MedWe]l International Journal of Electrical and Power Engmeering 1 (2): 231-238, 2007

Onllne

© Medwell Journals, 2007
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Abstract: This study presents an approach which is based on the use of supervised feed forward neural
network, namely Multilayer Perceptron (MLP) neural network and Fimte Element Method (FEM) to solve the
inverse problem of parameters identification. The approach is used to identify unknown parameters of

ferromagnetic materials. The methodology used in this study consists in the simulation of a large number of
parameters in a material under test, using the Finite Element Method (FEM). Both variations in relative magnetic
permeability and electrical conductivity of the material under test are considered. Then, the obtained results
are used to generate a set of vectors for the training of MLP neural network. Finally, the obtained neural

network 1s used to evaluate a group of new materials, simulated by the FEM, but not belonging to the original
dataset. Noisy data, added to the probe measurements is used to enhance the robustness of the method. The
reached results demonstrate the efficiency of the proposed approach and encourage future works on this

subject.
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INTRODUCTION

An important problem in the -electromagnetic
parameters identification is inverse problem, wherein the
electromagnetic parameters such as the relative magnetic
permeability or electrical conductivity are determined
using the information contamned in the measurement.
Determining the magnetic induction signal given a set of
electromagnetic parameters 1s the forward problem.

Inverse problems in electromagnetic are usually
formulated and solved as optimization problems, so
iterative methods are commonly used approaches to solve
this kind of problems (Ramuhalli, 2002). These methods
involve solving well behaved forward problem in a
feedback loop. The numerical models such as FEM are
used to represent the forward process. However, iterative
methods using the numerical based forward models are
computationally expensive. Recently, Artificial Neural
Networks (ANNs) are introduced to solve the inverse
problems in most of the research applications in industrial
nondestructive testing, mathematical modeling, medical
diagnostics and detection of earthquakes (Coccorese
et al., 1994; Hoole, 1993; Ramuhalli et al., 2005; Wong and
Nikravesh, 2001; Fanni and Montisci, 2003).

Electromagnetic mverse problems can sometimes be
stated as simply as the following: if there is an
electromagnetic device, 1t is easy to calculate the magnetic
induction in any region of the device. What, about taking
some values of magnetic induction to predict physical

parameters in a region of the electromagnetic device.
Since, the inverse problem is highly nonlinear and without
formulations to follow, it 18 very difficult to construct an
effective inversion algorithm. An ANN, however, has the
following properties: Nonlinearity, mput-output mapping,
fault tolerance and most important, learning from
examples.

ANNSs consist of a large number of simple processing
elements called neurons or nodes. Each neuron is
connected to other neurons by means of directed links,
each with an associated weight (Haykin, 1999). The
weights represent information being used by the network
to solve a problem. The ANN essentially determines the
relationship between input and output by looking at
examples of many mput-output pawrs. In learning
processes, the actual output of the ANN is compared to
the desired output. Changes are made by modifying the
connection weights of the network to produce a closer
match. The procedure iterates until the error 1s small
enough (Turchenko, 2004).

In this study we present a new method for the robust
estimation of electromagnetic parameters. The method is
based on the use of FEM and ANN scheme. The network
is trained by a large number of parameters in a metallic
wall simulated using the FEM. The obtained results are
then used to generate the training vectors for ANN. The
trained network 1s used to identify new electromagnetic
parameters in the metallic wall, which not belong to the
original dataset. The network weights can be embedded
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in an electronic device and used to identify parameters in
real pieces, with similar characteristics to those of the
simulated ones.

For the methodology presented here, the measured
values are mdependent of the relative motion between the
probe and the material under test. In other words, the
movement is necessary only to change the position of the
probes, to acquire the field’s values, which are necessary
for the identification of new parameters. The kands of
parameter we have investigated are relative magnetic
permeability and electrical conductivity of the material
under test. For the purpose of the study, the data set was
generated considering 20 variations in the relative
magnetic permeability and 15 variations in the electrical
conductivity, performing at least 300 finite elements
simulations.

NEURAL NETWORKS ARCHITECTURE

ANNSs are parallel distributed information processing
models that can recognize highly complex patterns within
available data. An ANN is an information processing
system that has certain performance characteristics in
common with biological neural networks and therefore,
each network 1s a collection of neurons that are arranged
in specific formations. The basic elements of neural
network comprise neurons and their connection strengths
(weights). One of the attractive features of ANNs 1s their
capability to adapt themselves to special environmental
conditions by changing their connection strengths or
structure. Years of studies have shown that ANNs exhibit
a suprising number of the brain's characteristics. For
example, they learn from experience, generalize from
previous examples and abstract essential characteristics
from inputs containing irrelevant data. In this study we
choose the back-propagation method to demonstrate the
potential of ANNs to solve electromagnetic inverse
problems of defects identifications (Alcantara et al., 2002).

One of the most influential developments in ANN
was the mvention of the back-propagation algorithm,
which 1s a systematic method for traimmng multilayer ANNs
(Jain et al., 1996). The standard bacl-propagation learning
algorithm for feed-forward networks aims to minimize the
mean squared error defined over a set of training data. In
feed-forward ANNs neurons are arranged m a feed-
forward manner, so each neuron may receive an input
from the external environment or from the neurons in the
former layer, but no feedback 15 formed. The network
architecture for a feed forward network consists of layers
of processing nodes. The network always has an input
layer, an output layer and at least one hidden layer. There
15 o theoretical limit on the number of hidden layers but
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Fig. 1: Feed forward neural network

typically there will be one or two. In our case, there is only
one hidden layer. Every neuwron m each layer of the
network is connected to every neuron in the adjacent
forward layer. A neuron's activity is modeled as a function
of the sum of its weighted mputs, where the function 1s
called the activation function, which is typically nonlinear,
thus giving the network nonlinear decision capability.
Each layer 1s fully comnected to the succeeding layer.
The arrows indicate flow of information (Fig.1)
(Mehrotra et al., 1997, Cherubini et al., 2005).

Where n, 18 the number of neurons m the mput layer,
1y 18 the number of newrons m the hidden layer, n, 13 the
number of neurons in the output layer, x; are the inputs to
the input layer where, 1 = 1, ..., n, ¥, is the value of the
hidden layer where k = 1, .., n,, z, is the value of the
output layer where m = 1,.., n, . W, 1s the weight
comnecting the [/ th neuron in the nput layer to k£ th
neuron i the hidden layer W, and is the weight
connecting the k th neuron in the hidden layer to the m th
neuron in the output layer. The nodes of the hidden and
output layer are:

(1)

And

(2)

=1,... o

Where the activation function 1s traditionally the
Sigmoid function but can be any differentiable function.
The Sigmoid function 1s defined as:

1
(1+e™)

f(x)= (3)

This activation function is depicted in Fig. 2.
The back-propagation method is based on finding the
outputs at the last (output) layer of the network and
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Fig. 2: Sigmoid activation function

calculating the errors or differences between the desired
outputs and the current outputs. When the outputs are
different from the desired outputs, corrections are made in
the weights, in proportion to the error.

Awl =y f'(z Wz —d_) (“4)

where d, represent the deswred output k=1,..n,,
m=1,..,n, and

£xy= A 5
ox
If 1s the Sigmoid function and
TR _ 6
f'(x) ooy f(x)(1 - F(x)) )]

The update rule for the weights from the hidden layer
to the output layer is

[2]

kminew) —

[2]
km

(7)

w Wﬁ(ma) +nAw
where k =1,..., ng, m = 1,..., nyand * is the learning rate.
The update rule for the weights from the input layer to the
hidden layer 18

Awl = xf (v )Y Wi (2, )z, - d,) (8)
m=1
ngi](nsw) = W1[11<](n1d) +n AWH(] @)

where 1=1,...,n, k=1,..,ny.

233

ELECTROMAGNETIC FIELD COMPUTATION

In this study, the magnetic field is calculated using
the FEM. This method is based on the magnetic vector
potential A representation of the magnetic field (Chari and
Salon, 2000). The calculations are performed in two steps.
First, the magnetic field intensity 1s calculated by solving
the system of equations:

rot(E)——g—? (10
rot(H)=1 an
div(B)=0 (12)

where A and E are the magnetic and electric field,
respectively, B the magnetic induction and J the electric
current density. This system of equations is coupled with
relations associated to material property, material being
assumed to be isotropic:

B =u{|H|)H (13)

I=6E (14

where p 1s the magnetic permeability, * 13 the electrical
conductivity.
The magnetic vector potential 4 1s expressed by

B =rot(A) (135)

The electromagnetic field analysis for a cartesian
system is carried out by the FEM (Silvester and Ferrari,
1996). The equation of the electromagnetic field 1s
expressed by A4 as

{ 1
rot

—rotAJ
K

where I, 13 the vector of supply current
Equation 16 1s discretized using the Galerkin FEM,
which leads to the following algebraic matrix equation

(16)

oA
+0—=1
ot

H

([K]+jelc])[A]=[F] an

With:
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Fig. 3: Arrangement for the measurements

A= 0 (X Y)A, (18)
+ ., 1s the nterpolation function.
K= J‘J.lgradcc1 grada,; dxdy (19
oM
C,= HG oo, dxdy (20
€
(21)

E :j.j.]scc1 dxdy
9]

+ . 15 the projection function.

In the second step, the field solution 1s used to
calculate the magnetic induction B. More details about the
finite element theory can be found in Silvester and Ferrari
(1996).

METHODOLOGY FOR PARAMETERS
IDENTIFICATION

First of all, an electromagnetic device was 1dealized to
be used as an electromagnetic field exciter (Fig. 3). In this
study, we have considered direct current in the coils. To
mcrease the sensitivity of the electromagnetic device a
magnetic core with a high permeability 1s used and the air
gap between the core and the metallic wall is reduced to
a minimum. Deviations of the magnetic induction
(difference m magnetic induction without and with
material under test) at equally stepped pomnts m the
external surface of the material under test are taken.

Figure 4 show the steps of the methodology used in
this work. Steps 1-4 correspond to the finite element
analysis.

The problem was solved on a PC with P4 2.4G CPU
under Matlab® 6.5 workspace using the Partial Differential
Equation Toolbox and Neural Network Toolbox for the
finite element meshes generation and neural networks
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Fig. 4: Flowchart of the used methodology

Fig. 5: Solution in magnetic potential vector 4

architecture definition respectively (Raida, 2002; PDET).
For the finite element problem resolution and the inverse
problem solution, we use programs developed by us.

The simulations were done for a hypothetic metallic
wall with 1 mm height and 15 mm width. The material of
the metallic wall 13 1006 Steel (a magnetic material). The
relative magnetic permeability of the core 1s supposed to
be 2500 and the air gap 1s 0.1 mm. Finite element meshes
with 17000 elements and 8000 nodes, approximately, were
used in the simulations. Figure 5 shows a field distribution
for one of these simulations.

Figure 6 and 7 shows the evolution of the magnetic
induction in the region of the device at the sensor
position without and with metallic wall (material under
test), respectively.
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Fig. 6: Magnetic induction field without metallic wall
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Fig. 7: Magnetic induction field with metallic wall
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Fig. 8 Magnetic induction deviation for three values of
magnetic relative permeability and electrical
conductivity equal to 10° (S me")
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Fig. 90 Magnetic induction deviation for three values of
magnetic relative permeability and electrical
conductivity equal to 10° (S me")
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Fig. 10: Magnetic induction deviation for three values of
electrical conductivity and magnetic relative
permeability equal to 240

During the phase of finite elements simulations,
errors can appears, due to its massively nature. So, the
results of the simulations must be carefully analyzed. This
can be done, for instance, plotting m the same graphic the
magnetic nduction deviations for a set of parameters.
Figure 8 shows the magnetic induction deviation in the
region of the device at the sensor position for three
materials having the same electrical conductivity (10°
[S m*']) and relative magnetic permeability ranging from
50 to 300. A similar graphic, with electrical conductivity
equal to 10° [S m*'] and magnetic relative permeability
ranging from 50 to 300 is shown in Fig. 9 and 10 shows the
graphics for a fixed magnetic relative permeability (240)
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Fig. 11: Magnetic induction deviation for three values of
electrical conductivity and magnetic relative
permeability equal to 520

and three different electrical conductivity ranging from &
10° [S m*'] to 10° [S m*']. Figure 11 shows a similar
graphic, for the magnetic relative permeability equal to
520. In this graphics the magnetic mductions deviations
are at vertical axes and length are at horizontal axes.

The coherence of the curves in these graphics allows
us to infer 1f there are or not errors m the dataset.

FORMULATION OF NETWORK MODELS
FOR DEFECTS IDENTIFICATION

We  generate the traimng vectors for neural
networks. In this research, we generated 300 vectors
for neural networks training. Each of the vectors consists
of 11 mput values, which represent the deviation of
magnetic induction and two output values, which
represent the height and width of defect. Of the 300
vectors, a random sample of 225 cases (75 %) was used as
traiming, 75 (25%) for validation. Traming data were
used to train the application and the validation data were
used to monitor the neural network performance during
traiming.

To show stability of the proposed approach, the
measured values, which intrinsically contains errors in the
real word, is obtained by adding a random perturbation to
the exact inputs values of the networl, such that

In=In__ +cX (22)
where ¢ is the standard deviation of the errors and +is a
random variable taken from a Gaussian distribution, with
zero mean and unitary variance.

Mean squared error
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Fig. 12: Performance of the MLP network during a
training session

Twin nmumerical experiments were performed. Tn the
first one, noiseless data where employed (¢ = 0). The
second numerical experiment was carried out using 1% of
noise (+ =0.01).

The MLP neural network architecture considered for
this application was a single hidden layer with sigmoid
activation function. The learning rate mnitially is 0.5 but as
the root mean squared error gets smaller it decreases to
0.3. This 18 the experience from the traiming which also
matches the idea of learning rate annealing mn Haykin
(1999), Han and Que (2005).

A back-propagation algorithm based on Levenberg-
Marquardt optimization technique (Chady et «l., 2005;
Hagan and Menhaj, 1994) was used to model MLP for the
above data.

The Levenberg-Marquardt technique was designed
to approach second order training speed without having
to compute the Hessian matrix (Hagan and Menhaj, 1994).
This matrix approximated with use of the Jacobian matrix
which can be computed through a standard back
propagation algorithm that 1s much less complex than
computing the Hessian matrix. The performance function
will always be reduced on each iteration of the algorithm.

For the MLP neural network, several network
configurations were tried and better results have been
obtained by a network constituted by one ludden layers
with 24 neurons. The MLP architecture had 11 nput
variables, one lndden layer and two output nodes. Total
number of weights present in the model was 338. The best
MLP was obtained at lowest mean square error of 0.0013.
Percentage correct prediction of the MLP model was
96.2 and 953% for noiseless and noise data,
respectively.

Figure 12 shows the performance of the MLP neural
network during a training session. Table 1 show some
results for the validation of the networl, for this session.
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Table 1: Expected and obtained valies during a training session

Relative magnetic permeability

Electric conductivity

Obtained Obtained

Expected 0 % Noise 1 % Noise Expected 0 % Noise 1 9% Noise
160 160.17 159.23 1.80010 1.804 10 1.812 10!
247 247.21 246.20 4.5001¢° 4.507 1¢° 4.513 1¢?
321 321.27 320.33 5.20010° 5212108 5.219 10°
448 448.25 449.08 3.00010° 3.0111¢° 3.01710°
526 526.28 527.11 6.500 107 6.509 10° 6.512 10°
640 640.33 639.37 2.200 10 2.205 1¢¢ 2.213 10!
Table 2: Simulation results for new parameters

Relative magnetic permeability Electrical conductivity

Obtained Obtained
Pararmeter Expected 0 9 Noise 1 % Noise Expected 0 9 Noise 1 %% Noise
1 87.00 87.13 86.19 6.410 10 6.416 10 6.504 10!
2 214.00 214.22 213.16 2.750 108 2,757 107 2,763 107
3 368.00 368.29 367.23 2.2301¢° 2.244 10° 2.248 10°
4 476.00 476.32 475.21 4.1601¢° 4169 10° 4172 1¢°

As we can see, the results obtained 1n the validation
are very close to the expected ones. The worse
identification defect was obtained with MLP network,
because this network has some drawbacks such as slow
convergence and the possibility that the network
converges to a local minimum.

NEW PARAMETER IDENTIFICATION

After the neural networks traimng and respective
validations, new defects were simulated by the FEM, for
posteriori identification by the networks. Table 2 shows
the dimensions of the defects (height and width) and the
obtained dimensions, by the neural networks.

As we can see, the results obtained in the
identification of new defects, obtained by the neural
networks agree very well with the expected ones,
demonstrating that the association of the FEM and ANNs
mn very powerful m the solution of inverse problems like
defects identifications in metallic walls.

CONCLUSION

In this study we presented an investigation on the
use of the FEM and MLP neural network for the
dentification of defects in metallic walls, present in
industrial plants. For a given metallic wall characteristics,
defects can be simulated by the FEM and the magnetic
fields results are used in the preparation of the tramung
vectors for neural network. The network can be embedded
mn electronic devices in order to identify defects in real
metallic walls.

This study indicates the good and stable
predictive capabilities of MLP neural network m the
presence of noise.
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The association of FEM and ANN techniques seems
to be a useful alternative for identification of defects
trough inverse analysis. Future works are intended to be
done 1n this field, such as the use of more realistic FEM,
computer parallel programming, in order to get quickly
solutions.
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