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A Hybrid Method for Calculating Very Close Flectromagnetic
Fields Due to Inclined Lightning Strokes
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Abstract: A hybrid method is presented for evaluating the electromagnetic fields very close to the lightning
strokes. The vertical channel has been widely studied, unlike the inclined channel particularly the very near
fields, the litterature show poor approach for such problems. Using a simple method for calculating the magnetic
field by considering the lightning stroke as an infinitely long filament. The electric field is then calculated by
simply discretising the Ampere’s law. The results show that the channel inclination affects markedly the fields

at close distances.

Key words: Hybrid method, electromagnetic, strokes, fields vertical, filament

INTRODUCTION

Lightning is a major natural source of EM radiation
that mterferes with modem electromcs and
communication systems. Lightmng EM fields that causes
overvoltages and overcurrents are very important factors
mn selecting the msulation level of the conductors 1 the
design of effective and economic protection devices
(Chandima and Vernon, 2000). Knowledge of
Electromagnetic Pulse (LEMP) distribution at a given
location 18 essential in determimng the threat level for a
sensitive system. In recent years, numerous theoretical
analysis and experiments have been carried out to provide
msight nto the problem of lightiing mduced voltages
(Chandima and Vernon, 2000, Gerhard, 1990,
Chowdhuri et al., 2001). The various theoretical analysis
are often quite different in their calculated voltage
waveshape, polarity and distribution of the voltage along
the line (Gerhard, 1990). The return stroke models can be
defined as mathematical construction that can represent
the properties of the lightning return stroke model
(Chandima and Vernon, 2000). One of the basic
assumptions m most of the models 1s that the channel 1s
vertical, while the channel inclination effects have shown
to be of great importance when calculating the lightning
mduced effects on overhead lines (Gerhard, 1990; Lupo,
2000). In this study we propose a simple way based on a
hybrid methed for evaluating LEMP in the vicinity of the
lightning. The geometry to explain a model phenomenon
is shown in Fig. 1. The retum stroke is inclined and makes
an angle * with the 7 axis. Unlike the vertical stroke, the
mchined return stroke produces a vector potential that has
a horizontal component in the direction of overhead lines
(Carlos et al., 2000). Such a component has large effects
on the voltage induction on the line.
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Fig. 1: The imclined channel and the observation poit
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FORMULATION OF THE METHOD

We consider a constant current through the inclined
wnfimitely long channel, the current 15 given by the
following relation ( Yang and Zhou, 2004):

i(t)=1,

2
(t/1:12) eithz“rlnz(e *tft3ie ftft4) (1)
(t/t) +1

where T, and T, are amplitudes of the current. *, *,, *;
and +, are time constant.

In the very near field and considering the lightning
channel as an infinitely long filament with an arbitrary
ortentation defined by the umt vector n:

n=cos*i+ cos*jtcos*k (2)
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the magnetic field H reduces to the well known

Ampere’s law:

HGy, zt). =1(tV(2++) (3)

where + is the azymuthal direction in cylindrical
coordinates centered on the current path, + 1s the
cylindrical radial direction. The validity of tlus
approximation is satisfactory for low frequency and very
near fields (Sabrina, 2001 ; Baba and Rakov, 2003).

ELECTROMAGNETIC FIELDS CALCULATION
In the rectangular coordinate system the x, vy and z

components of the magnetic field in a point (x,, y,, z,) are
derived from (Lupo, 2000):

HX(X,y,z)—[Z“_ ‘costy“_y1 cosy}Hw 4
P P

Hy(x,y,z)_[X”;X‘ 0037—2”;21 coso:JHw (5)

H,(x,y.z)= {y” D /M B COSB]HCP (6)
P P

Based on Ampere’s law in an isotropic medium the
electric field 13 obtained by the following relations:

D - E
—=cE+&g—
ot ot

VeH=T+ (7)

where ¢ and * are, respectively the conductivity and the
permitivity. We write out the vector components of the
curl operator to yield the followmng system of scalar
equations:
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Using the Yee method FDTD (Allen, 1995) to
discretise the above system of equations, we obtain for
the space partial derivative:

197

%(iAx,jAy, kAz nAt)=

,Fn
Ax

Fn

i+1/2,3.k

=ik of (ax)'] an

The +1/2 mcrement in the 1 subscript (x-coordinate) of F
denotes a space finite-difference over £1/2x. The same
thing will be done for the first time partial denivative of F,
evaluated at a fixed space point (Ij, k), follows by
analogy:

%(iAx,jAy, kAz, nAt) =
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F* -F
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At

(12)
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The +1/2 increment in the n subscript (time-
coordinate) of F denotes a time fimte-difference over
+1/2t. This notation is chosen to interleave the E and
H components i time and space at intervals of £1/2t
and =£1/2x, respectively for purposes of implementing a
leapfrog algorithm.

Applymg Eq. 8-12, the following expressions are
obtained for each E-field component:
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For the air region the E-field components become:
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The E-field at the instant n+0.5 is calculated by using
the information of both the electric field at the instant
1n-0.5 and the magnetic field at the mstant n. Although this
method of precalculating the magnetic field at a certain
point does not need meshing the entire region of the
configuration,we can say that the method is a Yee FDTD
method.

The numerical algorithm for the curl Eq. 7 requires
that the time increment * t have a specific bound relative
to the space . This bound 1s
necessary to avoid numerical instabillity. The temporel

lattice inerement
discrete interval ¢t and spatial discrete interval *+ must
satisfy the courant stability condition Yang and Zhou
(2004) that 1s:

(19)

where C is the velocity of light and the space lattice
is taken constant for the three coordinates s x=+y=
+ z =+ For the proposed case *t 13 taken as 0.0167 ns
and ¢ =10 cm. But due to the caracteristics of this one,
some additional considerations should be taken mto
consideriation.

RESULTS AND DISCUSSION
A simple model 18 proposed to calculate the EM fields

due to an inclined stroke. It is shown that the channel
mclination affects more markedly the fields at close
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Fig. 2: Channel current T;,=3.25kA, T,=8.95kA, + =0.072
us, ;= 16.67us, *3 =100 us, », = 0.5us
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Fig. 3: Horizontal magnetic field intensity 5 m from the
channel
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Fig. 4: Vertical magnetic field intensity 5m from the

channel

distances Fig. 2-6. Due to the lack of theoritical and
experimental results regarding near fields and especialy
inclined stroke the comparison with other results was too
difficult to be done. The drawback of the proposed
method consists in the fact that the distance from the
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Fig. 5. Vertical electric field at height 5 and 5 m from the
charmel
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Fig. 6: Horizontalelectric field at height 5 and 15 m from
the charmel

charmel must be very close and the validity of the
approximation of the EM fields i1s limited to a few
megahertz.
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