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Abstract: Switched Reluctance Motors (SRM) 1s almost always operated within the saturation region for very
large operation region. This yields very strong non linearity, which makes it very difficult to derive a
comprehensive mathematical model for the behavior of the machine. This study develops and compares fuzzy
logic, neuro- fuzzy logic and neural network techniques for the modelling of a Switched Reluctance Motor
(SRM) in view of its nonlinear magnetisation characteristics. All the models are simulated and applied for
nonlinear modelling, especially for finding the rotor angle positions at different currents, from a suitable
measured data set for an associated SRM. The data comprised flux linkage, current and rotor position. The
model evaluation results are compared with the measured values and the error analyses are given to determine
the performance of the developed model. The error analyses have shown great accuracy and successtul

modelling of SRMs using soft computing techniques.
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INTRODUCTION

The switched reluctance motor has a simple design
with a rotor without windings and stator with windings
located at the poles. The mherent simplicity, ruggedness
and low cost of SRM make it possess strong competition
in many adjustable speed and servo-type applications.
The simplicity of the motor construction promised low
cost in manufacturing which, in turn, has motivated
researchers’ interest. The switched reluctance motor has
a simple design with a rotor without windings and stator
with windings located at the poles. Figure 1 shows the
configuration of a four-phase SRM with eight poles in the
stator and 6 poles in the rotor, alternatively called a 8:6
SRM. The simplicity of the motor construction, however,
has a crucial disadvantage due to the double saliency of
the SRM causmg its highly nonlmear magnetic
characteristics. Hence, understanding the motor’s
magnetic property is essential for a proper control
operation. Tt is important to have knowledge of the rotor
position for the good performance of the SRM and
traditionally it was achieved by some form of rotor
position sensor. There has been extensive research to
eliminate direct rotor position sensors, simply by
mndirectly determining the rotor position. Recently, many
publications based on magnetization characteristics of the
SRM have been studied by many researchers (Mese and
Torrey, 2002; Zhan et al., 1998, Eyguesier et al., 1999,

Fig.1: SRM with 8/6 poles

Miller and McGlip, 1990; Lyons et al., 1991, Elmas and
Zelaya, 1993). Some models, as those based on “gage
curve” (Lyons et al, 1991; Miller et al, 1998) use
empirical knowledge and need only a few recalculated
points of the magnetization curves. However they are
unable to mclude effects of mutual interaction between
two or more simultanecusly excited phases, which are
important in designing SRM drive with four or larger
number of motor phases (Michaelides and Pollock, 1996;
Pillay et al., 1998).
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A number of nonlinear SRM models, using magnetic
theory (Faiz and Finch, 1993; Radun, 1995) have been
developed. However, where there is no pole overlap, the
model in (Radun, 1995) does not include saturation. In
contrast to the above methods, there have been many
attempts to generate the necessary static magnetisation
curves by Finite Element Analysis (FEA) (Elmas and
Zelaya, 1993). The methods
disadvantages, namely, the complex, modelling, the
computation time and the lack of accuracy. In this study,
model based on fuzzy logic, is used to develop optimised
model that represent the nonlinear characteristics of the
switched reluctance motor. Thus, the ultimate goal 1s to
develop using artificial intelligence
technique that demonstrate the nonlinear magnetization

above have some

such models

characteristics of SRM without ignoring motor saturation
or behavior.

MAGNETISATION CHARACTERISTICS

The nonlinear characteristic of the SRM lies between
the relationship of flux linkage with stator currents and
rotor angles. Therefore, it is essential to develop a model
based on magnetisation characteristics, which show the
nonlinear behaviors of the SRM. In general, the nonlinear
magnetic characteristics of an SRM can be appropriately
modelled by equations defining the nonlinear flux-current-
angle and torque-flux-angle characteristics. However,
mstead of using only complex mathematical equations n
the modelling, artificial intelligence techmques provide a
simple way of modelling,
consideration the static and dynamic effects of the motor.
The models of switched reluctance motor developed in

which can take mto

this study use the measured magnetisation data sets
obtained from (Miller and McGilp, 1990). The data
comprise flux linkage, current and rotor angle. The
magnetisation data set does not have to have huge
measured values, but instead it is important to have the
magnetisation values in the region that is critical to the
modelling such as the aligned and umaligned values.
However, the accuracy of the models depends on the
amount of the data sets available. With the data sets, two
models were presented. Both models define a two mnputs
and one output nonlinear function where flux linkage and
stator currents are assigned as the inputs, with rotor angle
as the output. The fuzzy model developed uses measured
magnetization data set to generate the magnetisation
model curve. The curve plotted with respect to the
measured data set with polynomial curve fitting is as
shown in Fig. 2. In this figure, the flux linkages against
current curves for different rotor angles ranging from 30°
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Fig: 3: Block diagram of development of SRM model

{(unaligned position) to 60° (aligned position) for 8:6 SRM
are given. The magnetisation curve is important for
modelling, because it provides the basis for measured
numerical information about the SRM and also allows
knowing about the magnetisation characteristics of it. It
is easier to understand the graphical presentation than the
numerical data values.

DEVELOPMENT OF SOFT COMPUTING
BASED SR MOTOR MODEL

The basic premise of the proposed method is that a
soft computing technique forms a very efficient mapping
structure for the nonlinear SRM. Through measurement of
the phase flux linkages and phase currents the soft
computing technique is able to estimate the rotor position,
thereby facilitating elimmation of the rotor position
sensor. The soft computing technique training data set is
comprised of magnetization data for the SRM of which
flux linkage () and current (i) serve as nputs and the
corresponding position (* ) as output in this set (Fig. 3).
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Construction of the training data set: There are 2
possible ways to generate training data: model-based data
generation and experiment-based data generation.

Model based data generation: A suitable magnetization
model for the associated SRM is used to generate the
data. Given a proper model, flux linkage values are
computed for randomly generated phase current and rotor
position values so that the resulting flux linkage, phase
current and rotor position values will judiciously cover
the intended operating region. This method is used during
the simulation study.

Experiment based data generation: In this approach the
motor is run for certain operating points with a shaft
encoder so that the magnetization characteristic is swept
over certain regions, or, in a better approach, the motor is
run from zero speed to full speed and every electric cycle
of the flux linkage, phase current and rotor position is
captured with a certain sampling rate. This allows more
judicious coverage of the magnetfization characteristic.
This method iz used during the experimental study.

FUZZY MODELLING

To create a fuzzy model of SRM, the SRM
magnetization model curve is termed a fuzzy rule base.
This rule base is used to provide a value of rotor position
from the inputs of the fuzzy model.

The generated fuzzy rule base defines a function for
mapping input values of flux linkages and current to
output valuez of rotor position. Initially, the input and
output domains are divided into fuzzy regions, before the
algorithm iz executed, as shown in Table 1. Here, the input
domains are flux linkages and current and have a range of
0-1 and 0-60 A, respectively for the motor drive used in
this research. Likewise, the range of the angle iz 30-60°.
Table 1 shows the corresponding input and output
variable domains with their respective range of interval,
number of fuzzy regions assigned and the linguistic
variable assigned for the regions. The selection of the
number of regions is based on the need to provide a
degree of accuracy to the system, since there iz a
compromise between the number of resultant rules that
are generated in the rule base and the desired accuracy.
More regions would mean more accuracy in such
systems, but will cause more memory requirement due to

Tahle 1: Input and output domaing for fuzzy model

Inputf Number of Fuzzy Linguistic
Output Range regiong term

Current, [{4) 0-60 21 510-m-b10
Flux linkage » (Vs) 0-1 21 510-m-b10
Angle +(9) 30-60 11 35-m-hs
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Fig. 4: FIS block diagram

the greater number of fuzzy sets and rules in the system.
From the table, the range of the interval for inputs and
output is divided equally into regions. Each region is
assigned a Membership Function (MF) and a linguistic
variable term az shown in Table 2, where ‘s” iz denoted ag
‘small® ,‘m* denoted as ‘medium’ and ‘b* denoted as ‘big”.
It is understood that s11<s5<m<b5<bll. For each region
between 2 different inputs, there will be a corresponding
output that has been assigned with output
ranging from s5-to-m-to-b5.Once MPs are defined, the
magnetization curve iz used to generate fuzzy rules in
order to create the fuzzy rule base model. A correct
interpretation of the rule base from the magnetisation
curve is important, as each rule assigned will influence
the final output of the overall fuzzy model that will be
consiructed later. To determine a fuzzy rule, the first step
iz to find the degree of each data value (flux-linkages,
current, angle) in every membership region of its
corresponding fuzzy domain. The then
assigned to the region with the maximum degree. The rule
base interpreted from the magnetizsation curve into the
rule base table form is shown in Table 2. The *xx’inthe
table shows the empty rule for the correspond inputs,
or in others words, there ig not such a condition for that
particular input. Thus, these inputs will not be included in
the model. The types of MF were chosen to have the
same simple triangular shape when each region (fuzzy
set) was assigned to a fuzzy membership function. Each
fuzzy set is denoted with fuzzy linguistic term ranging
from s10-m-b10 for both of the inputs and from &5-m-b3
for the output. Figure 4 shows the Fuzzy Inference
System (FIS) block diagram constructed Since the
the membership
appropriate shapes and names, the
next step will be constructing the rules. The rules are
in the form of if-then rule statements that are used to
formulate the conditional statements that comprise
fuzzy logic. The rules are set accordingly to the fuzzy
rule base table construct previously shown in Table 2.

variable

variable ig

variables have been named and

functions have
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Table 2: Fuzzy rule base table (s: small, m: medium, b: big, s empty mle)

. 0 005 01 015 02 025 03 035 04 045 0.5 055 06 065 07 075 08 085 09 0985 1
1 10 59 58 57 56 85 s 53 2 s1 m bl b2 b3 b4 b3 bo b7 b8 b9 blo
0 10 b2 bl XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
3 59 XX 53 52 51 m m bl b2 b2 b3 b4 b5 ™ XX XX XX XX XX XX XX XX
6 §8 XX 54 83 §2 sl sl m m bl bl b2 b2 b3 b3 XX XX XX XX XX XX XX
9 57 XX 85 s 53 52 52 51 51 m m bl bl b2 b3 b3 b3 XX XX XX XX XX
12 s6 XX XX 85 83 83 82 sl sl sl m m bl bl b2 b2 b3 b3 XX XX XX XX
15 &5 XX XX XX s 53 52 52 51 s1 m m m bl bl b2 b3 b3 bs XX XX XX
18 &4 XX XX XX 85 54 83 §2 §2 sl sl m m bl bl b2 b2 b3 b4 XX XX XX
21 &3 XX XX XX XX s 53 52 52 s1 s1 m m m bl bl b2 b2 b3 bd xx  xx
24 §2 XX XX XX XX 85 54 83 §2 §2 sl sl m m bl bl bl b2 b3 b3 xx xx
27 510 xx XX XX XX XX 85 53 52 52 sl sl sl m m bl bl b2 b2 b3 b5 xx
30 m XX XX XX XX XX XX 54 83 §2 s2 sl sl m m bl bl bl b2 b3 b4 xx
33 bl XX XX XX XX XX XX 5 s 3 82 82 sl 51 m m bl bl b2 b2 b3 xx
36 b2 XX XX XX XX XX XX XX 54 §3 s2 82 sl sl m m bl bl b2 b2 b3 xx
39 b3 XX XX XX XX XX XX XX 85 s4 83 §2 82 sl sl m m bl bl b2 b3 bS
42 b4 XX XX XX XX XX XX XX XX 85 83 §3 82 §2 sl sl m m bl b2 b3 b4
45 bs XX XX XX XX XX XX XX W oxx s s3 82 52 51 51 m m bl bl b2 b4
48 b6 XX XX XX XX XX XX XX XX XX 85 3 83 §2 §2 sl sl m bl bl b2 b3
51 b7 XX XX XX XX XX XX XX ™ XX xx s 83 53 52 51 51 m m bl b2 b3
54 b8 XX XX XX XX XX XX XX XX XX XX 85 84 83 §2 82 sl m m bl b2 b3
57 b9 XX XX XX XX XX XX XX XX XX XX XX 85 53 53 §2 sl 51 m bl bl b3
60 bl0 xx XX XX XX XX XX XX XX OXX XX XX 54 83 52 52 sl m m bl b2
Table 3: Error analysis table for fuzzy SRM model Table 3: Continued
I - (vs) *m «£(°) . 50 0.8900 48 47.2270 0.7730
10 0.1500 33 36.000 3.0000 50 0.9580 51 52.5215 1.5215
10 0.1600 36 36.77300 0.7730 50 1.0000 54 54.0000 0.0000
10 0.2400 39 38227 0.7730 50 1.0190 57 54.0000 3.0000
10 03100 42 42.0000 0.0000 60 0.5880 33 33.0000 0.0000
10 0.4530 45 45.2757 0.2757 80 0.6410 36 353377 0.6623
10 0.5500 48 48.0000 0.0000 60 0.7190 39 39.0000 0.0000
10 0.7200 54 54.2115 0.2115 a0 0.8700 45 46.2581 1.2581
10 0.7470 57 55.0468 1.0532 60 0.9500 48 48.0000 0.0000
20 01970 33 32.9798 0.0202 60 0.9940 31 50.5326 04674
20 0.2310 16 34.7917 12083 a0 1.0130 54 54.0000 0.0000
20 0.3070 30 39,0000 0.0000 60 1.0380 57 51.0000 3.0000
20 0.4250 42 42,0000 0.0000 215834 37.839
20 0.5410 45 45.0000 0.0000
20 0.6600 48 48.7730 0.7730 Example Rule 1: (refer to Table 2)
38 g:;i?g ;11 giggg égg% If current; ILis s8 and flux linkage; * is b2; then angle;
20 0.8810 57 55.7917 1.2083 *is b3: When a rule is generated, a rule degree 18
28 gég?g 22 gi-gggg ?-882100 assigned to that rule, where this rule degree is defined as
20 04220 10 39,0000 0.0000 the degree .of confldenc.e that the rule do.es, actually,
30 0.5330 42 42,0000 0.0000 correlate with the function relating flux linkages and
30 0.6390 45 45.0000 0.0000 current to angle. Each rule has a degree i, which 1s the
30 Q.7500 48 48.0000 0.0000 : :
20 08170 i o752 02476 proFluct .of the membershlp function degree of each
30 0.9160 54 55 0550 1.0559 variable in the respective region.
30 0.9510 57 57.0000 0.0000 The fuzzy model in this study consists of 264 rules.
40 0.3930 33 32.7896 0.2104 Modification and tuning were performed against the fuzzy
40 04430 36 35.3263 0.6737 . . .
40 0,530 20 37 9350 Lo6t1 meodel by varying the rules or membership functions of
40 0.6360 2 41.0220 0.9771 both the inputs and outputs. Once the modification and
40 0.7340 43 43.9359 1.0641 tuning are complete, the SRM fuzzy model encapsulates
40 0.8400 hie 47.2270 0.7730 thy l1 functi lating the SRM rotor angle to the
40 0.9100 s1 51.7730 0.7730 ¢ nonunedr tunchion relating 2
40 0.9670 54 553730 1.3730 flux linkage and current.
40 0.9940 57 57.1151 0.1151 From the error analysis table as shown in Table 3, the
50 04930 33 34.0317 1.0317 : .
P 05470 % 157243 02757 error analysis for Fuzzy SRM model:
50 0.6310 39 37.7917 1.2083
50 0.7240 42 42.0000 0.0000 * N number of data points = 54
50 0.8110 45 45.8268 0.8268 .
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* flux linkage at various rotor angle, V.s
» . measured rotor angle, ©

» ; fuzzy model rotor angle, ©

Calculated total » m = 2458.341
Calculated total error =37.8392

Mean * , = 2458341 / 54 =45.5248

e
meanf xN

=37.8392*100/2458.341
=1.5411 %

averageoerror = *100

ARTIFICIAL NEURAL NETWORK MODELLING

The multilayer back propagation feed forward neural
network 1s used to develop a model that provides a good
estimate of rotor position and the idea of using neural
network 1s normally useful when the main position
estimation algorithms degrade at low speeds. The main
task behind the modelling 1s to determine the unknown
rotor position from the provided magnetisation curve. A
total of 30 neurons in multilayer hidden layer]l and 20
neurons in multilayer hidden layerl, 2 neurons in input
layer and 1 neuron in output layer are found to be a good
balance between rotor position estimation and ANN
complexity. However, if large neurons are applied in the
hidden layer, the network will get an over fit whereby the
network will have problems to generalize. A supervised
learming method 1s used here, n which weights are
randomly arranged into small values (both positive and
negative) to ensure that the network is not saturated by
large values of weights and will be reshuffled as the
network is told how close it is to achieve the goal. If all
the weights are started at same value, but the desired
output value requires unequal weights, the network would
not be trained. The comparison of ANN structures is
based on minimizing the least-squared estimation error
over the training data set . The neural model applied to 8/6
SRM has 54 sets of data, with a conduction period of
30°<=+<=60°. In the network, two sets of data have been
using flux linkages, current and rotor angle.

From the error analysis table as shown in Table 4, the
error analysis for Neuro SRM model:

N number of data points = 54

I phase current, A

» flux linkage at various rotor angle, V.s
» . measured rotor angle, ©

* . Neuro- model rotor angle, °
Calculated total » m = 2430

Calculated total error =0.02284

Mean * , = 2430 / 54 =45
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Table 4: Error analysis table for Neuro SRM

1 - (VS) - mn . nn .
10 0.1288 33 33 -4.8054e-005
22 0.2493 33 33 -0.0003425
30 0.3236 33 33 -0.00027559
42 0.434 33 33 -0.00018942
50 0.5123 33 33 -0.00023049
a0 0.5981 33 33 -3.5379e-006
10 0.165 36 36 -4.0538e-005
22 0.2995 36 36 -0.00021502
30 0.372 36 36 -0.00021411
42 0.4768 36 36 -0.00032624
50 0.5506 36 36 -0.00012857
a0 0.6314 36 36 -0.00020361
10 0.26 39 39 -2.9127e-006
22 0.387¢6 39 39 0.00019935
30 0.4568 39 39 0.00017528
42 0.552 39 30 7.194e-005
50 06177 39 39 0.00014345
a0 0.6896 39 39 -0.00019768
10 0.3583 42 42 -1.5854e-005
22 0.4912 42 42 -0.00022917
30 0.5565 42 42 -0.000182
42 0.6403 42 42 0.00010208
50 0.6967 42 42 -0.00016332
a0 0.7581 42 42.002 0.0020559
10 0.4565 45 45 -0.00015855
22 0.5949 45 45 -0.00010647
30 0.6562 45 45 8.2374e-005
42 0.7287 45 45.001 0.0013257
50 07757 45 45 -0.00017393
a0 0.8266 45 45,001 0.00060861
10 0.5548 48 48 -2.4835e-005
22 0.6985 48 48.001 0.00053053
30 0.7559 48 48.001 0.00064644
42 0.817 48 48.001 0.00072376
50 0.8547 48 48.001 0.00086654
a0 0.8951 48 48.003 0.0032707
10 0.6358 51 51 9.448%-006
22 0.7839 51 51 0.00037005
30 0.8381 51 51 -0.00012048
42 0.8899 51 51 -7.1775e-005
50 0.9198 51 51.001 0.00094201
a0 0.9516 51 50.999 -0.00089118
10 0.6897 54 54 -5.9357e-006
22 0.8408 54 54 2.5238e-005
30 0.8928 54 54.001 0.00051314
42 0.9384 54 54 -0.00024687
50 0.9631 54 53,999 -0.00096819
a0 0.9892 54 54 -0.00040733
10 0.7282 57 57 -1.3802e-005
22 0.8814 57 56.999 -0.00063726
30 0.9318 57 57 0.00019828
42 0.973 57 56.999 -0.0010064
50 0.994 57 56.999 -0.001056
a0 1.016 57 56.999 -0.0010816
2430 0.02284
€
* averageYoerror = 27 *100
meant xN
=0.02284*100/2430
=0.0094 %
NEURO-FUZZY MODELLING
The neuro-fuzzy model in this study uses

the Adaptive Neuro-Fuzzy Inference System (ANFIS)



Int. J. Elec. Power Eng., 1 (2): 215-221, 2007

Input Inputmf Rule

Outputmf Output

Fig. 5: Neuro-fuzzy architecture

techniques, which provide a method for the fuzzy
modelling procedure to earn information about a data set,
in order to compute the membership function parameters
that best allow the associates fuzzy inference system to
track the given input/output data. (Fig. 5). This learning
method works similarly to that of neural networks (JTang,
1993; Takagi and Sugeno, 1985).

ANFIS modelling description

Number of inputs: 2

Number of outputs: 1

Method: Subiractive-clustering
Number of MFs: 3

Number of rules: 9

Optimised method: Hybrid
Epochs :100

From the error analysis table as shown in Table 5, the
error analysis for Neuro-Fuzzy SRM model:

* N number of data points = 54

*  Iphasze current, A

* » fluxlinkage at various rotor angle, V.g
* »_measured rotor angle, °

* . Neuro-fuzzy model rotor angle, ©

*  Calculated total » m = 2426

*  Calculated total error =3.9606

* DMeane _=2426/54 =44.93

2 g

averageQoerror =
meand _xN

=3.9606*100/2426
=0.1632 %o

From the error analysis, average, percentages of the
modeling error are obtained for each of the models.

Table 5. Error analysis table for Neuro-fuzzy SAM model

I s (V.5) .0 .n® .
1a 01238 33 33.072 -0.07173
22 0.2493 33 35.644 -0.64417
30 0.3236 33 33.117 -0.11737
42 0.434 33 3315 -0.1503
50 05123 33 33.039 -0.03903
60 0.5951 33 33259 -0.25878
1a 0.165 36 34.348 1.1524
22 0.2995 36 36.078 -0.07783
30 0.372 36 35743 0.25655
42 04768 36 35.903 0.097199
50 0.5506 36 35.755 0.24521
a0 0.6314 36 35721 0.27859
1a 0.26 39 39.022 -0.02244
22 0.3876 39 39.335 -0.3344al1
30 04568 39 39.123 01228
42 0552 39 39.218 021833
50 0.6a177 39 39.093 -0.09253
60 0.6896 39 39.041 -0.04069
1a 0.3583 42 42314 0.31355
22 04912 42 42.106 -0.10586
30 0.5565 42 42.078 -0.07502
42 0.6403 42 42118 011773
50 0.6967 42 42.102 -0.10155
60 07581 42 4213 -0.12982
1a 04565 45 44 941 0.058757
22 0.5949 45 44 245 0.15509
30 06562 45 44 925 0.075094
42 07287 45 44.359 0.14074
50 07757 45 44 338 0.1123
a0 05266 45 44 867 0.13278
1a 0.5548 43 44 907 0.092727
22 0.6985 43 47893 0.1074
30 07559 43 47983 0.017093
42 0817 43 47777 0.22251
50 0.8547 43 47 246 0.15353
a0 0.8951 43 47788 0.21234
10 0.6358 51 51.165 -0.16466
22 07839 51 507779 0.22122
30 0.8381 51 51.039 -0.03%28
42 0.8899 51 50.821 0.17855
50 0.9198 51 51.025 -0.02529
60 0.9516 51 51.056 -0.05577
1a 0.6897 54 54.125 -0.12528
22 0.8408 54 53349 0.65113
30 053928 54 53.925 0.074981
42 09354 54 5368 0.31959
50 0.9631 54 53.997 0.003179
a0 0.9592 54 54.058 -0.05842
1a 07282 57 56.968 0.031922
22 0.8814 57 55,968 1.0318
30 0.9318 57 56.301 0.19921
42 0.573 57 56.361 0.63944
50 0.994 57 56.703 0.29664
60 1.016 57 56.692 0.30841
2426 3.9606

The table, analysis shows that the neuro approach
has a higher accuracy than the fuzzy and neuro-fuzzy
approach. This iz due to the advantage of neuro network
modelling with learning characteristics, which avoids
dependency of human knowledge on systems or plant,
learning from data values through the fraining scheme
instead.
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CONCLUSION

This study has successfully developed fuzzy, neuro
fuzzy and neural network -based models for the
nonlinear modelling of switched reluctance motors.
The soft computing approach presented m this work
addresses the restriction and complexity of analytical
modelling  for nonlinear characteristics of switched
reluctance motor. All developed models constructed
m this study have been successfully modelled with a
low modelling error and are compared with one
ancther so that a better choice of models for further

work can be made.
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