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Abstract: One of the most growing areas m circuit design 1s asynchronous circuit’s design. These circuits
incorporate a number of hazard problems such as race. The multitude of the different techmques that have been
proposed to avoid race problems in an asynchronous circuit can be classified into two major types: The
techniques belonging to the first type yield large circuits with low power dissipation and the techniques
belonging to the second type vield relatively small circuits with igh power dissipation. The majority of these
techniques are NP-complete and require extremely large computation times for large flow table. This study
considers the state assignment problem for circuits operating in the normal fundamental mode and describes
a new procedure especially suited to the automated synthesis of large circuits. The proposed technique
constitutes a trade-off between silicon area and power dissipation.
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INTRODUCTION

Asynchronous  sequential  circuits are used
extensively in digital integrated circuits and systems as
Globally Asynchronous Locally Synchronous System on
Chip (GALS-S0C) arbiters, wrappers and routers. During
the last decade, there has been sigmficant progress in
developing methods and tools for asynchronous circuit
synthesis (Sentovich et al., 1992; Chris, 1995; Steven,
1993; Chantal ef al., 1994; Cortadella et al., 1997). This
progress can be classified mto two synthesis approaches,
one based on the Huffman’s state machine model
(Huffman, 1954; Unger, 1996) and the other deriving from
the Muller’s concept of speed-independent circuits
(David and Bartky, 1959). The former, also known as
fundamental mode circuit design makes strong
assumptions about the delay of the environment
compared to that of the circuit. It requires that the
enviromment to be slow enough in applying the new input
values so as to allow the circuit to stabilize after
responding to the previous input. The most well-known
method associated with this approach 1s the one called
Burst-Mode (BM) circuit design, developed by Steven
(1993), Coates et al. (1993) and Yun (1994). The second
approach on the contrary, malkes no assumption about the
delays of the enviromment, permitting some of the mputs
to switch in response to changes in some of the circuit’s
outputs, without waiting for their complete stabilization.
This model is called Tnput-Output (IO) mode. The recently

developed design methods and software based on Signal
Transition Graph (STG) (Cortadella et al, 1997, Moon
et al., 1991) exemplify this approach and produce speed-
independent circuits, whose behaviour are invariant to
delays in gates but may be sensitive to wire delays.

The complexity of the state assignment procedure
for asynchronous sequential circuits stems from the
necessity of avoiding critical races, which may cause the
machine to malfunction. A critical race occurs when, due
to the asynchronous nature of state transitions, internal
state variables may change values in an order which
allows the circuit to reach a final stable state other than
the mtended one. It is well-known (Friedman et al., 1969,
Liu, 1963) that critical races can be avoided by judicious
choice of encoding.

The history of state assignment procedures dates
back to the 1950’s when relays were used as the main
circuit compenents. In the Huffman’s classical papers on
sequential circuit design (Huffman, 1954, 1955), he first
presented a mathematical model for sequential circuits
(to become known as the “Huffman model™) and then
presented several state assignment procedures.

Starting from Huffman’s works, asynchronous state
assignment techniques have been widely studied by
many researchers (Tracey, 1966, Tan, 1971; Liu, 1963,
Maki et al., 1969, Friedman ef al., 1969, Smith, 1974,
Nanya and Tohma, 1978, 1979, Kuhl and Reddy, 1978,
Hollaar, 1 982; Maki and Tracey, 1971; Saucier, 1967, 1972,
Unger, 1969, Kantabutra and Andreou, 1994).
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Most of the research relates to the Single Transition-
Time (STT) state assignment technique for findamental-
mode. The fundamental mode assumption states that only
one digit in the mput may change at a time and no
changes can occur in the input until the state machine
stabilizes. STT state-assignment techniques were first
presented by Liu (1963) and later extended by Tracey
(1966). Other improvements or variations on STT state
assignments were investigated by many researchers Tan
(1971), Maki et al. (1969), Friedman et al. (1969), Smith
(1974), Nanya and Tohma (1978, 1979) and Kuhl and
Reddy (1978). Tracey’s (1966) methods are very important
representative approaches of STT state assignments.
However, these methods require extremely large
computation times for very large flow tables (Smath, 1974).
Smith (1974) presented an extension of Tracey’s
techniques  that  produces
assignments for very large tables, while requiring much
computational effort than previous methods.
Systematic technique to solve the state assignment
problem rather than the partition method (Tracey, 1966;
Tan, 1971; Smith, 1974; Kantabutra and Andereou, 1994)
used in the STT state assignment approach.

In this study, we present a new technique for
resolving race problems of asynchronous circuits based

near-minimum  state

less

on variable msertion scheme. The proposed technique
begms by fetching the best state coding that respects the
maximum of adjacency and try to create non-critical races
by assigning racy state codes to the transitions that have
the lowest transition probabilities. After that, an internal
variable 1s mserted per race transition into the transition
diagram.

The proposed technique differs fundamentally from
the Huffman’s. Huffman techmque starts out by defining
a large set of states to correspond to each flow table
row. The proposed technique, on the contrary, start out
small and attempt to successively refine the given
numbered adjacency graph by mserting a set of internal
variables according to the race transitions. The sinplicity
of the proposed techmique allows him to be used even for
large flow tables.

RACE-FREE STATE ASSIGNMENT TECHNIQUE

The first step of the proposed technique consists on
numbering the states in the adjacency graph in such a
way that the number of race transitions is minimized, or
kept small. Tt may be possible to number the nodes so that
every pair of adjacent nodes has numbers that differ at
only 1 bit positon. In such ideal cases, our state
assignment algorithm does nothing; the attempt to use
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the adjacency graph as the state transition diagram is
successful. In less ideal cases, the graph node numbering
will leave some adjacent node pairs with numbers that
differ from each other at 2 or more bit positions
(race transition). The term “race transition” comes from
the fact that if we were to build a circuit directly from the
graph, then such a state transition would mvolve more
than one state variable change, entailing a race condition.
In this case, our state assignment algorithm inserts an
internal variable for each race transition and modifies
of transitions according to it. In all
cases the total number of secondary state variables s n
(2" states), the minimum possible number of variables that
we could use just to number all the internal states (rows
of flow table) with. For adjacency graphs that don’t have
many race transitions, the logic that 13 added due to
internal variables insertion will be small. We suspect
that many circuits fall into this category. The total
circuits will be also small relatively to the smallest circuits
(Huffman, 1955) that are generated by Huffman technique
(2n = 2log,(N), where N is the number of rows of the flow
table) and the Kantabutra circuits (Kantabutra and
Andreou, 1994) which use (n+b) internal state variables;
where b represents the race transition type, thus leading
to 20" internal states.

some conditions

Case of one race circuits: To study the details of our
state assignment algorithm in the case of 1 race transition,
let us study the following examples:

Example 1: Consider the flow table n Fig. 1b, which
corresponds to an asynchronous sequential circuit.

We create a race-free state transition diagram in a
step-by-step mamner: First, we number the adjacency
graph in such a way that the number of race transition is
minimized. Figure 1a presents the adjacency graph with a
state coding that respects the maximum of adjacency.
Note that the transition from the state (11) to the state (00)
1s a race transition. In fact, when the machine 1s m the
stable state (11) and the input variables becomes xx; = 11,
the machine can go to the intermediary state (01) if ¥, is
fast than y, or to the intermediary state (10) if y, is fast
than y, (Fig. 1b). Since the states (01) and (10) are stable
inthe column (x,x, = 11), then the machine will stabilises
in one of these state depending on the rates of y, and y,
and never attain the target state (00). Our idea consists
on leaving the race transition occurs and when the
machine attempts to reach a wrong state depending on
the state variable rates, we redirected the machine to its
target state by: setting and resetting an inserted
variable, add some transitions and modify some
transition conditions. For example when the machine 1s in
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Fig. 1. Example of an adjacency graph (a) and its
corresponding flow table (b)
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the stable state (11) and the input vector changes from
(01) to (11): raises the added variable V to 1; multiply
logically the transition condition by V when the machine
is in the state (01) or in the state (10) and the input vector
18 (11); add a transition from the state (01) to the state (00)
and a transition from the state (10) to the state (00) both
with the transition condition (x,x,V = 111} and reset the
variable V when the machine attamns the state (00). Thus,
the machine can not stabilise in the state (01) or in the
sate (10) when it starts from state (11) and the input vector
18 (xx,=11).

The state transition diagram and the flow table are
modified as presented in Fig. 2.

Notice that the mserted variable V 1s putted to 1 when
(yayxx;=1111) and is reset to O when (y,y,x,x, = 0011). Tt
remains unchanged in all other cases. The C-element
based production rule of this variable is:

i
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Fig. 2: The modified adjacency graph (a) and the
modified flow table (b)
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Fig. 3: Arclutecture of a Mealy machne allowed by our
technique

The general architecture (generated by our technique)
of a Mealy asynchronous circuit with m mputs, n state
variables, p outputs and k race transitions 1s presented in
the Fig. 3.
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Fig. 5. The race free adjacency graph by our algorithm

Example 2: Consider the adjacency graph presented in
Fig. 4 extracted from Kantabutra and Andreou (1994).
Note that the state (010) and the state (001) differ by two
state variables. When the machine is stable in the state
(010) and the transition (11) 1s activated the machine can
go to the mtermediate state (000) or to the mntermediate
state (011). From the adjacency graph we notice that the
transition (11) is not used when the machine is in the state
(000) or in the state (011). Thus we can forces the machine
to transit to the state (001) when 1t passes by the state
(000) or by the state (011). Here we create a non critical
race for the transition (11) without adding an internal
variable. The modified adjacency graph contains only 3
state variables (the necessary variables to number the
flow table row) and it is presented in Fig. 5. When we use
the Kantabutra technique as presented by Kantabutra and
Andreou (1994), the modified graph uses 4 state variables.
Alsoif we had used the state assigmment algorithm by
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Fig. 6: The input adjacency graph of example 3
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Fig. 7: The intermediate states for the transition (01)

Huffman (1955) that yields fast circuits, we would have
obtained a 7-state variable circuit instead of the 3-state-
variable circuit as we have just gotten.

Case of multi-race circuits: The proposed technique can
be used in the case of multi-race circuits even when the
state codes of adjacent nodes differ by more than two bits
positions. Once again, we will study an example to get an
1dea of the general algorithm in which there may be more
than one race transition.

Example 3: Consider the example of Fig 6 as input of our
algorithm. Let '(xy); (A) — (n) be a transition from state
(A) to state (B) when the transition condition on the
inputs variables is (yx). In this example we have 3 race
transitions:

H11);, (010) — (001), {10, (011) — (100) and*(01); (001) —
(100). In the case of the transition '(11) and the transition
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Fig. 8 The intermediate states for the transition (10)

{01) the codes of the source and the target states differ
only by 2 state variables. The machine can go to 2
intermediate states in each case depending on the rates of
yl and y2 in the case of the transition '(11) (y3 steel
unchanged) and depending on the rates of yl and y3 (y2
steel unchanged) in the case of the transition '(01). The
inequality (y;>y;) implies that the rate of y,is higher than
the rate of y;. The resolution of the race problem in the
case of the transition (11) 1s resolved m the same way as
performed in the case of example 2. In fact, the transition
(11) is not used when the machine is in the intermediate
states (000) and (011). Concerning the transition (01) the
mtermediate states are presented in Fig. 7.

In the case of the race transition '(01) the codes of the
source and the target states differ by 3 state variables.
The possible intermediate states that the machine can
reaches are encircled in Fig. 8.

Let V, and V, be, respectively the internal variables to
be inserted for the race transitions (01 ) and '(10). For each
transition in the race transition set S((01), (10)) the
algorithm puts the variable V, to 1 when the machine 1s in
the source state of the corresponding race transition and
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Fig. 9: The race free adjacency graph by our algorithm

the transition condition is activated. For example in the
case of the transition (10), the setting of the variable V,
(10/V,) 18 performed when the machine 1s in the source
state (011) and the transition condition (10) 15 true. The
resetting of this variable (10/V) is performed when the
machine is in the target state (100) and the transition
condition 1s true.

In the second step, we create a transition from each
state of the intermediate states set to the target state of
the corresponding race transition. The transition
condition that is associated to these transitions is (10V,).
This allows the machine to go to the target state as soon
as it reaches a given intermediate state due to the race
problem. We modify all the existents (10) transition
condition by forming a logic and of the transition
condition with V,. For example the transition condition
from the intermediate state (000) to the state (001)
becomes (10V, ). This implies that if the machine is stable
in the state (000) and its precedent state is not the
source state of the race transition (V, 1s low) it can transit
to its intended target state (001). Note that if a given
intermediate state does not exist in the original adjacency
graph we will add it (eg. state (101) and (111)). This
situation may be encountered when the adjacency graph
contains a number of states that is less than the possible
states number that can be generated by a code with n bits
(2"). Note that mn all cases our techmque uses just the
number of states that 1s necessary to code the flow table.
The final race free adjacency graph generated by our
algorithm is presented in Fig. 9.

Adjacency graph with output: In this example we present
how our technique can study the case of a finite state
machine with outputs. Both Mealy (output are associated
to the transition) and Moore (output are associated to the
state) machines are considered.
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Fig. 10: Adjacency graph with output (Moore machine)
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Fig. 11: Adjacency graph with output (Mealy machine)

Example 4: Consider the adjacency graph presented in
Fig. 1.b, where we add a race transition from the state 01
to the state 10 ((11): (01) — (10)). We also add two
outputs S, and S, that are affected in each state of the
adjacency graph as presented in Fig. 10 (in the case of a
Moore machine) and Fig. 11 (in the case of a Mealy
machine).

The modification of the adjacency graph
corresponding to the race transition 10 ('(11): (01) — (10))
and 10 ("(11): (11) — (00)) are performed as presented in
the precedent sections by inserting two variables V, and
V,. We notice that it 15 necessary that the modification
according to internal variables insertion don’t affect the
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Fig. 12: Output adjacency graph with outputs affectation
by our algorithm (Moore machine)

outputs values of the machine. For this reason we modify
the outputs values depending to the mternal variables
insertion. For example in the case of the race transition 10
({11 (11) — (00)), the outputs will change from the values
(8,3, = 00) to the values (3,5; =11). In order to not change
the values of these outputs when the machine reaches the
intermediate states (01) and (10), these outputs will
conserve their values m the imtial state of the race
transition (when V| is active). Also these outputs will
conserve the outputs values of the state (01) or (10) when
these states are reached from states other than the source
state of the race transition (V| is not active). In the case of
a Moore machine (Fig. 12) the logic expression:

SV +8Vi=8, @V,
for the output 3, and the logic expression

S,V,+5,V, =5,

will ensure these conditions. We notice that since the
output 3, will be (S,=0) when the intermediate state is a
stable state or a transitory state of the race transition (11):
(11) = (00) its value before the modification (§,) of the

adjacency graph will be conserved
(§2V1 + §2§1 = gg)

In the case of a Mealy machine (Fig. 13), the outputs
associated to an added transition from an intermediate
state of a race transition will be affected by the output of
the target state of the race transition. For example, the
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Fig. 13: Output adjacency graph with outputs affectation
by our algorithm (Mealy machine)

outputs of the added transition from the state (01) to the
state (00) will have the same values as the outputs of the
state (00) (11V1/S132). The outputs of the transitions
other than the added transitions are not affected.

State assignment algorithm: The following sections
describe the steps allowed by the proposed algorithm
(Fig. 14) that takes the state transition diagram as mput.

Internal variables generation: Let the transition t's, = s,
from a state 3, to a state S, when there is at least two bits
change, be a race transition and C,"; — s; be the transition
condition associated to this t*s; = s, transition. For each
transition, the algorithm generates an internal variable V,.
Thus, a set V {v,. . v,..v,+ of internal variables to be
added to the adjacency graph for all race transitions will
be created.

Set/reset of state variables: For each race transition
t's, — s, from a state 3, to a state S,, set the variable V, that
is associated to the C,"; — s transition condition and
add this setting assignment as a Mealy notation to the
C, % — s condition (C, "y — s/vk). The others state
transitions conditions from state S; will not be modified.

For the same transition condition C, *s; — s; from the
target state S to the same state S, or to another state, the
algorithm resets the variable V, and add this resetting
assignment to the C, s, = s, condition

k
(Cisi — sj)

Generate the intermediate states: For each race transition
t's, = s; generate all the intermediate states that can be
reached between the state S, and the state S, depending
on all inequality combinations of the next state variables
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Algorithm State_Assignment;
BRegin
For each t*s; 25, T do
If §; and §; are not adjacent then
Add s, s to Tx;
Add V to'V;
End if,
End for;
For each t*s; 25, Ty do
Replace C'Ks; —s; from state S;by CKs; —2s/vk;
Replace C'Ks; —s; from state S;by C'Ks; —s/vk;
End for;
For each state S, € [S;; 8] depending on the state variables
rates combinations do
If'S, & Ry then
Add S toRy;
End if;
End for;
For each 8, € R, do
If there exist a t“s —s; from the state S, then
If this transition don’t goes to S;then
Add a transition from S, don’t goes to §;
with the transition condition (C'Ks, —s; vk);
Replace the exists transition condition by C'Ks; —s; ¥k ;
Endif;
Else
Add a transition from S, don’t goes to S;
with the transition condition (CKs; —s; vKk);
End if;
End for;
Minimize the inserted variables;
End State_Assignment;

Fig. 14: Race-free state assignment algorithm

rates. Add these states to the adjacency graph. If a given
state 13 added to the adjacency graph according to
another race transition do not duplicate it.

Add transitions/modify transition conditions: For each
state Sq from the intermediate state set of the race
transition, t's; = s; add an edge from the state Sq to the
state S; with the transition condition vkCt's, = s; (a logic
and between the variable V, and the race transition
condition). Do not perform tlis task if the existent
transition condition (C, *s; — ) allows to the machine to
reaches the state S,

Modify the existent or the generated Cts, — s
transition condition from each state Sq among the
intermediate state set by forming a logic and between the
vk variable and the Cts; —s; condition

(VkC,s; — s)

Optimization: As indicated in the above sections, it is not
necessary to add a V, vanable if the race transition
condition C, %, — s, does not already exist for all
intermediate states. ITn the first step, our algorithm
inserts all possible variables and only in the final step it
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eliminates the unnecessary variables and their associated
transition conditions modifications. In certain situation,
the algorithm eliminates only some transition conditions
from some intermediate states corresponding to the race
transition of a given variable without eliminating the
variable itself. In fact the insertion of an internal variable
according to a given race transition can create a transition
condition from an intermediary state of another race
transition that have the same transition condition which
don’t exist in the graph. This step constitutes the variable
optimization step.

CORRECTNESS VERIFICATION

The functionality correctness of our algorithm has
been verified by simulating a set of industrial circuit’s
examples. Tn each example, the input test vectors have
been chosen in a manner that let the machines passes by
all race transitions. The first simulation is performed on
the initial transition diagram, without race problem
resolution. All race transitions have been shown based
on the state variable rate combinations. In each case we
slow a state variable than the others by retarding it with
some delay. Different delays are also used in each case.
The second simulation is performed on the state diagram
after the race problems have been resolved by our
algorithm.

Race transition simulation: Consider the example of the
Moore machine of Fig. 12. The outputs and the next state
equations are extracted from the Karnaugh maps and
described by a data-flow VHDIL description. The next
state variable Y, and the output S, after the race problem
resolution are extracted as follow (Fig. 15).

The simulation results presented in Fig. 16 shows the
race transition from the state (11) to the state (00) by
retarding the y, state variable than the y, state variable by
2 ns. The machine goes to the state (01) instead of the
state (00). The values of the output 3, are wrong duo to
this race. Figure 17 shows the simulation results of the
circuit without race with the same test vector after
applying our technique. Note that if we slow the y1 state
variable than the y, state variable, the machine enter in an
infinite cycle between the state (10) and the state (11). In
fact, if the machine enters into the state (10) and the input
transition is steel active (x,x, = 11) the machine return to
the state (11) and so on. This situation is also resclved by
our technique showing thus the same simulation results
as those of Fig. 17. Notice that the inserted variables V,
and V, are presented in order to shown how they are
activated and deactivated when the race transition is
activated.

Hazard freeness verification: The next state equation of
the variables V, and V, of the Moore machine example of
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Fig. 15 Equations of the next state variable Y, (a) and
the output variable 3, (b), after race resolution

Fig. 12 are generated from the C-element production rules
as follow.

Y Y X X, Vz — V1+
Y Y XX, Vi—=V,

=V =y y XX Vit vl(ylylexDVZ)

Figure 18 presents the two level logic implementation
of the variable V.

Notice that the presented logic structure can be
generalized for each state machine. For example, in the
case of a machme with n mtermnal state variables, m nput
variables and p race transitions; we have p state variables
to be added to the state graph. Let

(y3..yiyand (vh.yD

and be, respectively the binary values of the source and
the target states variables codes of the i* race transition.
Let also (x,,.. x,) be the values of the variables of the race
transition condition and (V.. V,) the variables to be
added to the state graph according to the p races
transitions. The production rule for a given V, variable is
presented as follow:

b e * *— — — —
5%y g X MV Vi Vi V) =

(YE* Ytl*)(xm - 'Xl )(\_[P ..v\_fi+1 \_[i—l"'\_[l) —> Vi_

Notice that if x, = 0 thus an:Xm and if x, = 1
thus . * _, . The two level logic equation extracted from
the aglovemproduction rule 18 shown by the following
equation.

gt 8 ’ : X7 T 7
Vi=(yn -y Xy 1V Vi Vi Visg)
—t* - o o
Vi¥p +...+ VY, +ViXm +..+Vvix; +

VIVp + ...+ VIV

1+1+ViVi71+ ot VIVI
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Fig. 16: Simulation that show the race transition problems
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Fig. 17: Simulation results after applying our algorithm
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Fig. 18: Two level logic implementation of the variable V,

The two level gate structure that implements this
general equation is given by Fig. 19.

Notice that all variables to be inserted according to
the race transitions are mitially putted at logics 0 (V.. V,
=0...0). Thus, when the machine reaches the source state
of a race transition and if this transition occurs, the output
of the AND gate that is initially putted at logic O will rises
to logic 1. This m turn put the output of the OR gate
(mitially at legic 0) to logic 1. The output of the AND®
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Fig. 19: The general gate level structure of an inserted
variable

gate 1s putted at logic 0 smce the machine reaches an
intermediate state. Since it is necessary that at least 2
states bits of the source and the target state are different
(race transition), we have at least two AND gates (among
the two inputs AND gates which have as mnputs the next
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state variables bits +t* ) where their outputs are at logic 1.
When the machiné reaches an intermediate state there is
only one output among these outputs which is putted to
logic 0. Only when the machine reaches the target state
we have all the output of these and will be at logic 0. This
in turn put the output of the V, variable to logic 0. Thus
an intermediate state or
another depending on the next state variables rates

when the machine reaches

combination, we have at least an and output that maintain
the value of the or gate to logic 1. Notice that we have not
consider the and gate that are associated to the i”l‘n
variables that can also contamn some outputs that have
logic 1. Thus in all cases, no hazard will be entered to the
output variable V. The corresponding circuit is hazard
free. Particularly, the static 1 hazard that can occur on the
OR gate output in sumilar architecture (Fig. 20) can not be
encountered.

The presented variable generation architecture will be
the same for all circuits’ cases. Only the input number of
the two inputs AND® gate can be changed depending on
the state variables and the added intemal variable
mumbers. From Fig. 19 we notice that the output of a
variable V, is activated after a At time (propagation time of
an AND gate cascaded with an OR gate) starting from
their inputs change. Thus, the only limitation of our
approach is that if the delay associated to the most fast
state variable path is low than the At time, the race
problem will not be solved. Thus our technique 1s not
applicable to very small circuits where the state variable
path is longer than a path formed by an AND gate
cascaded with an OR gate.

SWITCHING POWER CONSIDERATION

In CMOS circuit’s dynamic power is the dominant
contribution of the power consumption. This contribution
15 composed of power consumed n sequential logic and
combinational logic. Power dissipated in the
combinational logic mainly depends on the complexity of
the Boolean logic functions and their wnplementation.
Power dissipation m sequential logic s due to capacitance
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charging and discharging caused by the state bit
switching. Thus the sequential power dissipation is
proportional to the switching activity in the state graph of
an asynchronous circuit. We consider the switching
activity of a state graph, the indicator of power efficiency
of the designed asynchronous circuit.

We use the same formula as Bemm and De Micheli
(1995), for computing the transition activities. By
considering the input transition diagram as a weighted
directed graph the transition activities is given as
follow:

n
(.5

The weight P; for each (i, j) represents transition
probability from state s, to state s;. H(s,, s)is the Hamming
distance between the codes, (two bitstreams C,and C,), of
states s, and s, under the state encoding scheme.

The state transition probability measures how
frequently each transition occurs and the Hamming
distance gives the amount that each transition contributes
to the total switching activity.

The input probability distributions can be obtained
by simulating the state graph at a higher level of
abstraction in the context of its environment, or by direct
knowledge from the designer (Benini and Micheli, 1995).
This gives usP;, the conditional probability that the next
state is s; if the current state is s;. Then we build a Markov
chain based on these conditional probabilities to model
the state graph. The Markov chain 1s a stochastic process
whose dynamic behaviour depends only on the present
state and not on how the present state is reached
(Hachtel ef al., 1994). We now can obtain the steady state
probability P, of each state corresponding to the
stationary distribution of the Markov chain. The state
transition probability P; for the transition from state s; to
state s; is given by: P, = P, P.. This equation implies that,
1n order to have high total transition probability both the
state probability and the conditional transition probability
must be high. Using only the conditional transition
probability can lead to incorrect estumates.

After applymng the Markov chain theory, a weighted
state graph is generated and used as input to our state
assighment technique. Tn general a directed graph is
transformed inte undirected graph by collapsing all
multiple directed edges between two states mto a single
undirected weighted edge with a weight equal to the sum
of the directed edges probabilities. Thus in the weighted
undirected graph, the weights are proportional to the
total probability of a transiion between the two
states comnected by the edge. More details concerning
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Fig. 21: Example of transforming a directed weighed
graph (a) to an undirected weighted graph (b)

the estimation of transition probability technique can be
found by Bemni and Micheli (1995). For example mn the
case of the directed weighted graph of Fig. 2la, the
transformation into an undirected graph 1s given in
Fig. 21b.

The optimal switching activity corresponds to the
state coding with a Hamming distance H (s;, s;) = 1. The
expression of the optimal transition activity is then
reduced to the following formula:

n
A:ZPij

(i)

For a state code with m bits change such as the
Tracey technique, the transition activity and thus the
dissipated power are very larges when compared to the
techmques that allow an optimal transition activity such
as the Kantabutra and Huffman techniques.

For our technique only the races transitions will have
bits change depending on the number of bits positions
that change for each race transition. The rest of states
transitions which represent the majority have only one bit
change.

Starting from a weighted undirected graph, we
associate state codes of the race transitions to the
transitions that have the lowest probability. This means
that states codes are associated to the states in a manner
that mmimises the bits changes i the case of the
transitions with higher probabilities. For example n the
case of Fig. 21a, the states codes that are associated to
the highest probability transition (27) have only one bit
change (53:10 and S4: 11). Also the states that are
assoclated to the transition that have the lowest
probability (3) are assigned by a racy code with two bits
change (S1: 00 and S4: 11). The expression used to
evaluate the transition activity of our technique is as
follow:
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n—m

)

(Li)-(i%i)

m
Pj+ » BrjlHlsisi+ 2]
(i)

The first term

n—m

Fj
W)

denotes the transition activities of the transition that have
one bit change (H(s, s,) = 1). The second term

O PuglHisinsy) + 2
(13"

denotes the transition activities of race transitions
{(H(s,, s;) > 1). Notice that the number 2 is added for each
race transition since such transition meclude a transition
from O to 1 of the added variable in the source state Si°
and a transition from 1 to O of this variable in the target
state 37°. In all other states the added variable is steel
unchanged and not contributes to the transition activity.
The least probability Pi’j” is associated to the race
transition that has the highest bits changed and so on.
For example, in the case of the example of Fig. 21a, the
transition activity computed by this formula in the case of
our technique is: A = (9 + 27 + 9) + 6x4+3x4 =§1. This
transition activity value is 1.60 time higher than the
optimal switching activity as given by the Kantabutra and
Huffiman techmques (P =3+9+9+27 +6=>51)and it 1s
1.33 time lower than those of LiwTracey technique
(3492+9+27+6)x2=108. In fact, the Tracey’s state
assignment is: (S1) =000, (32)=011, (33)=110,(S4)=101
and two bit change is associated to each state transition.
The Liw/Tracey switching activity is 2.12 time higher than
those of Kantabutra and Huffman techniques.

Notice that for a state graph with a large mumber of
states (n>>m) and a small number of race transitions with
low probabilities, the expression of the transition activity
tend to the optimal transition activity

(A:Z P;)

(i)

The power dissipation is also dependent on the
sttucture of the combinational part of the final
synthesised graph. Thus, to obtain low power dissipation
in the final circuit, area must sometimes be taken into
account. A trade-offs in terms of the relative importance
between area and power may be performed.
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Fig. 22: Logic synthesis result of a circuit example by our technique (a) and by the Kantabutra technique

Since our technique allows the lowest state variable
code length it generates generally a smallest final circuit
than the other techniques (Huffman, Kantabutra, Liu/
Tracey). Thus the dissipation power relatively to the
combinational part of our circuits is lower than those
techniques. For example, the logic synthesis of the simple
example of Fig. 1 is given by Fig. 22a. The same circuit
synthesized by the Kantabutra technique as presented in
(Kantabutra and Andreou, 1994), generate a transition
graph with 8 states. The logic synthesis of this circuit
generate a circuit that is (1.70) large than our circuit
(Fig. 22b).

CONCLUSION

The race-free state-assignment method presented
herein reduces the complexity of solving the race-free
state-assignment problem by decomposing the problem
into three principal stages. In the first stage, the flow table
or the state transition diagram are coded in a manner that
mimmizes the number of race transition by respecting the
maximum of adjacency. In the second stage, transition

probabilities are calculated and each racy transition that
has the maximal hamming distance code 1s weighted by
the lowest probability. In the third stage, internal variables
for the race transitions are inserted.

Actually we have under implementing the state
assignment algorithm and applying it to some benchmarks
circuits. The primary results show that the proposed
technique constitute a trade-off between silicon area and
power dissipation when compared to the state of the art
techniques.
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