MedWe]l International Journal of Electrical and Power Engmeering 1 (2): 138-145, 2007

[s]

nllne

© Medwell Journals, 2007

Parametric Analysis by the Meshless Local Petrov Galerkin (MLPG)
Approach Applied to Electromagnetic Problems

N. Benbouza, F.Z. Louai, S. Drid and A. Benoudjit
Laboratory of Electromagnetic Systems-Propulsion Induction I.SP-IE Batna,
Department of Electrical Engineering, Faculty of Engineering, University of Batna,
Street Chahid Med El Hadj Boukhlouf, 05000-Batna, Algeria

Abstract: Meshless or element free methods are a new class of numerical techniques as alternatives to the
popular Finite Element Method (FEM) for solving partial differential equations. The solution is entirely built
mn terms of a set of distributed nodes, thus no element comectivity 1s required. The meshless local Petrov-
Galerkin method based on the moving least squares approximation is one of the recent meshless approaches.
By a judicious choice of the test and trial functions, a weighted residual form 1s applied to a local sub-domain
and malkes the method truly meshless. In this study, the method is presented to study electromagnetic field
problems both i one-Dimensicnal (1D) and two-Dimensional (2D). The formulations were implemented using
a penalty approach to enforce essential boundary conditions. The sensitivity of several parameters of the
method was mainly studied and discussed by comparing results with those calculated using the difference finite
method. Very accurate solutions could be obtained by a judicious choice of these parameters.
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INTRODUCTION

To eliminate the burdensome mesh generations of
traditional numerical methods such as the finite element
approach, increasing attention and efforts have been paid
to meshless methods. Basically, these methods consist of
the discretisation of the problem domain and its boundary
by a set of scattered points. The shape function for each
pomnt 18 then built using its mfluence domain, which
defines the relationship between the point and its
neighbors (Guangzheng ef al., 2003; Viana et al., 2004).

Some of the most widely used meshless methods are
the Smocth Particle Hydrodynamics (SPH), Diffuse
Element Method (DEM), Element Free Galerkin method
(EFG), hp-clouds method Finite Point Method (FPM) and
so on. However, some of these methods are not really
meshless methods, since they employ a background grid
for the numerical integration process in the solution
domain (Viana et al, 2004; Lin et al., 2000). A truly
meshless method called the Mesheless Local Petrov
Galerkin (MLPG) method Atluri and Zhu (1998) has
attracted a lot of attention and extended too many

problems. Tt does not require a mesh either for the
approximation of the trial function or for the integration of
the week form. This approach uses Petrov Galerkin
method instead of the traditional Galerkin procedure to
develop the discrete equations. The method 1s based on
a weak form computed over a local defined shape sub-
domain and derived by using the test and trial functions
from different functional spaces (Guangzheng et al., 2003,
Viana et al., 2004; Lin et af., 2000; Atluri and Zhu, 1998,
Raju and Chen, 2001, 2003; Philips, 2002). The shape
functions are constructed by the moving least squares
interpolations.

In the present research, an MLPG algorithm is
implemented for electromagnetic field problems and amms
the sensibility and effectiveness of the method to various
parameters using two numerical applications. To this end,
the mumerical method 1s presented briefly. Next, the
moving least squares interpolation is described. Than, the
discretisation procedure and the discrete formulations
together with the penalty approach are presented. Various
choices of the parameters are studied by evaluating and
examinating the accuracy. Fally, conclusions are drawn.
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Fig. 1: Comparison of the trial and test function domains
(1D case)

PRINCIPLE OF THE MLPG METHOD

In the traditional element free Galerkin method, the
test and trial function are chosen from the same space.
The domain of mtegration for the I-J term in the weak form
15 the mtersection of these functions and its shape is
difficult to determine in 2D or 3D. The need of using a
shadow mesh negates the advantages of the method. To
develop a truly meshless method, Alturi and Zhu
suggested the choice of the test function functions from
different spaces and make this a Petrov Galerkin method.
The test functions are chosen such that they are non-zero
over an arbitrary shape of sub-domain * ¢ similar to the
weight functions. Hence, the test functions have well
defined geometric shapes such as a circle, a square, a
rectangle or an ellipse (in 2D). Thus, the mtegrations over
the entire domain ¢ can be restricted to + ;. himited by »
this choice eliminates the need of shadow (Fig. 1) mesh
and the method is truly meshless (Atluri and Zhu, 1998;
Raju and Chen, 2001, 2003; Philips, 2002).

THE MLS APPROXIMATION
(Lin, 2000; Atluril, 2000; Raju, 2001; 2003; Philips,
2002; Dolbow, 1998)

The MLPG method employs Moving Least Squares
(ML3) approximation witch is generally considered as one
of the schemes to interpolate data with a reasonable
aceuracy.

The approximation w*(X) of the unknown function
w(X) is defined by:

()= p;(X)a; (%) = p* (X)a(X) ey

=1

Where a(X) are unknown parameters varying with X such
as:
X=[x]in1D
X'=[x,y]in 2D

(2

139

3

a' (X)= [2,(X) 2,0 a,(X) a, (X)]

and P(X) 1s the basis of a complete polynomial of order m
Linear basis:

PPm=2)={1,x}inlD

Pflm=3)={1,x,yt n2D {4
Quadratic basis:
PPm=2)=4{l,xx*}m1D
Pifm=3)={1,x,v,x, xy, v’} in2D (5

Consider a sub-domain ¢ y the neighborhood of a
point X; the local approximation at point X 1s given by

uf (XpX)= D p; (X (X)=p  (Xpax)  (6)
j=1

The unknown coefficientsat a(X) any point in * yare
determined by mimmizing the quadratic functional:

2

J(X) = im(X—XI)[u*ﬁ(XI,X»uI}
1=1
2

= i(gl (X)[PT (xp)alX)-u; }

I=1

9

where + ; (X) =+ (X-X)) is a weight function associated
with the node I and n 1s the number of nodes in the small
domain * 5, for witch » | (X) « 0.

u, are the fictitious nodal values of u at X=X, With:

(8)

The stationarity of J with respect to a(X) leads to the
following hinear relation between a(X) and u,.

a(X)= A" (X BX)u (9

where: A= Z@I G p Xp) pT ;) (10)
I=1

B0 = [0(X-X)1P(Y) . (X3, P(X,)] (A1)

Very similar to that in FEM, the MLS approximation u’{X)
is written as:



Int. J. Elec. Power Eng., I (2): 138-145, 2007

at (X) = (X uy = p(Xu" (12)

1=1
where +; (X) 13 the shape function of node I and 1s
defined as:

o (X) = PT(X). A (X) By(X) (13)

The shape function does not pass through the
ficitious nodal values used to fit them, thus they do
not satisfy the Kronecker delta criterion: * (X)) ¢ ¢y s0
uh (X)) * u. Therefore, imposition of essential boundary
conditions is difficult. Tn our implementation, the penalty
approach 1s used to enforce these conditions.

In (8) and (9) equation + (X) 18 a compactly
supported weight function centered at node I, the
support of a node T is called often the domain of influence.
In thus study, the cubic spline, quartic spline and
exponential weight functions were used:

Quartic spline:

2 3 4.4 .
o ()= 1-6r° + 8”31 if r <1 (14)
ifr=1
Cubic spline:
2/3- 412 + 47 siT <%
or)=1 43-4r + 4% -437° siw <r <1 (19
0 sir = 1
Exponential:
olr) = (0 o (16)
0 sr=0
where 1 is the normalized distance given by:
(18)

r=4d; /Ry

d,:
mfluence X, and general poit X, so:

is the distance between the center of sub-domaimn of

dI:‘X-XI‘ (19)

R,: 1s the domain of mfluence size at node I and it is
computed by:
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R; = dmax,. ¢; (20)

where dmazx, is a scaling parameter and C, is the difference
between node X, and its neighbor, it is chosen such that
matrix A is non singular. If the nodes are uniformly
spaced, the value of correspond to the step h of the nodal
distribution (C, = h).

In 2D, the domain of influence node’s covers an area
and its corresponding weight function is derived as a
tensor product weight which can be expressed as:

o (0= o) o @) @)

where * (r,) and * (r,)are given by Eq. 14-16 with r replaced
by or given by:

(22)

I'X:

X'XI‘/RXI;ry = ‘Y'YI‘/RyI

The choice of ¢, and ¢,; 1s similar to the process used
below. In this research, a square domamn 1s chosen as
domain of influence of a node.

INTEGRAL FORMULATIONS

1D case: Consider the following 1D Poisson problem in
the domain
oo du/dS =p (23)
The essential and natural boundary conditions are,
respectively:
u=uyon*,andq=qyon*, (24
Where: », U+ =+ 15 the boundary of * and q = du/dx
15 the normal flux.
In a sub-region + , which is located entirely mside the
global domain, the local weighted residual form 15 used to
implement the MLPG formulation. The essential boundary

conditions are included by the penalty method as
(Phulips, 2002):

J' W-uvdl (25

2

j (d_121 +pivds+a
dx

Qg I'su

where u is the trial function obtained using MLS
approximation, is the test function,» is the penalty
parameter chosen as a large number (¢ >>1)and + is a
part of the boundary *, of * s over which the boundary
conditions are specified suchas 1+ =9+ ° *.

As in one dimensional problems, the boundaries are
points; the second integral in (25) is evaluated with the
Dirac delta function:
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J- (n—ug)v 8(X =Xy, )dl' = [cc(u -u, )V]Fsu (26)
Tsu

By replacing (26) into (25) and integrating by part, the
local weak form can be written as:

j pvdx + ot[(ufuo)v]rsu +— [vq]rs =0 (27)

i Qs

where ¢ _ 15 broken into subsets:
. , ande,

— e o & & —s e @
30 5 qr s 5

+ . completely within interior of + (Philips, 2002). Then:

du dv

T —dx+ J-pvdx+0:[(u u)v]rsu

O (28)

7[V'q]rsu 7[ Yo ]rsq =

As mentioned previously, the test functions can be
chosen to vanish on ¢ the term [vq]*, is therefore
evaluated as zero. Then the weak form, leads to the
resulting system of equations:

(29)

knode u o+ kbdry u = fru)de n fbdly

where node and bdry denotes mnternal and boundary
nodes, respectively.

(node) _ dv, dq)]
kl_] _‘- dx dx dx (30)
QS
do
d
fi(no e) _ _ j PVidX (32)
o
(29 < [ o u, Vil +1vqo] 33

)

The conventional Gaussian integration is used as a
numerical integration to evaluate the integrals involved in
Eq. 30 and 32. The order of mtegration required for
acceptable results depends on the basis and weight
functions used.

2D case: For illustrative purposes, let us consider the
following 2D Poisson problem, in domain ¢ enclosed

by »
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(34)

u=ugonl,andq= g, only (35)

where q=dwdnand n is the outward normal direction
toe

So, using the divergence theorem, the local wealk form
of governing equation will be (Atluri and Zhu, 1998):

J. (@@ @6—V)dQ + O(.J. uvd(2— J. qvdl’

S QS rsu (36)
= J- qovdl + o J- ugvdl — j PvdQl

rt:u rsu QS

Substitution of the trial and test functions, in the
weak form, leads to the resulting element matrix:

86 av; 8¢ a
fipode) = j Qi NiPiggg 3y
x ox oy oy
G,
kP4 = J' djv;dl - J' %vidr (38)
I ry
d
fi(rm e} — j pVidQ (39)
o
fi(bd’” = o J- ugv;dl — J- qov;dl (40)

o i

As m 1D, numerical mtegration of Gauss 1s used to
evaluate the integrals involved in Eq. 37-40 in every
sub-domain.

Choice of the test function: In the present research, the
test function is defined in a similar manner as the weight
function in the MLS approximation, by replacing the R,
with Ro. For the quartic spline case:

v (@)= 1-6r% + & -art ifr <1 (41)
if r>1
where 1 is the normalized distance given by:
r=XX|R, (42)
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R.is a user defined parameter that determines the extent
of the test function and hence * s. It 1s computed by using
another scaling factor dmax; by the relation:

R, = dmax,¢ (43)

In the previous equations, the basis sub-region o) 1s
the support domain of v1 (3{)of node I. As for the weight
function, it 1s assumed to be a square of side 2Ro,
centered at the point in question and it has sides parallel
to the coordinate's axis.

RESULTS AND DISCUSSION

One dimensional application model: The proposed
method was applied to a 1D electrostatic model with
tree different middles and two essentials conditions:
w=1V and u, =10V (Fig. 2). The uniform relative
permittivity and the constant electric charge density
for every region are shown in the Table 1. The first
calculation uses the hinear basis function and the quartic
spline as weight function.

The scaling factors are set to dmax, = 2 and
dmax; = 3. These values were used at all nodes, except
at nodes (2, N-1 and 3, N-2). For the first couple:
dmax; = 1 and for the second dmax,=2 were used to
ensure a symmetric ¢, the test function were chosen
tovanish on such as ., =0 on for node i (Philips, 2002).
The results are computed at N = 31 umiformly spaced
nodes using PG = 8 Gaussian quadrature points in
each lecal domainwith a penalty coefficient * = 10°,
The computed solution of the electric scalar

potential u was compared tothe finite difference one

u, =10V
= ]
l 04L e 021 04L
_-— x N
I I
I I
—_—  L=Ilm —_——
I l
Fig. 2: 1D Electrostatic model
Table 1: Regions characteristics
Ry Rz R;
. 1 100 107
* (c/m) 0 1.3 0
Table 2: Regions characteristics
Ry R; R; Ry
N 10 10° 10° 1
jex (A/m®) 0 3.10° -3.10° 0
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Fig. 3: MLPG and DF scalar potential
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Fig. 4: 2D magnetic model

and represented in Fig. 3. As would be expected, a
good agreement between the two solutions is noticed.

Two dimensional application model: The MLPG method 15
applied to a two diunensional magnetic problem of Poisson
equation showed in Fig. 4 and which characteristics are
givenn in Table 2. The solution 15 calculated using a linear
basis function and the precision 1s evaluated using the FD
method.

Uniform mesh of 24x24 nodes 1s used. The scaling
factors are taken to be dmax, = 1.2 and dmax, = 2 for every
node. In this example, 3 Gauss powts are used on each
section of and 6x6 points in the lecal domain with « = 10,
Potential distributions, equipotential contours for MLPG
and DF solutions are shown m Fig. 5-7. In tlis case also,
good similitude 1s noted between results.

Problem parameters: In the applications of the MLPG
method, several parameters are user-controlled, so to
evaluate their effects on MLPG solution, the following
error norm 1s used:

Ln
e

where N is the total number of distributed internal
points in the studied domain, the norm is calculated in
decimal logarithm for the cubic, quartic and exponential
weight functions both in a linear (CSL, QSL, EL)and a

2
(u MLPG Yexact ) J (44)

Uexact
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o ™ X

Fig. 5: MLPG potential magnetic vector

05

Fig. 7: DF equipotential contours

quadratic (CSQ, QS8Q, EQ) basiz functions. The
calculations were carried out using the 1D previous
model. The effect of the scaling parameters was evaluated
by varying them in the range (Guangzheng et zl., 2003;
Viana ef ¢f., 2004; Lin ef ¢l., 2000; Atluri and Zhu, 1998;
Raju and Chen, 2001) using the previous values of N, PG
and =. A good accuracy is reached for QSL function in
the range (Viana et ol., 2004; Lin ef al., 2000) for dmax,
(Fig. 8) and in the range (Guangzheng ef al., 2003;
Viana ef al., 2004) for dmax;for EL and QSL (Fig. 9). Then
Gauss point's number is varied from 1 to 10 using the
gsame values of the other factors. In Fig. 10, error curves
show a minimum at PG =8 forthe CSL. Note that for

143

6
Fig. & Variation of error norm with dmax,
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2
-

Fig. 10 Variation of error norm with NG

PG =1 the resulting matrix is singular. Finally, the effect
of the nodal arrangement on the error norm is shown in
Fig. 11. All models yields accurate solutions, so
increasing the number of nodes in the model increases the
accuracy of the result, thus the size of * ;also decreases.

In this second part, the error is calculated for a
quadratic basis according to the same previous steps. For
the first calculation, results show that for the values of
dmax;<2, certain matrices are singular, calculation is then
made for dmax;>2.01. In Fig.12, high values of error norm
are noticed at 2.01. Curves show that errors generated by
the functions CSQ and EQ presents almost the same
values in the neighborhood of -2.8. Thus the value
dmax, =3 iz used for the remainder of calculation. For the
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Fig. 12 Variation of error norm with dmax,
257 dmax1 =2 —— (50
255 dmax2=3 —— EQ
NG=8 -=- 50
-2.6
B 2651 -
:q" -2.71
-2,754
-2.81
-2.85 T T T T T T T 1
1 15 2 25 3 35 4 4.5 5
dmax2

Fig. 13 Variation of error norm with dmax,

-0.57

Fig. 14 Variation of error norm with NG
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Fig. 15 Variation of error norm with N

variation of dmax,, weak values of errors are reached at 1
and 2 values after what, the error increases for the three
functions (Fig. 13).

The effect of NG number is then given by Fig. 14, the
EQ curve error shows a mimmuim at NG = 8. The influence
of the step mesh on the solution 1s also studied. Figure 15
shows that when the step decreases the error decreases
but increases after N = 101 nodes. In this case, the values
of dmax,, dmax, and NG can not obligatorily generate a
good precision for all models.

CONCLUSION

The MLPG method is a very recent numerical one and
is very aftractive for the resolution of the partial
differential equations because it does not need the mesh
imposed by the finite element method.

This present reserch proposes the application of the
MLPG method to simulation of electromagnetic problems
with inhomogeneous domain of analysis. The aim had is
to study the influence of various factors appearing in the
discrete equations of the problem. The study was made
on a set of equidistant nodes and the following
conclusions could be drawn:

+ The linear basis avoids the singularity of the
matrices.

* A good accuracy could be obtained for larger domain
of mfluence of weight functions and lowest size
support domain of test functions.

¢ With the increase of the domain influence, the cost of
memory for saving global stiffness matrix and
computational time would be mcreased.

+ Increase the number of nodes does not wnply a
reduction in the error and depends on the choice of
the parameter dmax.

+ A large number of Gauss points 18 necessary for an
accurate solution.
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For the quadratic basis, the exponential gives more
accurate results. For a linear basis, the cubic spline
function is preferred.

One noticed the very weak order of the error norm
found in each stage of calculation. The results obtained
by the MLPG method conform very well with the DF
results by making a suitable choice of the various
parameters used.
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