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Abstract: This study presents a Top-down methodology for hardware rapid prototyping of integrated Direct
Torque Control of Induction motor drive control, based on Hardware Description Languages (HDL’s). Tlus
methodology 1s a set of procedures and Computer Aided Design tools to optimize development time, final
product cost and reusability of the digital electronic system design. The use of HDI. s provides continuous
checking of functional validation of the control and makes the digital design independent of the target
technology. More, HDL’s are common languages throughout all design stages. The three stages of the
methodology are discussed. The behavioral stage defines control functionality at system level and allows the
study of Integrated Circuit digital properties. In the structural stage, the design is defined as a set of
components and interconnections. Finally, in the physical stage implementation technologies, FPGA is
considered. Matlab/Simulink 15 used to validate the algorithm. This study presents an application of the
methodology to the mtegration of Direct Torque Control (DTC) of an induction machine. First of all, the DTC
principle 1s described. Then, step by step, the behavioral, structural and physical stages of digital control
representation are discussed and results are validated.
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INTRODUCTION

With the growing complexity of motor and motion
control applications, it becomes apparent that a Field
Programmable Gate Array (FPGA) offers sigmficant
advantages in the area of performance, flexibility and
mventory control. With an FPGA,, calculations that would
normally consume large amounts of CPU time when
implemented in software may be hardware accelerated. In
digital electronics systems the basic kinds of devices are
memory, microprocessor and logic. Memory devices
stores random information, microprocessors execute
software instructions and logic devices provides specific
functions including device-to-device interfacing, data
communication, signal processing, data display, tuning
and control operations and almost every other fimction a
system must perform (Altera Corporation, 2003; Xilinx
Corporation, 2006). Logic devices can be classified into
two broad categories- fixed and programmable. Fixed logic
device circuits are permanent, once manufactured they
can not be changed. Programmable logic devices (PLDs)
are standard and these devices can be changed at any

time to perform any number of functions. The two major
types of Programmable logic devices are Field
Programmable Gate Arrays (FPGAs) and Complex.

Programmable Logic Devices (CPLDs). Of the two,
FPGAs offer the highest amount of logic density, the most
features and the best performance. The advanced devices
also offer features such as built-in hardwired processors,
substantial amount of memory, clock management
systems and support for many of the latest, very fast
device to device signaling technologies. FPGAs are used
in a wide variety of applications ranging from data
processing, data storage, mstrumentation,
telecommunication and digital signal processing. To make
the design of complex system manageable, the design
team has to be coordinated throughout the complete
development period. Communication among them should
be made using a commen format or language, which
makes possible understanding. Hardware Description
Languages (HDL’s) have come to solve some of the
problems previously encountered (JEEE Std, 1076-1993;
Cirstea et al., 2000).
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In the last few years, the number of paper presented
at conferences and targeted for journal publication
reflected a significant increase in the interest paid to the
use of FPGAs mn a wide range of electronics systems. This
study focuses on FPGA usage in the realm of industrial
drives. This paper 1s orgamzed as follows.

FPGA DESIGN METHODS

Field Programmable Gate Array (FPGA) is a good
compromise between the advantage of the flexibility of a
programming solution and the efficiency of a specific
architecture with a high mtegration density. These
characteristics are quite appropriate for controller design.
Thus, in order to benefit from the advantages of the FPGA
and their powerful CAD tools, the designer has to follow
an efficient design methodology (Wolf, 2004). Such a
methodology has two main principles: the modularity and
the best suitability between the algorithm to implement
and the chosen hardware architecture.

For very complex designs, modular conception 1s
generally used to reduce design cycle. This methodology
15 based on hierarchy and regularity concepts. Hierarchy
is used to divide a large or complex design into sub-parts
called modules that are more manageable. Regularity is
aimed to maximize the reuse of already designed modules
(Trimberger et al., 1981). Nowadays, the manufacturers
and the designers of circuits even propose to recover in
free (http://www.opencores.org) or restricted access
(Altera Corporation, 2003; Xilinx Corporation, 2006),
several design models, also called Intellectual Property IP
modules. Besides, the complexity of some modules can be
important as for the processor-cores (http:/fwww.
fpga cpu .org). This design approach is then based on
the reusability of IP modules (Kebbati et af., 2001).

To be efficient, the modular design approach must be
based on reliable modules. However, in many cases, the
desired modules do not already exist and they have to be
realized. Tt is therefore crucial when designing them to be
helped by an efficient methodology that allows taking into
account the numerous constraints of such systems. In
order to be more explicit, a simple algornthm example called
the coordinate transformation 1s treated.

The coordinate transformation is used to transform
the actual quantities of a three-phase electrical system
(%, X5, X;) onto a d-q reference frame that is rotating at an
arbitrary angle 6. By making the assumption that the
studied three-phase system balanced and the
instantaneous power is preserved, the transformation can

i

be simplified and expressed as:
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The former expression is then converted to a n-bit
fixed-point format. This format must be the result of a
compromise between the required computing accuracy
and the available hardware resources. It gives:

} (2)
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Where, the X, -bit signed fixed-point value 1s equal to
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Scale factor Qy, has to be selected with relevance by
the designer so as to avoid overflow errors. Besides,
during the conversion process, the designer can also
simplify the implemented equations from an adequate
choice of scale factors (Chapuis et al., 1998, Tazi et al.,
2000) and kghlight the nature, the order and the
frequency of the operations to be executed.

USE OF FPGA IN MOTOR CONTROL

FPGAs for mdustrial drives started appearing since
a decade. There has been a surge of developmental
activity in FPGA-based industrial drives as FPGAs prices
have come down i the last five years. A prototyping
system 1s required at every stage of the development
cycle for a Vanable Speed Drives (VSD) since, it provides
the designer an environment and necessary tools to edit,
compile, test and debug the control code under operating
conditions similar to that of the actual VSD. The
complexity of a prototyping system depends largely on
the controller chip used (Dubey et al., 2007).

The design process can be divided into two
successive phases: siumulation and mnplementation.
During the simulation phase, the VSD is modeled and
simulated with the best accuracy possible to represent the
operation of the drive under different operating
conditions. The performance of the controller 1s evaluated
and some design iterations are required to optimize its
performance. The following phase is the implementation
of the simulated controller on actual hardware to verify its
real-time performance.

In a conventional design approach, simulation and
implementation phases are performed on two different
platforms. Sunulation 1s usually done on workstation or
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PC using programs or a system simulator (for example
Simulink, Saber, etc.). For the implementation phase, the
controller C program (which 1s directly written for the
simulation and modified for the implementation or
automatically generated by a specialized tool such as the
Real-Time Workshop of Simulink) is modified to suit the
hardware. The compiled code 1s then downloaded to the
hardware (DSP or microcontroller board) for execution and
debugging. Some iteration between the simulation and
implementation phases are required to fine tune the
controller. This approach tends to be somewhat lengthy
due to the code modification and adaptation required to
move from the simulation platform to the implementation
platform. Tt is possible to accelerate the design process by
using a umique platform for both simulation and
umplementation.

In the simulation phase, the VSD controller is
represented by hardware models of the actual elements
which will be mplemented on FPGA. In fact, the
simulation model represents mn every detail the controller
to be implemented in FPGA. When the debugging has
been completed, the simulated controller can be converted
directly into hardware without further debugging or
adaptation. This 1s the reason of the reduced design time
which this approach can provide as compared to
conventional approach where debugging is needed in
both simulation and mmplementation phases. Control
algorithm 18 no longer a limiting factor for its
implementation. Another advantage of the proposed
approach execution speed of the
umplemented controller. Since, all operations in FPGAs
are 1n parallel in hardware, the control algorithm can be
executed very fast and a high sampling rate can be sent
for the controller. As a result, the complexity of the
control algorithm is no longer a limiting factor for its
umplementation.

The general structure of a control process of
induction motor, as shown in Fig. 1, can be divided into
the control algorithm and the tuning process interface.
The power system can also be divided mto three parts:
the voltage source inverter (VSI), the machine and the
feedback sensors (Kiel et al., 2002). Digital controllers
have predommated over their analog counterparts.

concerns the

Advantages such as the inplementation of complex more
control algorithms, immunity to noise or flexibility to
modify the parameters of the control laws are causing the
migration from analog to digital controllers (Pimentel and
Huy, 2000). The digital control algorithms have many
characteristics related to the power environment. Tn fact,
the power interface introduces a set of limitations in terms
of time response and stability related to: sampling rate
limited by the switching losses of the VSI, delay and
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AC motor
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Fig. 1: General structure of a controlled induction motor

quantization. Furthermore, the control laws are
constituted of heterogeneous functions because of the
diversities in algorithmic operations (memory, arithmetic
operations... ) and differences in rate of computation.
Besides, the control algorithms are always recursive
which complicates the algorithmic partitioning and the
digital data coding. The complexity of the control
algorithms makes the Algorithmic study an mmportant
phase to design an efficient digital control solution. Tt
begins by simulating the algorithms i Matlab from
Mathworks®. This brings to focus the problems of data
algorithm dependencies in order to find mdependent sub-
algorithm functional blocks as well as analyzing fixed
point refinement for variable coding (including the
influence of word length, overflow and sampling
frequency).

DIRECT TORQUE CONTROL PRINCIPLE

In direct torque control method the stator flux
magnitude is controlled. In the stationary frame the stator
flux can be represented by Eq. 3.

i, = [ (Vi —1,R )t
Wy = [ (V, 1R, )t

3)

In DTC, voltage vector selection 1s limited to the
eight available from the inverter. Figure 2 shows the
available voltage vectors superimposed on the space
vector diagram.

The architecture of Direct Torque Control Principle 1s
shown n Fig. 3. The stator flux can be controlled by
selecting one of the available voltage vectors which will
move the flux in the desired direction. The magnitude of
the flux 1s controlled by selecting a voltage vector which
will either increase or decrease flux magmitude.

InDTC, torque control is achieved by controlling the
quadrature component of the stator flux relative to the
rotor flux. One of the available voltage vectors is
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Fig. 2: Space vector diagram showing available voltage
vectors for DTC
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Fig. 3: Direct torque control architecture

Table 1: Direct torque control switching table

Torque error Flux error Voltage vector
(T T.) (Wer = U1) selection

+ve +ve n+l

+ve -ve n+2

-ve +ve nt+5

-ve -ve nt6

Null Don;t care ZEero

selected which will increase or decrease the quadrature
component of the flux in order to increase or decrease
torque. Selection of the appropriate vector 1s based upon
a hysteresis controller for each of the flux and torque
control loops and a look-up table which utilizes the stator
flux position. The stator flux position 1s divided into six
60° regions, denoted as n, where ((2n-3) /6 < 6 < (2n-1)
m/6), giving a voltage vector selection table shown in
Table 1.

METHODOLOGY FOR HARDWARE
RAPID PROTOTYPE

Generality: The design process of a digital FPGA
consists of the following stages: logic design and
simulation, placement and routing, design rule check and
finally prototype production. For these reasons, the
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Fig. 4 Top-down HDIL’s based methodology for rapid
prototyping of digital mtegrated drive control

advance of FPGA technologies in industrial drive control
applications seems relatively slow because of the
industrial perceived disadvantages of long lead times and
1nitial cost when classical design method 1s used (Le-Huy,
1994). Tn this study, presented a Top-down methodology,
particularly adapted to integration of drive control.
However, this methodology is based on classical design
method, but takes advantages of HDL s development in
IC simulation and FPGA evolution in terms of integration
capabilities, low cost and re-programmability using static
SRAM technology for prototyping. Optimized in terms of
time and cost, the methodology is presented in Fig. 4.

The design of IC 13 divided in two parts called “HDL
software development” and “hardware prototyping”. The
HDL development mcludes stages:
behavioral stage and structural stage. The hardware
prototyping is a physical stage.

software two

Behavioral stage: Tn the behavioral stage, the studied
drive control specifications are first written at system
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level, using an HDL. The most common used HDL s are
Verilog or Very lugh speed integrated circuit Hardware
Description Language (VHDL). We have chosen VHDL
for digital control block description of drive up to physical
stage. VHDL allows the possibility of modeling the digital
control behavior, regardless of target technology and
imnplementation (Riesgo et al., 1999). However, in drive
control case, power and analog elements of the AC drive
(Fig. 1) must be described in order to functional validation
of the VHDL described digital control, by analog-digital
simulation. VHDL is not suited for modeling or describing
power or analog elements, where continuous time is
required. MATLAB/ Simulink Software tool 1s used for the
modeling and simulation of control algerithms.

Power System Blockset are used for the modeling and
simulation of power system .The same models will be
reused all over this methodology to check the IC
functionality.

After at  system
description, integrated control block digital properties
must be studied and chosen by the designer. Thus, data
binary format (word length, fixed or fleating point),
mathematical
(mathematical operators, integration) or quantification
effects due to used binary format and external Analog
Digital Converters (ADC’s) format, must be defined. In
drive control, these choices are based on accuracy of
estimated digital values. These parameters must be also
defined to mimimize digital estimation errors, which could
decrease control performances. At end of this behavioral
stage, all digital properties must be defined, after
functional by mixed (analog-digital)

functional validation level

and numerical calculation methods

validation
simulations.

Structural stage: At this stage, the digital control must
be partitioned into functional blocks. Each block is
described into a lower abstraction level as in precedent
stage, taking mto account the digital properties
previously defined. The description of the digital IC 1s
closer to hardware implementation. The final goal of this
stage 1s to obtain a Register Transfer Logic (RTL) model,
which must be checked agamst by mixed simulation,
reusing high level analog MATLAB/ Simulink models
written in behavioral stage for power and analog elements.
The major results of this stage are, first, the functionality
of the VHDI described control and secondly, the
additional information, such as length of the operations in
term of clock cycles number. The final RTL digital control
model must be written according to the synthesis aspect,
optimizing hardware resources and timmng of the final
digital control IC (Bhasker, 1996).
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Physical stage: The RTL. VHDI. model, obtained at the
end of structural stage, is independent of the target
technology. The rapid hardware prototyping used method
changes depending on the aim of the final implementation.
The evolution of FPGA in term of integration capabilities,
low cost and re-programmability using static SRAM
technology leads the designer to think of FPGA
prototyping. For these reasons, to reduce lead time and
imitial prototyping cost, we propose in methodology to
implement and validate, first, on an experimental test
bench, a FPGA prototype, programmed with the RTL final
description of the structural stage. Another interest of
FPGA prototyping 1s component re-programmability.

VLSI DESIGN

A DTC controller for an induction motor drive has
been designed using the proposed prototyping platform
in order to evaluate the performance of the approach.
Figure 5 shows a Simulink diagram that represents the
drive system.

The power section on the top is built with PSB
blocks. The controller 1s built with Xilinx SG blocks. The
channels of the A-to-D converter are represented by 4
special blocks. Figure 6 shows the diagram of the DTC
controller built entirely with 3G blocks. Each function on
the original control algorithm has been rewritten to be
sutted for FPGA. This procedure 1s usually straight
forward because SG functions are replicas of Simulink
functions. However, in order to exploit the full advantage
of FPGAs, some functions m the control algorithm have
to be modified. For example, the operation arctan is
traditionally used in DSP implementation to determine the
rotor flux vector position. In an FPGA, this operation
would require a lot of silicon space so it was replaced by
several comparisons which can be implemented using
much less resources on the FPGA. For sine or cosine
functions, it 1s simpler to implement using lookup tables
in FPGAs (Dubey et al., 2007).

Since, the FPGA's structure completely
configurable, the prototyping platform can be readily

18

modified to suit new requirements (addition of measured
variables, system,
modification of control configuration, etc.). The
modifications are done at lngh level (Xilinx SG blocks and
VHDL language) (Perry, 2004). The presented control
strategy was implemented 1 Xilinx Spartan 3E and the
target device is XC3S100E. For simulations the Mentor
Graphics ModelsimXE TIT 6.2 g were used. The overall
simulation of the DTC strategy 1s illustrated in Fig. 7.

modification of communication
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The resulting (RTL) model of estimator architecture,

entity dtc is --external view of entire Direct
presenting the VHDL entity, i1s shown in Fig. &

torque control circuit
port(il,i2,E:in std logic vector(15 downto 0);
torque, flux:in std logic vector(30 downto 0);
resetn,clkin std_logic;
ca,cb,cciinout std_logic),

VHDL code for the DTC module:
library 1eee;
use 1eee.std logic 1164.all;
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end dtc;

architecture x of dtc is

component control
port(cllk resetn:in std_logic;
1d1,1d2,1d3,1d4,1d5:out std logic);

end component ;

component motor

port (i1,i2,E:in std logic_vector(15 downto 0);

resetn,id1,1d2,id3:in std logic;

end component;

component torque compare

port(torque_in,torque:in std_logic_vector(30 downto 0);

id4:in std_logic;
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comparator out:inout std logic);
end component;
component flux_compare
port(flux_in,flux:in std logic vector(30 downto 0),
id4:in std_logic;
comparator _out:inout std logic),
end component;
component SWITCH_TABLE
PORT(flux_in,torque in,id5:IN STD LOGIC;
sector:IN STD LOGIC VECTOR(2 DOWNTO 0);
ca_out,chb_out,cc_outinQUT STD_LOGIC);
END component;
component sector6
port(lambda_alpha,lambda_beta:in std_logic_vector
(30 downto 0),
1d4:in std logic;
sector:inout std_logic_vector(2 downto 0)),

end component;
signal switch_inl,switch in2:std logic;

signal switch_in3:std logic vector(2 downto 0),

signal id1,1d2,id3,id4,id5:std logic;
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begin
motar model:motor port map

(11=> 11,12=> 12, E=> E resetn=> resetnidl =
idl1, id2
=>1d2.1d3 =>1d3,ca=> ca, cb=> ¢b, cc=>cc,

torque=> torque_in,lambda mod  => flux_in,
lambda_alpha=> sector il lambda beta => sector_in2);

controlling: control port map (clk=>clk, resetn=>>

resetridl ==1dl,
1d2=>1d2,id3=>1d3,id4=>1d4, 1d5==>1d5);
end;

3

Figure 9 shows the results (stator flux and motor
torque) obtained with Xilinx 3G model compared to that
obtained with standard Simulink model. A slight
difference was noted which 1s due to time step delay in
the ADC and fixed point format used in FPGA. This
difference is considered negligible and does not affect
the controller performance. Figure 10 the
of the electromagnetic torque

shows
simulation results
simulated i the power block of the global behavioral
simulation. The designed controller was simulated to
control 3 kW, 2 pole, 230/400 V, 50Hz induction motor fed
by an IGBT wmverter.
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Fig. 10: Estimated torque simulation result
CONCLUSION

The design process based on HDL’s has been
presented m this study for motor drive application. The
main steps m the design process have been pomted out,
as well as the tools involved in each stage. Tn spite of the
drawbacks that are found in the method, the HDIL-based
design is good solution to deal with the complexity of
current drive system. So far, it is restricted to digital
systems, but some effort is being made to extend some of
these concepts to analog electronics. The forecast for the
use of this process i1s very promising. A large group of
designers 13 moving from old methodologies to those
based on HDL’s. Some companies and institutions are
starting to demand VLSI documentation for all their
designed systems. The FPGA-based development brings
the possibility to add more stringent control strategy, in
terms of processing time, to algorithms such as over
sampling control or predictive control in order to increase
performances.
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