Onlline

Medwen Internaticnal Journal of Electrical and Power Engineering 1 (4): 443-454, 2007
© Medwell Journals, 2007
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Abstract: The quality of electricity has been gaining more emphasis among utilities, service sectors and
consumers. Good quality of electricity has to be maintained by strategic measures in coping with all sort of
disturbances generated intrinsically in modern power electronic equipments and large commercial buildings.
A means of improving electric power quality starts by a systematic identification of the power system
disturbances which is posed to be a big challenge. The conventional approach based on Fourier Transform
principles has its main drawback of losing the time-domain feature after transformation. In this context the
technique of using wavelet transform appears to be more promising with its strength on handling signals on
short time intervals for high frequency components and long time intervals for low frequency components. This
study will propose a new approach called integrated approach by mtegrating the advantages of both Fourier
and wavelet transforms. The wavelet transform 1s used to extract the required time-domain information from the
high frequency components while the Fourier transform is used to provide the accurate measurement from the
low frequency components. An automatic power quality monitoring system based on the integrated approach
1s then developed. Neural network classifier and adaptive neuro-fuzzy classifier are selected to implement the
proposed approach of which its training and validation are performed via simulated data set and some real
disturbance waveforms, respectively.

Key words: Power quality disturbances, fourier transform, wavelet transform, Multi-resolution Signal

Decomposition (MSD), Neural network and Adaptive Neuro-fuzzy Inference System (ANFIS)

INTRODUCTION

Over the last two decades, emphasis on quality of
electricity has attracted more and more attention to
utilities, service sectors and bulk consumers. The concern
of power quality has also deeply founded with users of
modern power electromc equipment like those n
commercial buldings which 1s sensitive to power system
disturbances and/or those generated by itself. Tn order to
monitor and control these disturbances so as to improve
the electric power quality, these disturbances have to be
identified and then analyzed. Therefore, the development
of an automatic power quality monitoring system for the
systematic identification of power system disturbances is
essential and 1s posed to be a big challenge.

Primitively, the momtoring method 15 based on
visual inspection on the disturbance waveform and then
different typical monitoring devices, such as disturbance
analyzers and harmonic analyzers, are developed m the
mdustry. These analyzers usually employ techniques
based on point-by-point comparison of the rms values of
the distorted signal with its corresponding pure signal

and/or transformation of the data into the frequency
domain via Fourier transform. However, the major problem
of the traditional analyzing tools based on Fourier
transform 1s that it will not provide sufficient mformation
on the time domain. For non-stationary disturbances such
as local transient signal, its location on the time axis will
be lost after Fourier transform.

One techmque emerged to overcome the above
mentioned problem is by using wavelet transform whose
strength is on handling signals on short time intervals for
high frequency components and long time intervals for
low frequency components. By means of the strength,
wavelet transform is considered suitable for analyzing
signals  with impulses
particularly for those commonly present m fundamental
and low order harmonics (Chul and Raj, 2000).

On the other hand, the Fourier transform still has its
outstanding and well-proven performance
measurement of the frequency spectrum of signals. In
order to integrate the advantages of both transforms, a
so-called “integrated approach” by wusing both Fourier
and wavelet transforms is proposed in this study. This
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study will also report on work regarding the development
of neural network and adaptive neural-fuzzy classifiers for
detecting and classifying the power system disturbances.

FOURIER AND WAVELET TRANSFORMS

Fourier transform: The Fourier Transform (FT), which
breaks down a signal into constituent sinusoids of
different frequencies, is perhaps the most well-known and
reliable tool in signal analysis for many years.
Mathematically, the FT 1s the sum over all time of signal
x(t) multiplied by a complex exponential as below:

X(@)= T x(t)e ™t dt (1

For a sampled signal, the Discrete Fourier Transform
(DFT) 1s defined as: -

X(K)= 3" x(n) xp( 2T

n=0

(2)

Where x(n) is a sequence of samples from a
continuous time signal x(t) taken every t seconds for N
samples. If the samples are umformly spaced, the Fourier
matrix can be factored into a product of just a few sparse
matrices and the resulting factors can be applied to a
vector in a total of order N log(N) arithmetic operations.
This 1s called Fast Fourier Transform (FFT).

However, the FT was developed based on
assumption that the original time-domain function is
periodic in nature. As a result, when dealing with
functions with transient components that are localized in
time, the FT cannot convey any time information about
the transient components. In recent years, new families of
orthonormal basis functions called “wavelets™ have been
emerged and new transforms have been developed to
overcome the problem of the FT. (Mac, 1992).

Wavelet transform: Wavelet Transform (WT) employs a
basis function called the mother wavelet, usually denoted
by yi(t) which has a zero mean with sharp decays in an
oscillatory fashion and effectively limited duration.
Mathematically, the Contimuous Wavelet Transform
(CWT) of a given signal x(t) 1s generally defined as:-

CWT(a,b):% T x(t)q}(%)dt 3)

Where a 1s the dilation or scale factor, b 1s the
translation factor and both variables are continuous

However, derivation of the CWT is quite time-
consuming and computationally expensive and hence
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Fig. 1: MSD algorithm

ineffective in terms of computation time for deriving its
information content. As an improvement, the Discrete
Wavelet Transform (DWT) is developed by translating
and dilating the mother wavelet discretely. The DWT 1s
implemented by replacing a by a," and b by nb,a,™ in (3)
and applying summation over the sample space as below:

DWT (mm)—%&(k)w(k‘;ﬂfmw
s E

o

4

Where n represents the translation step and m
represents the scaling step and is known as the level
number. If a,=2 and b,=1, then the transform is known as
the dyadic orthonormal wavelet transform (Alexander and
Shaiqg, 1998).

Multi-resolution signal decomposition: By using another
basic function, namely scaling function ¢(t), the dyadic
orthonormal wavelet transform leads to an important
technique  called the  Multi-resolution  Signal
Decomposition (MSD). The MSD technique enables a
signal x(t) to be decomposed into a hierarchical set of
scaling functions ¢, (t) or ¢y(t) with its approximation
coefficients ¢(1) and shifted and dilated version of wavelet
functions 1,,,(t) with its detail coefficients d(3.k) by
decomposing the approximation coefficients at each level
to get further approximation and detailed coefficients
(Fig. 1). Mathematically, the MSD technique can be
described as: -

(0= e, 0+ T Ak, (1

lez j=0kez

(5)

Provided that each scaling and wavelet function shall
have an orthogonal basis as illustrated below :-

p(t)=> a,p2t-k) (6a)

kez

w(H=> (-Da,. ¢2t- k) (6b)

kez
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Fig. 2: MSD by using filter banks

(P(j,k)(t)zz_jucp(z_jt k) jkez

Wiik) (t)= 27 W(Z_jt —k)jkez

>y =1
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Za2k+1 =1

kel
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Where j denotes scale or resolution index, k denotes
translation location index and a, are the scaling
coefficients. Equation & list out the zet of scaling
conditions which must be zatisfied before a set of a, can
be qualified as scaling coefficients (Mac, 1992).

In order to obtain the approximation and detail
coefficients for each basis, we can take an inner product

as given by:-
c)=<q | x >= [=(D@Ddt 9a)
d( k)=<ys, | X >= [y, Belt (©b)
(7a) . .. .
Practically, the MSD is simulated by applying two-
channel filter bank which iz used to approximate the
(7b)  behavior of the wavelet transform. The signal will be
decomposed with a high-pass filter and a low-pass filter
(82) as shown in Fig. 2. The low-frequency component usually
contains most of the frequency of the signal, called the
approximation, while the high-frequency component
(8b) containg the details of the signal. Similarly, we can use
reconsfruction filter banks to reconstruct the discrete-time
signal from the wavelet coefficients.
(8¢)
WAVELET ANALYSIS FOR POWER QUALITY
(&d)

Detection of power quality disturbances: In Power Quality
(PQ) disturbance signals, many disturbances contain
sharp edges, transifions and jumps. As proposed by
many authors, like Gaouda ef ol. (1999) we can use the
MSD technique to discriminate the sharp edges,
transifions and jumps contained in the detailed verzion
from the smoothed wversion such that they can be
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Fig. 3: Six-level MSD of a distorted signal with transient and harmonics
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() Hamnondcs
Fig. 4: Results of applying MSD to different PQ problems

analyzed separately. A typical example, a 6-level MSD of
a distorted =ignal with transient and harmonics, is shown
in Fig. 3. For other different PQ problems, e.g. impulze,
voltage sag, voltage swell, interruption, harmonics and
transient, efc., the results of applying MSD technique are
quite promising as illustratedin Fig. 4.

Measurement of power quality disturbances: In order to
obtain more information of the distorted signals for further
analysis, such as frending analysis and rectification of the
PQ problem, etc., the rms measurement of the distorted
signals are required as defined:-

Vi, = l}\izdt
= AT

According to Parseval’s theorem, if any function x(t)

(10)

can be presented as a series expansion by using a
combination of the scaling functions and wavelets which
form an orthonormal basis as shown in (5). Then

J-1
[1x®F dt=3"|ct) 2 214G K] (1)

iz i

Therefore, the energy of the distorted signal can be
partitioned in terms of the approximation coefficients and
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the detail coefficients at different resolution levels.
{(Gaouda ef al., 1999). Then the rms measurement of the
distorted signal can be derived as follows:-

jf:Zd(j,k)z (12)

i=0 kez

1
Vo= =
IIms T

ol + =
le= T

However, the decompozed waveform after MSD
will provide non-uniform frequency bands that are in
order. Hence, the MSD is not suitable to
measure the values of individual harmonic
components. Although Hamid ef al. (2001) proposed
to use the Wavelet Packet Transform (WPT)
algorithm, which is a direct extension from the MSD
algorithm to a full binary tree by decomposing both
the detail and approximation coefficients to produce
further coefficients, to overcome this limitation, errors still
exist due to the roll-off characteristics of the selected
wavelet.

Unlike the MSD algorithm, the conventional FT
algorithm can decompose the signal into uniform
frequency domain, so that the FT algorithm is suitable to
measure the rms and power of individual harmonic
components. Therefore, a so-called “integrated approach”
using both the DWT and FFT algorithms is proposed in
this study for resolving the problem.

octave
rms
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AUTOMATIC POWER QUALITY
MONITORING SYSTEM

Integrated approach: The so-called “integrated approach”
will first decompose the distorted signal into two signals,
1e., detailed and smoothed/approximated versions, by
using the DWT algorithm. The required time mformation
such as the duration of the disturbance can now be
extracted from the detailed version. The smoothed or
approximated version will then be undergone the FFT
algorithm in order to obtamn the frequency spectrum of the
distorted signal. This integrated approach is illustrated
mn Fig. 5.

An automatic power quality momtoring system 1s
then developed based on the proposed integrated
approach. Although application of wavelet analysis for
recognizing PQ disturbances has been addressed on a
number of cases, like Gaouda efal (1999), Negnevitsky
et al. (2000) and Santoso ef al. (2000a, b) the proposed
automatic power quality monitoring system carries
unique features such as it can be used for both detection
and rms measurement for the PQ disturbances at the same
tiume.

Proposed classification procedures: According to the

mtegrated approach, the proposed classification

procedures are: -
Step 1: The input signal is firstly decomposed into the
Detail coefficients (cD1) and the approximation
coefficients (cAl) by using DWT.

The input signal will be de-noised by applying
threshold on the Detail coefficient (¢D1).
The Approximation (cAl)
transformed to frequency domam by using FFT
after applying Hann window.

Based on the result obtained after using FFT,
the following features can be determined: -

Step 2:

Step 3: coefficients is

Step 4:

| Distroted signal |

£ s

Approximation cAl

Frequency spectrum

Fig. 5. Integrated approach by using both DWT and FFT
algorithms
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Table 1: List of different resolution levels (Sampling firequency = 12800 Hz)

Resolution Wavelet Frequency Central
level coefficients band (Hz) frequency (Hz)
1 cD1 6400-3200 4800
2 cD2 3200-1600 2400
3 cD3 1600-800 1200
4 cD4 800-400 600
5 cD5 400-200 300
3] cD6 200-100 150
7 cAb 100-DC 50

DC compoenent (V)

Change of fundamental component (AV,)
Total Harmonic Distortion ratio (THD)
Change of fundamental Frequency (AF)

Step 5: Based on the time mformation about the
disturbances extracted from the de-noised Detail
coefficients (cD1), we can measure: -

»  Half-cycle rms value before transition (V)

+  Half-cycle rms value after transition (V)

Step 6: By applying MSD, the change of half-cycle
spectrum of the input signal before and after
transition (AP,.) can be obtained and partitioned
at different resolution levels (Table 1). And one
more parameter (AV_), 1.e. the change of error
between the measured rms value in Step 5 and by
MSD technique to encounter the roll-off
characteristics of wavelet, especially at the
boundary frequency e.g., DC, 100, 200 and 400Hz,
etc., will be also determined.

Step 7: The above extracted features will be passed to the
classifiers for the identification of the
disturbance.

One example containing transient, harmonics and
noise to illustrate the principle of using “integrated
approach” 1s shown in Fig. 6.

For Step 3, the accuracy of measuring the actual
fundamental frequency and amplitude of discrete
frequency components is enhanced by usmg Hann
window and performing weighted average calculation

For step 6, the adoption of MSD can achieve half-
cycle decomposition which is the minimum duration of a
voltage sag/swell, reduced number of multiplicative
operations but lower accuracy when comparing with the
similar operation of full-cycle decomposition by using
FFT as proposed in my previous paper published
(Siu and Ngan, 2004).

In thus study, 2 classifiers called adaptive newro-fuzzy
classifier and neural network classifier will be employed to
identafy the nature of the disturbance.
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Fig. 7: Two-input first order Sugeno fuzzy model and the
equivalent ANFIS architecture

Adaptive neuro-fuzzy classifier: Basically, the PQ
disturbances can be divided into two categories, i.e.,
short duration variations and long duration variations.
Referring to the features measured in Step 4, the following
long duration variations can be readily identified
according to the IEEE Std. 1159 (1995).

(if -0.9 pu < AV, < -0.1 pu)
(if 0.1 pu < AV])

¢ Undervoltage
s Overvoltage

*  Qutage/Interruption
s DC offset

+  Harmonics

*  Frequency variation

(if AV, <-0.9 pu)

(if V, > threshold)

(if thd > threshold)

(if abs(AF) > threshold)

Although the simple rule-based classifier can be
constructed to identify the above PQ problems, a more
accurate and flexible classifier, called adaptive neuro-fuzzy
classifier, will be adopted in this study.

The adaptive neuro-fuzzy classifier will use an
Adaptive Neuro-Fuzzy Inference System (ANFIS) based
on Sugeno type system to classify the PQ disturbances as
shown in Fig. 7. ANFIS is a class of adaptive network
functionally equivalent to fuzzy inference system and is
more suited to Sugeno inference system whose output
membership functions are either linear or constant, i.e.
first-order polynomial and whose overall output is
obtained via “weighted average”.

The ANFIS adopting some neuro-adaptive learning
techniques provides a method for the fuzzy modeling
procedure to learn information about a data set, in order
to compute the membership function parameters that best
allow the associated fuzzy inference system to track the
given input/output data. The ANFIS proposed in this
study will use a combination of least square estimation
and back-propagation for membership function parameter
estimation.

In order to classify the short duration variations, the
characteristics of the disturbances are investigated via
measuring and comparing the half-cycle spectrum before
and after the transition of the disturbance by using MSD.
The differences between two measured spectra against
resolution level are plotted in Fig. 8.

For Fig. 8&b-h, the resolution level no. 8 represents
the error, AV _, between the direct measured half rms valus
and by MSD technique as mentioned in Step 6. When
comparing with Fig. 8b and d, the change of spectra
between impulse and transient is quite significantly
different as the change of spectra for transient will contain
high frequency components as shown in resolution
level no. 3 in this example. Similarly, the change of
energy spectra for voltage sag and swell can be
readily identified as shown in Fig. 8 and h. Therefore, 2
Neural Network (NN) classifiers with the same structure
(Fig. 9) are considered to memorize the pattern of the
change of spectra for different short duration variations
in order to implement the automatic PQ monitoring
system.

Both neural network classifiers have 8 input neurons,
ie, AP, and AV, 12 neurons in hidden layer and 2
output neurons, i.e. indicating impulse or transient for one
classifier and sag or swell for another one. With the help
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Fig. 8: Characteristics of short duration variations

of adaptive neuro-fuzzy classifier by incorporating the
half cycle rms values before and after the transition, i.e.

o and V, we can even identify the start and end of the
Voltage sags/swells/interruptions as illustrated m Table 2.

Training and verification: In order to train the neural Fig. 9: Two-layer perceptron neural network classifier
network classifier and adaptive neuro-fuzzy classifier, a

set of simulated disturbance waveforms 1s generated as passed the input features extracted from the generated
proposed by Liao et al. (2000} as listed in Table 3. After waveforms of items (E), (F) and (G) and the corresponding
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Table 2: Classification of Voltage Sag/Swell/Intermuption

Table 4: Results obtained from classifiers

Type of Half-cycle Output of
disturbances rms values NNclassifier
(a) Start of Voltage Sag 0.1 pu<Vrs< 0.9 pu Sag
(B) Start of Voltage Swell 1.1 pu<Vrs< 1.8 pu Swell
(C) Start of Tntermuption Vrs<l 0.1 pu Sag
(D) End of Voltage Sag 0.1 pu<Vrps< 0.9 pu Swell
(E) End of Voltage Swell 1.1 pu<Vrps< 1.8 pu Sag
(F) End of Interruption Vrps< 0.1 pu Swell
Table 3: Simulated waveforms generated for training
No. of waveforms
Simulated
disturbances (%% Noise 0.5% Noise 1% Noise
(A) Overvoltage,
undervoltage and outage 40 40 40
(B) DC offset 12 12 12
(C) Harmonics 21 21 21
(D)) Frequency variation 27 27 27
(E) Tmpulsive transient 40 40 40
(F) Oscillatory transient 160 160 160
(G) Voltage sag, swell
and Interruption 40 40 40
Total 1020
10° 7
Performance iy 0.001657, Goal ig 0
10"
2
-
107
10& T T T L] L] T
0 10 20 30 40 50 &0
64 Epochs
{a) For impulse/transient
10" Performance is 2.11542¢0.14, Goal is 0
10°]
10°4
% 19°
g 104
107
107
10’" T L] L} T T T T T T
0 2 4 6 8 10 12 14 16 18
Stop training 19 Epochs
(b) For sag/swell

Fig. 10: Plot of error of neural network classifiers
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Signal A Signal B
(A) Undervoltage -0.0021 1.0383
(B) Overvoltage -0.0018 -0.0001
(C) Outage -0.0021 -0.0015
(D) DC offset 0 1
(E) Harmonics 1 1
(F) Frequency variation 0 0
Time (5) 0.0259 0.0420 0.0262 0.0942
(&) Impulse 1 1 1 1
(E) Transient 0 0 0 0
(I) Start of Sag 0 0 0.6302 0
(1) Start of Swell 0.9856 0 0 0.0056
(K) Start of Interniption 0 0.0022 -0.0061 0
(L) End of Sag -0.0017 0 0 1.046
(M) End of Swell 0 0.9068 0.0048 0
(N) End of Interruption 0 0 0 0.0002

target outputs to the neural network classifiers, the
training result is plotted in Fig. 10. From Fig. 10, the error
of classifier for impulse and transient dropped to 0.001667
after 64 epochs while the error of classifier for sag/swell
has even dropped to 2.115x10™" after 19 epochs.

At the same time, the extracted input features and the
target outputs for items (A), (B), (C) and (D) and the
outputs of the neural networlk classifier for sag/swell and
the measured half cycle rms values for item (G) are also
used to tran up the adaptive neuro-fuzzy classifiers. After
training, the performance of the tramned adaptive neuro-
fuzzy classifiers, 1.e., surface plots of ANFIS, 13 shown in
Fig. 11 for different type of PQ disturbances.

For verifying the performance of the classifiers m real
situation, I have downloaded the test waveforms
published by TEEE 1159.2 Working Group. Two sampled
waveforms containing voltage swell and voltage sag are
presented as shown in Fig. 12. The results obtained from
the classifiers are listed in Table 4.

For Signal A, the start of voltage swell was
recogmnized at time = 0.0259s while the end of voltage swell
was recognized at time = 0.0420s. Hence, the duration of
the voltage swell was about 0.0420s-0.0259s = 0.0161s.
Impulses and harmomics were also identified. The
indication of containing harmonics may be due to the
highly distorted waveform. As a result, the Signal A was
identified containing harmonics, impulses and voltage
swell which generally matched the actual observation.
Signal B, the start of voltage sag was
recognized at time = 0.0262s the end of
voltage sag was recognized at time = 0.0942s. Hence,
the duration of the voltage sag was about 0.09423-0.0262s
= 0.0680s and the overall voltage was also reduced
such that undervoltage was 1dentified. Similarly,
impulses and harmomcs were also recogmzed. The
indication of containing DC component may be due
to the highly non-symmetrical of the
signal. As a result, the Signal B was identified contamning

For
while

wav eform
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Fig. 11: Surface plots of trained ANFIS
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Fig. 12: Two sampled signals contaimng voltage swell and sag

undervoltage, DC offset, harmonics, impulses and voltage
sags that generally matched the actual observation.

As revealed in Table 4, all the voltage sag and swell
mcluding the start time and end time could be recognized
accordingly. The impulses, harmonics and dc offset could
be identified as expected. Hence, the overall performance
of the trained neural network classifiers and adaptive
satisfactory and

neuro-fuzzy classifiers quite

promising.

was

FUTURE WORK

By using integrated approach, the rms measurement
of voltage is readily available. After passing through the
classifiers, the characteristics of the power quality
disturbances can be easily extracted. Tust by applying
FFT on current waveform, the rms measurement of current
and the cormresponding power measurement can be also
obtained. Hence, an effective power quality monitoring
database, which will comnsist of the rms and power
measurements of both voltage and current and the
of the
detected, can be set up to momtor the power quality
condition such that we can implement predictive

characteristics power quality disturbances

maintenance and energy management of electrical system
in future.

CONCLUSION

In short, an automatic power quality monitoring
system is developed by using the proposed integrated
approach, 1.e. by using DWT and FFT. This system can
perform  both the extraction of the required time
information and the rms measurement of the distorted

signal. Two classifiers, namely adaptive neural-fuzzy
classifier and neural network classifier, are suggested
and trammed by a set of sunulated disturbance
waveforms. Their performance 13 then verfied via
some real disturbance waveforms. Although the test
results of the proposed automatic power quality
monitoring system are quite promising, the real-life

power quality disturbance data will not be as simple

as those simulated waveforms and the size of
sampled waveforms is hard to be sufficiently large.
Therefore, further adjustment and modification is

required before this proposed automatic power quality
momitoring system can be applied m real-hfe situation.
In future, the system can be adjusted and modified
real disturbance
waveforms in order to increase its accuracy. Software

by gathermg more and more

to analyze and keep track of the power quality
monitoring  database can be developed such that
practical applications like predictive maintenance and
energy management of electrical system can be carried

out in future.
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