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Vibratory Phenomena of Magnetic Origin in Electrical Machines:
Study and Modeling Using FEM Techniques
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Abstract: This study presents a theoretical study of the coupled magneto-elastic phenomena, with a view to
modeling the vibratory behavior of squirrel cage asynchronous machine. A coupled model 15 developed to
calculate the mechanical deformations of this machine in magnetic field. The two equations governing magnetic
and mechanical phenomena are solved using finite element method. The magnetic force distribution is
calculated through a local application of virtual work principle. A spectral analysis of this force made it possible
to determine the dynamic response of the stator for each harmonic force. This response has been calculated
only after a modal analysis which could determine the resonance frequencies and its proper associated modes.
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INTRODUCTION

The electrical machine behaviour in generating
vibrations and noise 13 determined by the electromagnetic
field in the airgap and the mechanical structure of the
machine. The link between the magnetic and the
mechanical analysis is the electromagnetic force exerted
by the magnetic field on stator and rotor. To predict stator
deformations caused by magnetic field distributions
occurring during operatior, a local force formulation is
needed. The magnetic field as well as the force
distributions are considered not influenced by the
deformation.

MAGNETO-MECHANICAL SYSTEM

Magnetic field calculation: In this study, the magnetic
field is calculated using the finite element method,
together with the time stepping scheme. According to
Maxwell’s equation, the governing equation is expressed
mn terms of magnetic vector potential A. The vanational
formulation 1s obtained by solving the following equation:
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Where 1 1s the magnetic permeability, J is the current
density. Solving Eq. 1 by finite element discretization
leads to the following algebraic system:

[M][A]=[7] 2

Where [M] represents the magnetic stiffness matrix

and [T] the source vector.

Magnetic force calculation: The calculation of the local
force distribution in the electrical machine is a most
important step for analysing its mechanical behaviour.

The magnetic force computation method is based
on a local application of virtual work principle (Ferkha,
2004; Belahcen, 2000; Benhama et a., 2000). This nodal
force has been calculated on each node, using the
following equation:

A
F:—I[A]TMdA (3)
0 Js
For a given element, the magnetic stiffness matrix is
Y
[Mij]:E[blbj+Cicj] h

Derivation and integration are made at the element
level. The derivatives of the stiffness matrix with respect
to the x and y coordmates of the nodes of the element are

arMe G -G
[ ]:L c, Zc, C,~C, |-
0x, 4A 5
-¢  ©c;—¢, -2¢; (5)
b ey M1 0w
2A v 0%,
—2c ¢, ¢ -—c,|
6[ME]_L ) 1 02 1C 3 )
ax, 4A : :
z ¢,-¢ ¢ 2¢, (6)
b M*®] &
by pygep M0V
ZA v 0x,

Corresponding Author: Nassira Ferkha, L.aboratoire LAMEL, Université de Jijel -BP 98, Ouled Aissa-18000 Jijel, Algérie

314



Int. J. Elec. Power Eng., I (3): 314-320, 2007

2¢,  €;—C G

GéM ]:ﬁ ¢,—C,  —2C, —C;|—
s c, -, 0 (M
Do pygep M9y
2ZA v o 0x,
.- 0  -b, b,
6[) ]:ﬁ “b, —2b, —b,th,
% b, —bb, 2b, ®)
O e MOV
2A v ay,
E 2b, b, by=b,
oM ]7 v b 0 b
3 Y :
Y2 b-b, -b, -2b, €)
S ppgep MOV
2ZA v dy,
E —2b,  b-b, -b,
oM ]* ' 17b2 sz b3 B
T (10)
S e MOV
2A v ay,
Where
b = vy (11)
G = XX, (12)

Here x;, v; 1 = 1,2,3 are the coordinates of the nodes i
of the element and the index i,j and k are circular indices
1,2, 3,1, 2, 3 etc. Ais the element area.

The mtegral m Eq. 3 i1s gomg achieve using the
coordinate transformation A = A, tand A = A, dt.

From the point of view of vibration analysis, it is
umportant to know the spatial distribution and the time
dependence of the force. For this purpose, the force is
developed mte a two dimensional Fourier series. In our
case, we have study the effect of the spatial harmonic on
the vibratory behaviour of the stator.

Vibration calculation: The vibration computation is
based on the use of the mode summation method where
the dynamic Eq. 13 13 solved m the space of eigen
vectors (Belahcen, 2000; Ren et af., 1995). Thus approach,

associated to the use of the FEM, assumes the
knowledge of the force distribution and
advantageously determine the response at different
pomts of the structure mesh.

it can

[M] [d] +[C][d] + [K] [d]=[F] (13)

[M], [C] and [K] are, respectively mass, damper
and stiffness matrix of the structure, [d] is
displacement vector.

Determination of resonant frequencies and modes: In the
case of the studied machine, the stator 1s considered to be
a free structure and the damper is considered to be
negligible (Ferkha, 2004; Ren ef al., 1995) therefore the
equation of movement becomes:

[M] [d]+[K] [d] =[F] (14)

To determme the vector of the displacements [d] to
the nceuds of the stator, it is necessary to determine its
matrix of mass and its matrix of rigidity then, its resonance
frequencies and their proper associated modes.

(M= 3[BT [ML.[B] (15)
K= [BI] K] [B] (16)

[FI= 3 [BI"[F) (a7

[M], = j p IN]"[N] v, (18)
[K], = [ [N]"[DJ*[H][D][N] dV, 19)

[M], and [K], are, respectively mass and stiffness matrix of
an element, [F], 1s magnetic forces vector applied on an
element, [B], is the matrix of localization of every element
[N] are the shape functions and p is the mass density.
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A and i are the Tame coefficients
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In this study the calculation of the resonance
frequencies and their proper associated modes is
going to be done from the Eq. 20. This frequency equation
1s derived as a function of parameters which describe the
stator’s geometry, material composition and elastic
properties.

(K] - of [MD[X,]=0 (20)

1 i

Where f = w, / 2n are the natural (resonance)
frequencies and [X] 1s the vector of proper modes.

Determination of the vibratory response: The vibratory
response of the structure (stator), for each harmonic
force, 1s equal to a linear combmation of associated mode
shapes as follows (Ferkha, 2004).

[d]:_NZT m X, D

Where 1, are the modal coordinates associated to
each mode.

Since we remain in the linear domain during the
answer, only changes the amplitude of the mode during
the time. We can write therefore:

[A0]=3 O X, (22)
)= 4 X, (23)

As using this decomposition the general equation to
solve becomes
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In premultipliant the equation above by XJT and while
using the relations of orthogonally between modes
(Ferkha, 2004) we gets a set of equations so-called normal
equations. The system of the modal equations of the
movement amounts to NT wuncoupled differential

equations, either:

[mIn+[KI1 = o7 [F] =10 (25)
o=[X, %X, X, ... X, ] (26)
I mn, (1) ]
n, (0
n=| n, @7)
[ Myr (82 ]
Where
¢ : Modal matrix of which its components are the
proper mode of the system,
1 Vector of the modal coordates,
[m]: Diagonal matrix (NT'NT) of the generalized masses,
[k] : Diagonal matrix (NT NT) of generalized rigidities,
f(t) : Vector of the modal forces,
NT: No. of degrees of freedom (ddl) of the structure.

We solved the Hqg. 25 in the harmonic regime. The
considered harmomic and the dynamic response on
the space of the eigenmode, are expressed, respectively
as following:

F(t)=F,e'" (28)

n, 0=y (29)

Where I, and vy, are, respectively, the amplitudes of
the considered harmonic and the considered mode.

In this case, the equation of movement for every mode
can be written as:
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—aly,+aly, - (30)
mJ

Where w and w; are the pulsations of the considered
harmonic and the considered mode, respectively. Finally,
we lead to the following expression:

3D

The answer of the structure, in term of displacements,
in each node is then:

d(t):(pyeJ“=ZijjeJ°°l (32)

1
RESULTS AND DISUSSION

The elaborated model has been applied for the
modeling of the vibratory behavior of the squirrel cage
asynchronous machine presented in the Fig. 1 (Saitz,
2001). The main parameters of the studied motors are
summarized in Table 1.

The present model is applied to a 2D magnetic field
and an elastic problem (Tang ef al., 2006). In this study,
the deformations are small and they can not affect the
machines, only one pole of the motor can be modelled
magnetic field distribution. According to the symmetry
(periodicity or anti-periodicity) presented in the electrical
with adequate boundary conditions. Figure 2 shows the
meshes used for magnetic and elastic field problems.

In Fig. 3-5 we have presented respectively the
evolutions of the magnetic vector potential and the
magnetic force, according to the time, in a point of the
stator. We remark that the frequency of the magnetic force
is the double of the frequency of the vector potential.

The Fig. 6, shows the spatio-temporal evolution of
the magnetic force acting on the stator. While considering
the spatial distribution of this force, we can remark that it
is not uniformly distributed. In another manner, the
variation of this force according to the mechanical angle

Table 1: Main parameters of the studied motors

No. of phases 3
No. of pairs of poles 2
Outer diameter of the stator [mm] 310
Air gap diameter [mm] 199
Core length [mm] 249
No. of stator slots 36
No. of rotor slots 28
Connection Star
Rated current [A] 50
Electric frequency [Hz] 50
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Fig. 1: Structure of the studied machine
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Fig. 2: Mesh of magnetic problem
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Fig. 3: Evolutions of the magnetic vector potential
according to the time

is not uniform, because of the presence of the slots. It
puts in evidence that, to study the vibratory behavior of
the machine, it is necessary to do a spectral analysis of
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Fig. 4: Evolutions of the component following x of the
magnetic force according to the time
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Fig. 5: Evolutions of the component following y of the
magnetic force according to the time
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Fig. 6: Spatio-temporal evolution of the magnetic force

the magnetic force that is rich in harmonic. Figure 7 and 8
shows the spectral decompositions of this force.

The natural frequencies corresponding to the six first
modes of the stator that are gotten from the mechanical
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Fig 7: Spectra of the component following x of the
magnetic force
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Fig. 8: Spectra of the component following v of the
magnetic force

Table 2. Natura frequencies of the stator
Propre modes

Matural frequencies [Hz]
163870
177370
219920
307230
310410
437440

[

calculation code, are recapitulated in Table 2. These
frequencies have very high values and very far from those
corresponding to the first harmonics. What diminishes the
risk of a resonance. It iz for this reason that, we always
search to make increase the natural frequencies of the
electrical machines.

The dynamic answers (displacement) of the stator for
the three first harmonics, gotten from the mechanical
calculation code, are presented in Fig. 9-11.

From these result we can note that, the gotten
displacements, for the different harmonic, are the
same order of highness. Besides, we remark that
below the resonance, the displacement is proportional to
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Fig. 9 Dynamic answer of the stator for the first harmonic,
gotten from the mechanical calculation code
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Fig. 10: Dynamic answer of the stator for the second
harmonic, gotten from the mechamical calculation
code
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Fig. 11: Dynamic answer of the stator for the third
harmonic, gotten from the mechamical calculation
code

the frequency, while it 1s inversely proportional in over of
this resonance. It can be justified, by the influence of the
frequency on the dynamic resistance of the stator, that is
given by this matrix: [KD]= [K] - 0’ [M].
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Fig. 12: Acceleration in a point of the stator for the first
harmonic, gotten from the mechanical calculation
code
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Fig. 13: Acceleration in a point of the stator for the
second harmonic, gotten from the mechanical
calculation code
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Fig. 14: Acceleration in a point of the stator for the third
harmonic, gotten from the mechanical calculation
code

The accelerations are gotten from the seconds
derivatives of the displacements as following:
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[d]=- e’ [d]

Figure 12-14 shows the accelerations gotten in the
same precedent point of the stator.

CONCLUSION

In this research, we mtroduced 1n a calculation code
of the magnetic field, based m a 2D fimte element method,
a modulus which allows the determination of the local
magnetic force distribution, to calculate the resulting
mechanical deformations. This response has been
calculated only after a modal analysis which could
determine the resonance frequencies and its proper
assoclated modes.
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