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Abstract: This study establishes criteria for stability of nonlinear zero-mput intercommected power systems
using an arrangement of scalar blocks where the input-output pair for each block 1s strictly proper rational real
or transter function. The structure of the multivariable system as an interconnection of scalar feedback blocks
provides a basis for obtaming new conditions for stability of zero-input mterconnected nonlinear power

systems.
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INTRODUCTION

A modern electric power plant is a large scale,
distributed and highly nonlinear (Liu et af., 2007), complex
multimachine mterconnection (Wang et al, 1993) with
voltage and frequency dependent loads. Control of the
system is required to maintain reasonably uniform
frequency, divide the load between generators and
control the tie-line interchange schedules. Overall control
(Nicholson and Sterling, 1972) 1s based on a combmation
of manual intervention, fast continuously-acting feedback
control of local regulating loops and an essentially
slower-acting optimized generator scheduling based on
predicted load disturbances. The nonlinearity (Lu et al.,
2006) arises essentially by reason of physical laws
governing the operation of the components and it
originates either mherently or mtentionally (Gray and
Nakhia, 1981). A typical example 1s an on/off time-delay
servo employed as a protective device in speed control
systems. The characteristics of the servo are such that
there 1s always some lost motion of the armature in
moving from one contact to the other. The extent of the
movement over which neither contact is reached gives
rise to a dead zone over which the output is zero. Since
the servo must operate the shaft of a motor to overcome
the coulomb fricton, the differential equation
incorporating the nonlinearity is described by a second
order relation with inertia I, viscous damping F and torque
per unit error K as follows:
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+F+K6, = K6,

235

which 1s reducible to the form

+F=Fsgnb, (2)
where, 8, is the output and 6, the input. The magnitude
of the corrective action 1s directly dependent on the size
of the error signal. The dead zone (Gao and Wang, 2004;
Gorecki et al., 1989) 1s used to ensure that as long as the
error magnitude 18 less than some defined value there 1s
no regulative action.

Analytical methods do exist (Xu and Yu, 2006;
Marshall and Salehi, 1982) which enable the dead zone
for given signal magnitudes to he predicted in the event
of limit cycle oscillations in uncontrolled conditions. In
linear time-invariant multivariable systems (Obinabo and
Anyasi, 2007, Mayne, 1973), stability 1s relatively simple
to determine. A number of necessary and sufficient
conditions  has established which yielded
unequivocal information concerning the system stability.

been

The objective of this study, has been to
establish conditions for stability of zero-input
interconnected nonlinear power systems, using an

arrangement of scalar blocks where the mput-output
pair for each block is strictly proper rational real or
transfer function.

FORMULATION OF THE PROBLEM

Consider a nonlinear machine interconnected
power system with inputs r1,..r, and outputs v,...., v,

characterized by the relations
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Fig. 1. A block diagram representation of the nonlinear
Zero-input power system

ul(

s):d)1 (Gl,...,Gﬂ),i =1..n

Gl(s):Rl(s)—Yl(s),izl,...,n (3)
1(5):g1(s)ui(s),i:1,...n
where, 1 and o; are auxiliary variables, T =1, ..., n;

capital letters denote transforms of the variable. Here, ¢
R* — R' are continuous functions fori=1,..., nand g.(s),
1=1,...,n are strictly proper rational transfer finctions. To
exclude trivial loops we require no g,,(s) = 0 identically,
1=1,..,n A block diagram representation for (3) 1s shown
m Fig. 1 which i1s a general representation for the
nonlinear system and for which a state realization is
easily obtained, given appropriate matrices A, band ¢,
I=1,..,n as:

dx.

i:A1x1+blv1

dt A
:Alx1+b1¢(ul—clTxl,...,un—chxn) @

vV, =¢, X, 1=1,...n

where, %, = [x,, X.....%,] € R* is a state vector with all x,
assumed to be available for measurement. In order for (4)
to be controllable, it 1s required that b # 0 for x m a certain
controllability region Uc R,

The neonlmearity 1s described by the relation and
u(s) = ¢0,...0) T1=1, .n and g (s) is, in general,
expressed as follows:

Bs" " +B,s" .+ B,

- 1 5
U(s) as"+as” +..+a

Now if x; = y, it can be shown that
X, =%, +tbu, i=1L..,n-1 (©)

i+1

236

(7)

Where,
b 1=1

=i 4

B,=b,=0anda, =1

n

)

Applying this to the problem on hand gives.

X =Y
b =1
b,=z1

Considering the nonlinear element defined by
u=-x,((-x,), the state equations become

(8)

X =X, _qu)(_xl)

X, = =%, —(z=1)xd(—x, ) &)

For convenience of notation we will write ¢ for ¢p(-x,).

STABILITY CRITERIA FOR
THE NONLINEAR STATE MODEL

If a system 1s stable in state space then a Liapunov
function V and its gradient VV exist 9Nwokah (1976).
Given this gradient, both V and d/dt {V} were calculated
as follows:

d

4o Y s
dt

=

(10)

(V)

where for dx/dt,, we inserted the system equations. This
was then expressed as:

Sqvi- (v

To find V from VV we defined a line integral

V=J{VV)idx an
o]
to an arbitrary point in the state space, provided
avVv, ovv
L= foralli,j= ..,n (12)
ax %

] 1
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From Eq. 10

V= (allxl + alZXZ)(X2 - X1¢)+
(321X1 +2X2)(_x3 —(z—l)X1¢)
(an —ay —ah- 2(271)¢)X1X2 B

(1)(a11 +a,, (z—l))xl2 —(2— a, )XZZ
To satisfy (12)

ovV, Vv,
ox

—a a

12— 9g

2 2

Where, the coefficientsc; were computed from the
vector VV Eq. 13.

oy ]
1 a; X, +a,X, +.ta X,

Vv = (13)

vV,

a,=a, ta, (x,)

For V to be positive definite in the neighbourhood of
the origin, &, must always be positive. Also if the limit

LimV

(x)— o0
=<
were to be satisfied, then c,(x;), if it exists, must be an
even function of x and greater than zero for large x;. The
coefficients o, were chosen so as to make d/dt{V} at least
negative semi-definite.
From Eq. 13 we obtained
V'V,

A Xy 8%,

vV = (14)

VV, o, X, +2X,

Puttingand «,, = &, = 0 and «,, = 2(z-1)d, the expression
from d/dt {T} becomes

d

i (Vi=-2(z-1)¢°x” - 2%,
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which is obviously negative definite if z> 1. We now have

2(z—1)dx,
VV = (15)
2x,
Form Eq. 11
[z, 0) (E )
V= j (2(271)(1)x11)dx11 + J. 2x,'dx,’
(e 0) (=, 0) (16)
o]
= 2(z—l)j (d)x]l)dxl1 +x,°
o]
Now for d/dt(V) < O and V == 0, it 1s sufficient that
z>1
and
[ (7

J. bx,'dx,' =0, forallx.

a
Furthermore, the condition Lim V(x)—»ow i3
obviously Lim V(x) satisfied. il

We now develop conditions for stability of the

interconnected nonlinear power system based on the
representation (3). If u(t) = 0, t > 0,1 =1,...,n and if we
require ¢ (0,...0)=10,1=1,...n, it 18 clear that for the mmtial
state zero we have w(t) = 0, t = O and i =1,...,n. If, in
addition, for any mnitial state there is M > 0 such that < M,
t=0and Lim ¥, (t) =0, 1=1,...n, then (3) is said to be
stable. i

Theorem: Suppose p, < g and 1 + gig, (3)/1 + pig; (s) is
positive real for 1 = 1, ..., n. The closed-loop system
represented by (1) is stable if there exist multipliers A, = 0,
1=1, ..., nsuch that

Zhl (qlel - ¢1 (ela---:en ))7plel) = 0
1=1
forall(e,...e) # 0 (18)

Proof: Asin (4) let
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be a minimal realization for g; (s), i =1,..., m. It can be
shown that there are p; > 0, v, > 0 such that for t = 0 and
1=1,...,n

2 2
5 OF v, b, O + (7
. (19
Jov rpy @y, +v)
a
Thus if A, > 0,i=1,..., nthen
2
z kt“t ((h - pt)z ‘Xt(t)| < Et: ktvt
t : (20)
2
{q _pt)z |Xt(0)‘ + %j(vt TPy st =0
0
But since () =0,t 2 0,1=1,...,nwe have
vi:d)l(e],...,en),yi:—ei,izl,...,n (21)
And thus using (18)
L
Sh v Py iy, v, =
o (22)
t
[ 22, —pege —4)=0.t=0
0
Consequently
T —p ) x (0)f =
WRINCRES BEEN0 o3
2 (q, —p, ) %, @), 120
So that for some M > 0
(=M. t20,i=1..n (24)

Thus for some N = 0 we also have
[Zhb -pedae —¢)=Ntz0 (29
0

Under the stated assumption, it follows that

Lime, (t)=0,i=1..,n (26)

t—

Consequently

Fig. 2: An interconnection of two power generating plants

u, =0+

oL HfE—
L-(f—*”_* B S g B e s O 1

Fig. 3: An equivalent zero-input scalar representation of
the generating plants

vt <M
It,irnyl(t) =0,i=1,..n

(27)

which completes the proof.

Example 1: Consider an mterconnection of two power
generating plants with the nonlinear element and feedback
loops (Fig. 2). An equivalent zero-input scalar represen-
tation 1s obtained in Fig. 3.

In the notation of (3) we have

1

gi(s)=g.(s)=—

s+1
and ¢, (ep e,)=d, (e, —e;)
d)l (ep e;)=d,(e;—e)

An examination using the resulting simplified form of
the theorem mdicates that the closed loop system 1s
stable if forall o, # 0, 0, = 0,

d
e e

9] 9]

1 2

Gy einys Ly Loy
Gl 2 4 Gl 2

Where, 0, =e, -e,and 0, =e, - e,.

Example 2: A representation of a multimachine
interconnection is considered in Fig. 4; itis of one
form (3) with

238
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3!S+1! i

5 (5 +8+28

u,+ 0+

Fig. 4: A representation of a multimachine mterconnection

__ 3+

ails)= s°(s> +5+25)
B 1

gz(s)f s(s+2)

and
$ (e, e,)=1.6le,+d (e,)
b, (e, e,)=d,(e)+2e,
For stability, we chose «,=1,p=2.22andp, =0,

B, = 4. On the basis of the theorem, the closed-loop
system 1s stable if

f,(e,)| <k, e,

f,(e) <k, e

]

hold for all e, and e, and if k k, <1.22.
CONCLUSION

A procedure for the design of a stable nonlinear
interconnected (composite) power system is established
here. For the continuous autonomous systems g;(s), 1 =
1,..., n the parameters ¢; and P, for each i =1,..., nwere then
chosen in a manner similar to Obinabo and Anyasi (2007).
On the basis of ¢, p;1=1,...n so obtained, we chose the
functions ¢,,...¢, subject to the constramts imposed on
their selection so that mequality (18) was satisfied. A trial
and error approach was employed since selection of «,,
B, i=1,..,n was not unique.

The approach also shows an evaluation of the effects
of any uncertainties ing,(s),1=1,....nand ¢, i=1,..n In
particular, it 1s possible to assess the effects of failure of
certamm components directly from exammation of
mequality (18) expressed in the following equivalent form

9 —Ps e
2 1

m 2
2

i=1

= (28)

for all (e,...e) # 0. Tt is the inequality (18), or the
equivalent inequality (28), which presents the difficulties
of verification in the application of the theorem.

The mequality (18) is however, satisfied if for each
(e,,....e) withe, # O

ag <edle,..e )<Pe.1=l...n

In terms of the slopes of the nonlinear functions, the
mnequality (18) 1s considered as follows. Suppose that,

¢.(e,....e ) =P (5,), 1=1...n

Where:
n
o, = ka ,i=1,...n, so that

-1

¢.(e,...e, )= i(@ku)q, 1=1,..,n

-1 i

It 1s easily shown that the mequality (18) 1s satisfied
if and only if for each 0,# 0,1=1...,n the matrix [A;] is
positive definite where

¢ B P,

— i - 2 i 82
Ay=h(q -k a)(k”aip‘)i;%k”(gj)
1
A=Ay = 5{7“i k; %[ql -k %)_(kq %_Pi)]}
¢ ¢, ¢,
+Ak, —[(q, —k, =)k, ——p)}
9, 9; %,
—Z?ernkd(ﬂ)z, 1# ]
rai Gr

r=]

The conditien that [A,] is positive definite constitutes
a set of constraints on the slopes

which guarantee stability of nonlinear interconnected
systems of the form (3).

REFERENCES

Gao, H. and Wang, 2004, A  delay-dependent
approach to robust H; filtering for uncertain
discrete-time state-delayed systems. TEEE. Trans. Sig.
Proc., 52 (6): 1631-1640.



Int. J. Elec. Power Eng., 2 (4): 235-240, 2008

Gorecki, H.S., P. Fuska, S. Grabowski and A. Korytowsli,
1989. Analysis and Synthesis of Tiune Delay Systems.
Wiley, New York.

Gray, 1.0O. and N.B. Nakhia, 1981. Prediction of limit cycles
in multivariable nonlinear systems. TEEE. Proc.,
128 (5): 233-241.

Liu, W. I. Sarangapani, K. Ganesh, V.I. Lin,

D.C. Wunsch, MUL. Crow and D.A. Cartes, 2007.

Decentralized neural networl-based excitation control

of large-scale power systems. Int. J. Control

Automation Sys., 5 (5): 526-538.

Lu, T, C Feng, 5. Xu and Y. Chu, 2006. Observer
design for a class of uncertain state-delayed
nonlinear systems. Int. J. Control Automation Sys.,
4(4): 448- 455.

Marshall, TE. and S.V. Saleln, 1982. Improvement of
system performance by the use of time-delay
elements. IEEE. Proc., 129 (5): 177-181.

Mayne, D.Q., 1973. The Design of linear multivariable
systems. Automatica, 9: 201-207.

240

Nicholson, H. and M.J.H. Sterling, 1972. Optimum
dispatch of active and reactive generation by
quadratic programming. Proc. IEEE Power Eng.
Society Conf. San Francisco, California, pp: 1-9.

Nwokah, O.D.I., 1976. The construction of lyapunov
functions for composite dynamical systems. First
Nigerian Congress on Theoretical and Applied
Mechanics, Faculty of Engineering, University of
Lagos, pp: 239-252.

Obmabo, E.C. and F.I. Anyasi, 2007. On the prediction
of stable equilibrium state of linear time-mvariant
multivariable systems. Int. J. Elec. Power Eng.,
1 (4): 397-401.

Wang, Y., R. Zhou and C. Wen, 1993. Robust load-
frequency controller design for power systems. IEEE.
Proc., 140 (1): 11-16.

Xu, J. and L. Yu, 2006. He control of 2-d discrete
state delay systems. Int. J. Control Automation Sys.,
4(4): 516-523.



