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Abstract: This study describes on line, the identification process and the model reference adaptive control. The

developed method uses, in a complementary manner, both parametric and no parametric identification

techniques. Our algorithim permits the identification of discrete systems with an optimal search of their orders.
The method performance has been tested on simulated systems of order 1, 2 and 3 with a pseudo-random binary
sequence (PRBS) as an excitation input. After the identification, a model reference adaptive control 1s used. The
performance of the developed adaptive control is tested by means of a simulated example.
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INTRODUCTION

Several techmques have been developed to predict
the dynamic behavior of a system in search of the most
representative model. Among existing methods, there are
parametric and no parametric ones. In the amplitude and
phase of transfer function where as mn the temporal
method (parametric one determines the coefficient of the
transfer function). Our work is a combination of the two
complementary methods. Indeed, ones the real and
imagiary parts are found, they are used m the
computation of the parameters of the transfer function.
After the identification, an adaptive control technique is
used to develop an adaptive model reference adaptive
control.

The siumple adaptive control approach to direct
MRAC of multi-input multi-output plants was first
proposed by Sobel et al. (1982). This approach uses a
control structure which 1s a lmnear combmation of
feedforward of the model states and inputs and feedback
of the error between plant and model outputs. This class
of algorithms requires neither full state access nor
satisfaction of the perfect model following conditions.
Asymptotic stability 1s ensured provided that the plant s
almost strictly positive real (ASPR). Barkana (1987)
extended the original algorithm (which required the
plant to satisfy the ASPR condition), to a class of plants
which violates this condition This approach involved
designing a supplementary feedforward filter to be
included in parallel with the original plant resulting in a

new augmented plant which had to satisfy the same
strictly positive real condition, unfortunately, the tracking
error was not the true difference between the plant and
the model outputs since 1t included the contribution of the
supplementary feedforward filter. Thus, the approach was
susceptible to a steady state error. Neat et al (1992)
suggested the incorporation of the feedforward filter of
Barkana (1987) into the reference model's output as well as
the plant's output n a manner so as to yield asymptotic
tracking. Barkana (1991, 2005a) gives more studies about
the ASPR condition and the convergence of the adaptive
gaims.

This study describes the on line identification and
the adaptive control process for linear dynamic systems
using a modified Z transform.

FAST FOURIER TRANSFORM (FFT)

In view of the importance of the DFT in various
digital signal processing applications, such as linear
filtering, correlation analysis and spectrum analysis
(Doulon, 1984; Povy, 1975), its efficient computation is a
topic that has received considerable attention by many
mathematicians, engineers and applied scientists. From
this pomnt, Let X(k), represents the Fourier coefficients of
x(n). Basically, the computational problem for the DFT 1s
to compute the sequence {X(k)} of N complex-valued
numbers given another sequence of data {x(n)} of length
N, according to the formula
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-1
X(K) = x(n)W,", 0<k <N-1
n=0

W
W, —e

In general, the data sequence X(n) is also assumed to
be complex valued. Similarly, the IDFT becomes

N-1
x(n) = %ZX(I{)W'““, 0<n<N-1
n=0

The DFT and IDFT mvolve basically the same type
of computations.

DISCUTION OF THE IDENTIFICATION TECHNIQUE

Let us consider the following system which 1s
assumed to be both discrete and linear:

—b —
0o e® o
Where:
u(lc) . The input of system.
v(l) . The output.
g(l) . The response to a pulse signal.

The two signals u(k) and y(k) are related by the
convolution product in the case of a linear time invariant
system:

y(k) = u(k)*g(k) M

One can estimate frequency-response models and
visualize the responses on a Bode plot, which shows the
amplitude change and the phase shift as a function of the
sinusoid frequency.

For a discrete-time system sampled with a time
interval T, the frequency-response model G(z) relates the
Z-transforms of the input U(z) and output Y(z):

G(z)=vy(z)/U(z) (2)

The frequency-response command describes the
steady-state response of a system to sinusoidal inputs
(Ljung, 1987; Lucas and Beat, 1990). For a linear system,
a sinusoidal mput of a specific frequency results in an
output that 1s also a sinusoid with the same frequency,
but with a different amplitude and phase. The frequency

322

response describes the amplitude change and phase shift
as a command of frequency.

In other words, the frequency-response command,
G(e“T), is the Laplace transform of the impulse response
that is evaluated on the imaginary axis. The frequency-
response command 15 the transfer command G(z)
evaluated on the unit circle.

Passing from the 7 transform to the discrete Fourier
transform we get:

DFT(y(k))
DEF(u(k))

Ge)y= (3)

Where, DFT stands for the discrete Fourier transform
and ) = 0 T. On the order hand knowing that any system
can be written as:

1 2 n
b, +b,z +b,z" +...+ b,z

G(z)=
2 z'(a,+a,z +. . +az")
With:
T The system’s delay.
o, Generally taken to be equal to 1.

Moreover G (z) is complex and can be written as:

1 2 1
b,+bz +b,z"+...+b z

z'(a, taz +..+a z")

(4

Re+ jIm =

We have
z = e = cos(Q) + jsin(Q)

Substituting into Eq. (4), one gets:

Re+jIm=
b, +b,(cos Q+ jsin ) +... + b, (cosnl+ jsinnld)
(cos T+ jsin TE2) + a, (cos(l + THC2+ jsin(1+ THC) + ..

+...+a,{cos{n+ THQ2+ jsin(n + T)L)
That means

Ref[cos TQ+a, cos(1+ )2+ +
+a, cos(n+THQ]
—Im[sin TQ+ a, sin(1+ THQ+ ... +

+a, sin(n +T)C2]
=b,+b cosQ+..+b cosnQd

(5a)
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Re[sinTQ+a sin(1+THQ+.. +
+a, sin(n+T)C2]
—Im[cos TQ+a, cos(1+ T30+ ... +
+a, cos(n + )]

=b,sinQ+..+b_smQ

(5b)

RecosTQ2—Im sin T2 =
—a,[Recos(1+ T)Q—Im sin(1 + THC]+...+
+a [Recos(n+T)E2—Im sin(n + 1)L
=b,+b,cosQ+...+b, cosnll
(6a)

ResinTQ - ImcosTQ =
—a,[Resin{l + THQ—Imcos(1+ T)Q)+... +

a [Resin{n+ T)Q —Imcos(n + T)2]
=0+b, sinQ+...+b_sinnld

(6b)

To simplify let us talke :

X, = -Recos(+T)Q + Im sin(j + T)Q

Y, = Cos(GE)

7. = Re cosTC, - Im; sin TO,

Where:

i The number of samples needed to characterise the
system.

] A counter ranging from 1 to the order of the
system.

Substituting 1n Eq. (6a) we get:

—aX.. —aX +b, -bY by =z ()
Thus one gets the following matrix from :
'z, [-x -X, -Y, =Y, |[a,
X X1 -Y/ -Y?
a’n
= bO
b,
,Zn i 77X$I 7X111q 1 7Y1N 7Y§I i ,bn i
(8)

If the delay T 1s known then the system (8) 1s written as:

B=Ax0 )
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When 6 is an unknown vector, 4 is rectangular matrix
and B is a vector of measurement.
The optimal solution of Eq. (9.a) is given by :

0= (ATrA)—lATrB (10)

Which 1s the method of least squares applied to our
systemm, where, Tr : Is the transpose of the matrix.

OPTIMAL SEARCH OF ORDER

The search of system’s order (Lucas and Beat, 1990)
requires the use of very complex methods. In our case we
choose the following approach: from a linear system, part
of data. We compute the parameters of transfer function
for each measured mterval with an order varying from 1 to
5 and then we validate the model mn another mterval. For
each order, the variance of all the parameters 1s computed.
The optimal order is then obtained from the minimal
variance.

DISCUTION OF THE ADAPTIVE
CONTROL TECHNIQUE

The linear time invariant model reference adaptive
control is considered for the plant

X (1) = Ax, ()+ B, (Du, (1)
¥, () =C, x, (1)

(1)

where, x,(t) is the (n x 1) state vector, u,(t) is the (m x 1)
control vector, y,(t) is the (q x 1) plant output vector and
A, and B, are matrices with appropriate dimensions. The
range of the plant parameters is assumed to be known and

bounded with
(12)

(zlu éap(l,J) Zaij, 1, j=1,..,n

b <b (L) <by, i j=l...n (13)
°,

The objective is to find, without explicit knowledge of

A B, the control u,(t) such that the plant cutput vector
y,(t) follows the reference model

Xm(t) = A x, (O+ B, (Hu,
Yo(0)=Cox, (0

(14)

The output v, is the desired response to the set point
command u,. The model incorporates the desired behavior
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of the plant, but its choice is not restricted. In particular,
the order of the plant may be much larger than the order
of the reference model.

Then the adaptive
command generator tracker (CGT) approach is given as
(Kaufman et al., 1998):

control law basen the

u (t)=K, (the (1) +K (1)
x (O+K, Hu (1)

(15)
where,

e, (1) =y, (-, (1) and K (1), K, (1) and K, (1

are adaptive gains and concatenated into the matrix
K(t) as:

Kt =[K.(t) K,.(t) K,(1)] (16)
Defining the vector r(t) as:
Yault) =y, (1)
rt) = x, (1) (17
Wity
The control u,(t) is written i a compact form as:
u, (1) = K{t)r(t) (18)
where,
Kt =K, (1)+K, (D) (19)
K,(0=]y, 0Oy, OT,, T, 20 20
(21)

K =] y.(0-y,® |7 ®T, T,>0

The sufficiency conditions for asymptotic tracking are:

There exists a solution to the CGT problem .

The plant 1s almost strictly positive real (ASPR); that
is there exists a positive definite constant gain matrix,
not needed for implementation, such that the closed
loop transfer function

G(s)=[1+G, K, | 6,() (22)

is strictly positive real (SPR), (Povy, 1975).
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The discretization of the dynamic system is given by
the following equation which is called generalized method:

Z -1

= - - (23)
aTZ+(1—o)T

where O< ¢ < 1 and T 1s the sampling mterval.
This method can generalize many others methods.
Among them we cite:

The bacloward transformation (Doulon, 1984; Ljung,
1987): obtained by ¢ = 0 and replacing in Eq. (23) by
the following expression:

7Z-1
s=2""

The hilinear transformation (Povy, 1975): obtained
by « = 1/2 and given by the following expression:

g 2Z-D)
CT(Z+1)

Te forward transformation (Doulon, 1984), obtained
bya=1

The generalized method 1s an approximate discrete
transfer function H(S). This method presented by this
note gives the equivalent transfer function simply by
submitting the Eq. (23) for S into the know H(S), the result
is the desired H(Z).

The required calculus by this method can’t be solved
by the hand. Nest, we present a computer algorithm for
accomplishing the transformation when the transfer
function is written as the ratio of two polynomials.

SIMULATION RESULTS

The simulated systems are, respectively of order 1, 2
and 3. The excitation is a pseudo random binary sequence
(PRBS) of length 127 and amplitude [-1, 1]. In order to test
the method much further, we have injected a Gaussian
noise of a standard deviation ¢, equals to 0, 1 and 2.

Example 1: Consider the first order system given by the
transfer function
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Table 1a: Real and estimated values of the denominator

Table 3a: Real and estimated values of the denominator

n Cin &1 n 4] &1 (&5 4]
Real system 1 1 -2 Real system 3 1 -5.0052 85714 47619
Model with g, =0 1 1 -2.00 Model with ¢, =0 3 1 -5.0052 85714 47619
Model with o, =1 1 1 -1.7560 Model with o, =1 3 1 -5.0599 85165 47294
Model with g, =2 1 1 -1.2568 Model with g, =2 3 1 -5.0546 84869 -1.7140
Table 1b: Real and estimated values of the nominator Table 3b: Real and estimated values of the nominator
n by by n by by b, b
Real system 1 12 -4 Real system 3 5714280  -447.6189 114.2866 -0.5238
Model with g, =0 1 12.00 -4.00 Model with o, =0 3 5714280  -447.6189 114.2866 -05238
Model with o, =1 1 -10.8007 -33975 Model with o, =1 3 5674156  -444.1917 113.1358 01779
Model with g, =2 1 8.3076 22332 Model with g, =2 3 566.1417  -443.4795 114.2427 10759
Table 2a: Real and estimated values of the denominator 100 -
n e oy o 80
Real system 2 1 -3.4686 2.8571 60 -
Model with o, = 0 2 1 -3.4286 2.8571 40-
Model with o, =1 2 1 -3.3841 2.8067
Model with o, = 2 2 1 -3.0262 24279 zg
Table 2b: Real and estimated values of the nominator -20
n by by b, =40
Real system 2 68.5714  -40.000 5.7143 -60 -
Model with g, =0 2 68.5714  -40.000 57143 -80
Model with o, =1 2 67.3610 -39.130 5.8163 -100 T T T T T 7 T T 1
Model with g, =2 2 53.9363 -34.736 5.9760 0 20 40 60 80 100 120 140 160 180
G(z) —6+2z 12-4z b,+bz Fig. 1: Response of the system and model
Z1= = =
~05+z 1-2z l+az
38+
. . . 36+
Which give the following Table 1 of results, where n y
and o, are, respectively the order and the standard
deviation. 327
30+
Example 2: Consider the second order simulated system 281
given by the transfer function: 26
24 -
24-14z+2z° b, +bz+b,z° 2 - - 1
G(z)= =2 z 10° 10° 10° 10!

0.35-12z+7z° l+az+a,z’

Which give the following Table 2 of results, where n
and o0, are, respectively the order and the standard
deviation.

Example 3: Consider the third order simulated system
given by the transfer function Table 3:

1204947217 +27°
—021+1.072— 187"+ 7°
b, +bz+b,z" +b,Z°

G(z)

2 3
l+azta,z” +a,z

Example 4: In this study, we try to plot the response of
the system and the model of example 3. Figure 1 shows
the time response of both the system and the model with
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Fig. 2: Amplitude of the system and model

0, = 2 . Figure 2 and 3 show the frequency response,
amplitude and phase. We can see the identification is
absolutely well performed.

Example 5: In this example we try the show the
performance of the developed model reference adaptive
algorithm. The dynamic system is given by:

_ 1

y=——u
s +5+1

P

Which has been identified in the example two i the
discrete case.

The reference model de is given by:
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10* 10" 10° 10"
Fig. 3: Phase of the system and model

2

Temps (sec)

Fig. 4: Outputs of the system and the model for
«={0,1,5}

0 5 10 15 20 25 30 35 40
Temps(sec)

Fig. 5: Input to the system model for ¢ = {0, 1, 5}

3
=——u
s+3

m m

The model input is a square wave of amplitude
u, =+ 1 and a peried of 20 sec.

For different values of ¢ we have the following
responses.

Figure 4 shows the response of the system and the
model. We see that the error goes to zero after a few
seconds. The input signal is depicted in the Fig. 5, which
1s smoothing and has a limited value.

CONCLUSION

The simulation performed on systems of order 1, 2
and 3 shows that the identification has been realized m a
satisfactory manner regarding to the negligible temporal
and frequentiel errors. The developed algorithm permits
the 1dentification of discrete systems of an arbitrary order
with an optimal search of this order. The efficiency of the
method has been tested on noise systems of order 1, 2
and 3. The performance of this method is much better if
the noise variance is low.

After identification, a model
reference adaptive control 1s developed. The method’s
performance has been tested on simulated systems of a
second order.

the process of
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