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On the Prediction of Stable Equilibrium State of Linear
Time-Invariant Multivariable Systems
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Abstract: A general representation for a class of linear time-mvariant multivariable systems with intercormected
scalar feedback loops was presented. The procedure was contrasted with the methods due to Liapunov, which
predicted stability of equilibrium position directly without the explicit form of solution.
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INTRODUCTION

The problems of stability in dynamical systems
have been addressed largely in the existing literature
(Liking, 1967, Wallker, 1970), for example, many modern
rotor systems are operated at high speeds and
consequently several bending modes are excited. When
the speed of the rotor system exceeds its critical value
safe and reliable operational conditions can no longer be
guaranteed. In the analysis of complex interconnected
systems, overall stability is one of the most important
considerations. A modemn electric power plant, for
example, 1s a complex multivariable feedback system with
voltage- and frequency-dependent loads m which the
prime objective is essentially the matching of generation
to load demand. The plant generally operates under
conditions of unsteady load. Both active and reactive
power demands change continuously with rising or falling
trend. When the load on the system is increased, the
turbine speed drops thereby causing the governor to
adjust the steam supply to turbo-generators or water jet
supply to hydro-generators to the new load. As the
change in the wvalue of the speed diminishes, the
generated error signal, which is transformed through an
amplifier to the steam valve position command becomes
smaller and the position of the govemnor flyballs gets
closer (Weedy and Corby, 1970) to the point required to
maintain a constant speed thereby creating an offset
which must be overcome to restore the speed or
frequency to its nominal value. It has been shown that
turbine governors can be used to adjust power wput to
electricity generating plants in response to frequency
deviation from the pre-set values. This is the only type of
control required in isclated systems. Stability of electric
power systems is concerned with characteristic behaviour
of synchronous machines due to presence of disturbing

forces; it 1s the ability of the machines to remain in
operating equilibrium or m synchromsm as long as
disturbances last. In stable operations, the system
develops restoring forces large enough to maintain state
of equilibrium. If the forces tending to hold the machines
1n synchronism with one another are sufficient enough to
overcome the disturbing forces, the system is said to be
stable.

This study examines the stability of the equilibrium
state of linear multivariable feedback systems in a typical
plant operation and establishes criteria for stability of the
system using both the explicit method and direct methods
due to Liapunov.

THE DYNAMIC SYSTEM

The problem considered m this study 1s a linear
time-invariant multivariable system, which by virtue
of its generic natwe finds ready application to
modern power plants and smilar multi-machine
interconnections. The system is described mathematically
as follows:

x (1) = Ax () + Bu(t) (1)

yO=Cx () (2)

Where A ¢ R¥ B ¢ R" and C € R™ u (t) € R™ is the
nput, x (t) € R" 1s the state and y (t) € R? the output. The
system is denoted by (A, B, C) since they are completely
determined by the matrices A, B and C. The zero-state
input-output properties of this system are completely
defined by its transfer function matrix H (s) specified as
follows:

H(s) A C(sI-A)'B (3)
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where H (s) ¢ R¥™ whose elements are strictly proper
rational functions in s. The problem 1s generally to find a
triple (A, B, C) such that H (s) = C (3T - A) Band A are of
least possible size and for any given ¢>m rational matrix
H,(s), to obtain a state feedback law

ut) = Gv (1) +Fx (1), G e R™™ and F ¢ R™ )
and an output feedback law
u(t) =Gv (1 + Ky (1), § e R" and K € R™ (3)

such that the overall system transfer function matrix
C (I -A-BF)'BG for the state feedback case and
C (s - A - BKC)™ BG for the output case, is exactly
equal to the given rational matrix H, (s). This is basic in
the design of multivariable feedback systems. The
fundamental problem is to explore the analysis of linear
multivariable feedback systems and establish sufficient
conditions for stability of the systems. The approach was
to describe the system by an interconnection of scalar
blocks with mnputs u,, ..., u, and outputs vy, ..., V.
defined mathematically as follows:

Y (s)=g(s)vi(s), i=1l...m
v.(s)= 3k E(s) i=1l..m
1=1
E(s)=u(s)-y(s).i=1....m (6)
Where v, and ¢ are auxiliary variables, i =1, .., m. k.

1=1, .., m are constants and g; (s), 1 = 1, ..., m are strictly
proper rational transfer functions. To exclude trivial loops,
we require no g; (s) = 0 identically, 1= 1, ..., m. A block
diagram representation of (6) 15 shown in Fig. 1.

A stable variable realization of this system 1s easily

cbtainable. For matrices A, b, and ¢, i =1, ..., m, we
consider the following:
Let
—=AX +byv
T )
y,=¢', i=1,..,m
Zkey
' g + v; Yi
— K —» () >

Fig. 1. A block diagram representation of E, (s) = u, (s) -
yi(s),i=1,...,m
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be a minimal realization of g; (), 1=1, ..., m. Then
dX m m
L=S"AS8. -bk ¢+ >bk u
dt j21(11] 11]1)1_;11]] (8)
y,=¢'X,i=1,..,m
1s mimmal realisation of (6)
Where &,=1 if 1=]
=0 if 1#]
CONCEPT OF STABILITY
If %, x;, ..., %, represent n coordinates in an n-

dimensional state space X and t the tume, the behaviour of
the system described by (1) and (2) is as follows:

&)

or if x; and f are the elements of the column vectors x and
f, by the vector differential equation

& _pix1) (10)

dt

If a solution exists in some neighbourhood of a given
initial condition (x,, t,) where x, € 3, t £ (—o0, o) then it is
denoted by x (t; x,, t). In the analysis of complex
multivariable systems overall stability 1s one of the most
important considerations. The equilibrium x = 0 of the
model (1 and 2) 1s stable if for every real E=0 and t, there
exits a real O(E, t,)=0 such that
(11)

HXOH <& —)”X(t, X, )| <E

Forallt > t, (Obinabo, 1996). The system can be seen
to satisfy these conditions globally since

) (12)

t,x .t

?*To? o

. = 20— [x( = I
forall x, > t,

The equilibrium x = 0 of the system 1s attractive if
for some p=>0 and for every n=0 there exists a number

T(m, x,, t,) such that

[x(tx.t.)

forall (t-t,) > T and forall |jxo|| < p.

The equilibrium x = 0 of the system is asymptotically
stable if it 18 both stable and attractive. In this study, for
any given E < 0 and t,, there exists a constant 8(E, t,) such
that

(13)

tx,.t,

=M
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Hx(t; xu,tu)||<E (14
For all x| <5 and Lt fx(t; x.,t,)} = 0

Theorem 1: The closed-loop system represented by (1)
and (2) is stable if and only if all the zeros of

d ‘{ B, +k }
€ ij
g.(s)

have negative real parts. This result is valid if g (s) is

proper and
det| 8, + g (0)k, | # 0

Proof: Let A(s) and A/(s) denote the characteristic
polynomials of the closed and open loop systems,
respectively. Then

A (s)=A (s)det [BU +g (s)ku]
8

—A, (s)ﬁg)(s)de‘{ AN k”} 1

g.(s

But the zeros of A (s) are the same as the poles of
Ig(s) and the zeros of Ilg(s) are the same as the poles of

de‘{ S, + ku}
g.(s)

Hence, due to cancellations, the zeros of A(s) are the
same as the zeros of

de{ %, + ku}
g.(s)

Thus the closed-loop system is stable if and only if its
zeros all have negative real parts.

Theorem 2: Suppose ¢, < P, and

1+Pg(s)
1+ag (s)

1s positive real for1=1, ..., m. The closed-loop system 1s
stable if (@) there exists multipliers p=0, 1= 1, .., m such
that the matrix | A; | 1s positive definite where,

ho=p (B -k )k, —a)- Z‘;plkp’
A =N, = %{p‘ku [~k (k, - cc‘)}} + e
pk, [(B, k) (k, o )} ~Spk.k,

1wi

fori # j. (b) The closed-loop system is stable if for some
0z0 <,

Bk, > > |ok,+(1-8)k|

amn
k, —o, > Z\ek” +(1- e)kp\

fori=1, .., m.

Proof: After appropriate scalar transformations to
each loop of (1) and (2) it can be shown that the zeros of

de‘{ B, +k‘l
g.(s)

are the same as the zeros of

det| p, M 5,3“‘9,1"(,3
1+Bg.(s)

Where

s L1=L...m
are the unique solutions of

i(Bﬁu Kk, =k, —as izl m  (8)

-1

Now suppose there 1s § with Re(3) > 0 such that.
e .

det| p, {Jr o8 (F:)
8

Thus the matrix

1s singular and there 1s non-zero (z, ..., z,,), with z complex
such that

P, “} 7 = 7ipjf<u, i=1,..,m (20)
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Fig. 2. Electric power system with minor and major
feedbacks loops

Fig. 3: The system 13 reduced to an equivalent
representation
Consequently,
Sol el e g, @)
-1 ! 1+ B.g.(g) i1 -l T
It can be shown that
ZZZpJf(nzj =>>Zhz =0 (22)
Where z, 1= 1, ..., m are the unique solutions of
4=3(BS,-k,)z.i=1 ..m (23)
Thus
T+ g (g) 2 24
P, ————||lz| <0 (24)
Z {1+ Bg (s)}| |
and hence for some j
Re 1+Bg, (SA) -0 (25)
1+ag(8)

a contradiction.
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Proof:
Since

1+Bg.(s)
1+ag (s)

>0 (26)

Re{ }

If Re{s}>01=1, ..., m, the inequalities can be seen to
guarantee that

(27)

6, +(1-0)k \

i

> 2

1
—+k
g(s) 7

(28)

Example: Consider a two-input, two-output sub-umit
interconnection of two generators of an electric power
system with minor and major feedbacks loops in Fig. 2.

For ease of application of the above theorem the
system 1s reduced to an equivalent representation as in
Fig. 3.

We observe that the sub-unit with the feedback
loops is of the form shown in (1), with

(28)

k= k= -4k, = -4k, = 4,
Using the theorem, the closed loop is stable if
AM=-1,4,>-1

(1)1 > S+

and

Also with

-1
2

the closed-loop is stable with

A+ A
2

2

min{l+ A, 1+ 4} >

or,wi‘[hB:l,if—l<}\.l,—l<h2
2 2
The concept due to Liapunov is embodied in the

reasoning that if the rate of change

dE(x)
dt

of the energy E(x) of a physical system 1s negative for
every possible state x except for a single equilibrium state
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X,, then the energy will continually decrease until it finally
assumes its minimum value E(x,). The function E(x) 1s said
to be a Liapunov function in the region R the state space
provided that:

It 18 positive-definite in R.

Its time derivative with respect to the system (1) and
(2) is continuous and negative semi-definite in R. The
function E(x, t) 1s said to be a Liapunov function in
the region ¢ of the solution space (¥, x, t) provided
that

It is positive-definite in ¢
Its time derivative with respect to the system
w0k on

it Sox, o

1s continuous and negative semi-defimte in ¢.

If the Liapunov function E(x, t) with continuous first
partial derivatives satisfies the following conditions

E(0, t)=0forallt

E(x, t)y>0forallx # Oand for all t.
E(Ot)=0forallt

E(x, t)<0Oforallx # O and forall t
BE(x,t) = «as |[x| » forall t.

then the origin 1s globally asymptotically stable. These
conditions have been established (Obinabo, 1996) for
the equilibrium condition of material flow in won-ore
pelletisation process and satisfy the general problem
description (1) and (2) thereby confirming the Liapunov
property for the multivariable feedback system.
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CONCLUSION

A sufficient and valid condition for multivariable
feedback systems to be stable has been established. The
stability condition of a continuous-time composite system
have been given in terms of constants characterizing the
sub-systems and their interconnection (Bailey, 1966). An
application of the vector Liapunov function method
assumed that for all isolated subsystems there exist
Liapunov functions of second order and that the
interconnecting relations are linear and time-invariant
(Thompson, 1970). The application gives a sufficient
condition for asymptotic stability in the large as a
set of defined inequalities. The results established in
this study can be compared with conditions for
stability of multivariable systems reported in the existing
literature.
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