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Abstract: Time moments have been introduced in automatic control because of the analogy between the
umpulse response of a linear system and a probability function. This basic idea has generated applications in
identification, model order reduction and controller design In this study, a newly developed identification
algorithm, called moments method, is introduced and applied to the parameter identification of a de motor. The
simulation and experimental results are presented and compared.
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INTRODUCTION

DC motors are widely used as actuating elements
i many industrial applications for their advantages of
easy speed and position control and wide adjustable
range. Consequently, examination of dc motor behavior
constitutes a useful effort for analysis and control of
many practical applications (Rubaai and Kotaru, 2000,
Basilio and Moreira, 2004).

Mathematical modeling is one of the most important
and often the most difficult step towards understanding
a physical system. Although models of some system can
be constructed from the physical laws, most often
systems are too complex to be modeled this way. A model
15 usually constructed from a set of mput-output data
which 1s obtained experimentally and is represented in the
form of a table or a graph (Basilio and Moreira, 2004,
Touhami et al., 1994). So for such systems it is required to
build an accurate model as possible to get a suitable
dynamic performance from the speed control system
(Weerasooriya and Sharkawi, 1991). Tn the case of
modeling de motors, the physical information are nearly
sufficient for building the model structure. The second
part of the modeling 13 to determme the parameters of the
model. Parameter estimation of dynamical system has
attractive applications in the control field {(Rubaai and
Kotaru, 2000, Basilio and Meoereira, 2004 Touhami ef al.,
1994; Weerasooriya and Sharkawi, 1991). Identification
of dynamical system consists of two main parts.
Determination of model structure and estimation of the
model parameters. The structure of model can be
determined using a priori physical information. In many
cases there is no sufficient information for building the
model structure or it is too complex to deal with. ITn such

cases only a global approximation of the dynamic system
can be obtained However in other cases some physical
information is available which can lead to some structured
information

System 1dentification of de motors 1s a topic of great
practical importance for almost every servo control design
a mathematical model 1s needed. In the literature there are
many classical methods to identify de motors parameters
(Rubaai and Kotaru, 2000; Basilio and Moreira, 2004,
Weerasooriya and Sharkawi, 1991; Louis et al, 1998).
Time moments have been introduced in automatic control
because of the analogy between the impulse response of
a linear system and a probability function (Coirault et al.,
1995; Etien et al., 2000). Thus, an impulse response is
characterized by an infinity of moments, practically, only
the first ones are necessary as for a probability density
function. This basic idea has generated applications in
identification, model order reduction and controller
design, known as the method of moments.

DC MOTOR MODEL

The dynamic of the separately excited dc motor may
be expressed by the following equations

Ko(t)- Ryy()-1, 2 W v O

Kia(t):Jd(’jTEthfm(t)mL(t) 2)

where K, R,, L, T and f are respectively, the torque
and back-EMF constant, the armmature resistance, the
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armature inductance, the rotor mass moment of inertia and
the viscous friction coefficient. « (1), 1,(t), U t) and T ,{(t),
respectively denote the rotor angular speed, the armature
current, the terminal voltage and the load torque.

METHOD OF MOMENTS
The moments constitute the basis for a non
classical representation of linear systems. The

characterization of an impulse response by its moments
is equivalent to the moment characterization of a
probability density function (Etien et al., 2000). Tmpulse
response moments are system invariants. Like for a
probability density function, it 18 not necessary to
compute an mfinity of moments to characterize with a
good approximation the shape of the unpulse response
only the first ones are necessary to perform this
characterization.

Temporal moment of a function: Let us consider a stable
linear system, characterized by its impulse h(t) then,

3)

H(s) can be expanded in Taylor series m the vicinmity of
§=]j*0

Hs)= X (1] (5= i) Bu, «
where

et

gn!h(t)e dt

B,
is the n ™ order frequency moment of h(t) for » =« ,

notice that Ay, is complex. In the particular case * , =0,
frequency moments correspond to classical ttme moments

)

They permit the characterization of H(j* ) around * ;= 0,
aswell as that of the impulse response h(t). Ay(h) is the
area of h(t), A,(h) defines mean time of h(t) and A,(h)
deals with the dispersion of h(t) around its mean time
(Etien et al., 2000). Equation 4 1s rewritten as

H(s)= 20(_1)“ $"A, (1) (©)
© gt d"H
bt H( )_nzog{ ds“(S)
B ’ s=0
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Then, time moments can be expressed as

1

n!

A,(h)= )

{d“H(s)

ds"

g=0

Moments and parameters of a transfer function: Let
y(t) the step response of the studied system. We
proposes to identify the system by the model

1+bIS+bZSZ +

1+aps+ azsz +

from the final value theorem, as time approaches infinity

for a stable lmear system, the system response
approaches a steady state value K, given by
Ky = lim y(t) = y() 9

t—w

If a step input 1s applied to the system described i1 Eq. 8,
by taking the Laplace transform of the normalized
Tesponse glves

H(s)=sy(s) (10)
Let us consider *(t) an error function with
e(t)=K; - y(t) (1)

By introducing the Laplace transform n Eq. (11), (8) can
be written as

2
s(s)—K{l—l_l+bls+bzs +

8 1+als+a252+

The development of (12) gives

e(s)=K, (13)
T+as+a,s”™ +.. +a,s
Then, using (6) we can write
o(s)= 3 (1) s"A, (&) (14)

Accordmg to (6) and (14) we can deduce the coefficients
of the transfer function Hfs) by solving the following
matrix system
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Ky -ty Cae) 0 e
Kl(a2 -Dy -A(e) Ayle). &
_Kl(anﬂ *bn+1)_ 7An (8) 41

(13)

where A,(*) is the n" order temporal moment.

DC motor transfer function and its moments: For our
cases, when n = 2 and m = 1, the transfer function (8)
becomes

K 1+b13 (16)

H(s)

1+a;s+a,s

system (15) 1s reduced to the following matrix system

Ky —by) Ay 0 o[
Ko, |=|-A, Ay 0 ||a (17)
0 Ay A Aglla,

the resolution of this matrix system (17), gives the
following coefficients:

_MAG-KiA,
AG - KyA

N SR blzal—%(lg)

’ Ky 1
Parametric identification: After having deduced the
mathematical forms which are used for calculation of the
transfer function coefficients and which enable us at the
same time to calculate the electric and mechanical motor
parameters, we present here, the stages to be followed at
the time of the determination of these parameters.

It is possible from a terminal voltage step * U, to
determine the majority of the dc motor parameters, that is
also possible from the abrupt termimal voltage variation.
We measure the initial and final currents and speeds
values. At the steady state we can write

(19)

U,o =Rl + Koy

Uy = R,iy + Koy (20)
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Where U,,, i, and ¢, respectively denote the terminal
voltage armature current and the rotor speed at initial
regime subscripted "0". U, 1, and * |, respectively denote
the terminal voltage, armature current and the rotor speed
at final regime subscripted "1".

According to (19) the torque and back-EMF constant
K can be written as

i
Ual - -LanO
K= lia() 21
o — _LI(DO
Lag
the steady state check
AU, = R Al, + KAm (22)

where * U, ¢ 1,and * * , respectively denote the terminal
voltage variation, armature current variation and rotor
speed variation.

The armature resistance 1s given from (22) as

AU, -KAe
Al

R (23)

a

According to Eq. 24 and 25 we can obtain the two transfer
functions of the armature current and rotor speed

AU, = RaAia+La%+ KA® (24)
KAi, = 1989 e (25)
dt
The armature current transfer function 1s given as
f [ I s}
H,(s) Al (s) K*+R,f f (26)
8= =
! AUL () 14 1, Tes” + (1 + UTe )8
The rotor speed transfer function 1s given as
ok
Hy(s)= Aw(s) K*+R,f (27)
: AUL(5) 141,187 + (1 + 1T )8
Where
T, = La Electrical time constant
RE.
R, M o
T = echamical time constant
K*+R,f
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R,f
K? +R,f

Usually small coefficient

The calculation of K, and K, gains of the tow outputs i1,(t)
and « (t), respectively, by taking account Eq. 24 and 25
gives

. fAU
K:=Ai, ()= a (28)
= 8 (2) K24+ R,f
K, =Awm(w)= I;;AUa (29)
K +R,f
According to (26) and (27) we deduce f and p
p o Rhig () (30)
Aw(o0)
__ Ref (31)
K2+ R, f

By 1dentification of H,(s) and Hys) denominators with
H(s) denominator we obtain

A = Ty, + M, (32)

(33)

Ay =TpTe

According to (32) and (33) we can obtain a second order
equation

;,I:I:e2 -t +a, =0 (34)

The resolution of the equation (34) gives two roots one is
positive, the other is negative (rejected).

According to (32) and (33) we deduce +,
The deduction of *_and + gives L and J.
The static torque can be calculated from steady state
as
T, (35)

st = KlaO - me

EXPERIMENTAL RESULTS

The separately excited de motor used for experimental
tests, has the nominal characteristics shown on Table 1.
The first experiment is the determination of electric de
motor parameters according to direct tests, like armature
resistance R, and armature inductance L_ as well as the
back-EMF constant K. Mechamical parameters are also
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Table 1: Specification of experimental DC motor

Rated power 180W
Rated speed 1500 rpm
Armature voltage 270V
Field voltage 220V
Armature current 1.1A
Field current 0.4 A
Table 2: Dynamic test

U, (V) L(A) > (rpm)
Initial regime 60 0.113 400
Final regime 248 0.167 1745

Table 3: 1,2 and 3 order moments and transter finction coefficients values
A A, A, a a, b,

« (1) 6.121818 0.14034940 -0.00094  0.055600 0.001440 0.012524

i(t) -0.29657 -0.152533 -0.000504 0.470565 0.240323 -5.962602

Table 4: Comparison between direct tests and moments method for
parameter identification of DC motor
R, L. K J

f T,

‘“a st
() (H (NmaA-") Kem®) NNmsrad-) (N.m)
Direct tests 28 0.820 1.34 0.0028 0.00054 0.127
Moments 30.9 0803 1323 0.0031 0.0005 0.128
method
22000+ Speed, rad sec '
200.004
180.00+
160.00+4
140.00+
120.00+
100.004
80.00 4 Direct tests
£0.00- # Moments method
: ® Experimental curve
40.00 T T T T T T T |
0.00 0.05 0.10 015 020 025 030 035 040
Time (sec)

Fig. 1. Rotor speed angular response

determined by direct tests (static torque T, and viscous
friction coefficient f ). The deceleration test, enables us to
determine the moment of inertia I. The second experiment
to be carried out 13 to identify the dc motor parameters
from the dynamic test. According to a step amplitude » 1,
of termmnal voltage applied to the armature circuit of the de
motor. The initial and final values of the armature current
and the angular speed obtained from this test, are shown
on Table 2. The back-EMF constant K, armature
resistance R, and the viscous friction ceoefficient £, can be
determined by using, respectively Eq. 21, 23 and 30.
Table 3 shows the first, second and third order moments
values ,as well as the transfer function coefficients values
successively calculated from the trapezoids method.

Let us know a,, a, and p then, we have the second
order equation 0.00874+°-0.0556+, + 0.00144 = O the
resolution of this equation gives ¢, = 0.026s and »,, =
6.34s (* ;15 a rather large time constant, 1s thus rejected).
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The deduction of ¢, and «, enables to calculate Jand L,.
Table 4 summarizes the values of the parameters
calculated from the two identification methods (direct
tests and moments method). Finally to check the
precision of each method, we have simulated the dynamic
test applying a step amplitude of terminal voltage
+u, = 188V, to the armature circuit of dc motor, as well
as, deceleration test and mechamecal characteristic.
According to Fig. 1-3 the curves simulated from the
dynamic test parameters with the moment method are
close to the real curve

-0. T L T T T T T T T 1
000 005 0.10 0.15 020 025 030 035 040 045

Time (sec)
Fig. 2: Armature current response

225.00 Speed, red sec ' & Direct tests
® Moments method
# Experimental curve

0.00 0.50 1.00 1.50 2.00 250 300
Time (sec)

Fig. 3: Deceleration test

1.8+ Torque, N.m
1.6+
1.4
1.2
1.04
0.84 A Direct tests

0.6 # Moments method
0.4+ * Experimental curve

0.2
0.0

0 20 40 60 80 100 120 140 160 180 200
Speed, rad sec '

Fig. 4: Mechanical characteristic

(experimental curve) that those simulated from the direct
tests parameters. With regard to the steady state (Fig. 4)
the curves simulated from the dynamic test and direct
tests parameters are almost identical and close to real
measurement (experimental curve).

CONCLUSION

In this research, we tried to contribute our share in
the discipline of the dc motors modeling. This
contribution, which can be classified in a very wide field
of identification methods can be summarized in the
following results: We have developed a dynamic model
based on the moments method, this method especially
makes 1t possible to have a model closer to reality in
transitory mode. We have proposed a comparison
between various models based on the identification
methods (direct tests and moments method), this
comparison is made on the basis of real measurements
taken 1n laboratory on a separately excited de motor, with
180 W of rated power. It shows the advantage of the only
dynamic test for identificationy, coupled to the moments
method
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