function matrices.

REFERENCES

Bengiamin, N.N. and W.C. Chan, 1982. Variable Structure
Control of Electric Power Generation. IEEE. Trans.
PAS-101: 376-380.

Byrnes, C.I., 1981. On roct loci in several variables:
Contimuity in the High Gain Limit. Syst. Control Lett.,
1: 69-73.

Fernando, K.V. and H. Nicholson, 1982, Singular
Perturbational Model Reduction in the Frequency
Domain. IEEE Trans. Automatic Control, AC
27: 969-970.

Gantmacher, FR., 1959. The Theory of Matrices. Vol. 1
and 2, New York, Chelsea Publishing Company.

408

I, K. and W. Kim, 2007. Stochastic Optimal Control and
Networle Co-design of Networked Control Systems.
Int. J. Control Auto. Syst., 5 (5): 508-514.

Kalman, R.F., P.L. Falb and M.A. Anib, 1969. Topics in
Mathematical Systems Theory. McGraw-Hill Book
Co. New York.

Kerckhoffs, R.CP., SN. Healy, T.P. Usyk and AD.
McCulloch, 2006, Computational Methods for
Cardiac Flectromechanics, 94 (4): 769-783.

MacFarlane, A.G.T., 1980. Complex Vector Methods for
Kinear Multivariable Feedback Systems. Taylor and
Francis, London.

MacFarlane, A.G.1., 1974. Relationships Between Recent
Developments in Linear Control Theory and Classical
Design Techmques. IFAC Multivaniable Symposium,
Manchester, England.

Mever, D.G., 1990. Fractional Balanced Reduction: Model
Reduction via Fractional Representation. IEEE Trans.
Automatic Control, AC 27: 1341-1345.

Nwokah, ©.D.I.,1981. The Reduction of Transfer Function
Matrices to Diagonally Dommant Form. Trans. Inst.
Measurement and Control, 2: 132-136.

Nwokah, O.DI, 1983, Multiple Gam Parameter
Multivariable Root Locus. Syst Control Lett.,
3 (4): 197-201.

Obinabo, E.C., 2008 Scalar Stability Criteria for
Interconnected Nonlinear Power Systems. Int. J. Elec.
Power Eng., 1 (4): 397-401.

Owens, D.H., 1978. Feedback and Multivariable Systems.
In: Peregrinus, P. (Edn.). London.

Rosenbrock, H.H., 1970. State Space and Multivariable
Theory. Nelson Publishing Co. London.

Shamash, Y., 1972. Minimal Realization of a Differential
System, Publication 72/30, Tmperial College, T.ondon.

Whalley, R., 1978. Spectral Factorization of the Transfer
Matrix, Proc. IMechE, 192 (29): 397-407.



