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Abstract: The study was conducted at Damintun town, Shenyang city, Liaoning Province of China, in order
to analyze the spatial variability of soil Electrical Conductivity (EC) under greenhouse vegetable plantation and
to compare the differences of the spatial variability using different data sets. A micro area of 8%5.7 m with
0.4x0.3 m regular rectangle grids subdivision was chosen and totally 420 pomts of soil EC was ir-situ measured
using a W.E.T.- sensor. The total data was named as data sets A and was divided into 3 groups that named as
data sets B, C and D. The results showed that the mean, minimum, maximum, percentiles 25, median and
percentiles 75 values were a little different among the four data sets. The histograms for soil EC showed that
the data fitted normal distribution for each data sets. Soil EC was spatially dependent and modeled quite well
with different data sets. The anisotropic semivariograms showed that the structural component of sample
variance for data sets B and D was highly spatial dependence with the ratio of C/(C+C) »75%, while data sets
A and C exlibited middle spatial dependence. The 1sotropic semivariograms showed that all the data sets
having middle values of nugget effects and 50% of the C/(C+C), mndicated that the greenhouse vegetable
plantation have led to sample dissimilarity in the small sampling distance within a small area. The maps obtained
with kriging were quite similar with different data sets. Although, the smoothing effect existed with all the four
data sets, kriging remans the best local estimator when the data 1s reduced. The smoothing effect of kriging
can be supplemented with classical statistics. It 15 concluded that geostatistics combined with classical
statistics is an ideal way to examine the spatial variability of soil properties in a micro- field scale. Because the
soil EC was high in this study, it is suggested that measures be taken to avoid the accumulation of soil salt in
greenhouses by applying fertilizers rationally according to soil fertility, vegetable varieties and fertilizer
properties 1 the study region.
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INTRODUCTION

Soil physical, chemical and biological properties are
all likely to change markedly across small distances,
within a few hectares of farmland, witlin a suburban
house lot and even within a smgle soil ndividual
(Cambardella et al., 1994; Chien et al., 1997; Tiang et al.,
2005a; Liang et ad., 2003; Paz-Gonzilez et al., 2000). Spatial
variability m soils occurs naturally from pedogenetic
factors, while much variability can also occur as a result
of land use and management (Tiang et al., 2005b, 2005¢;
Paz-Gonzilez et al., 2000). The small-scale variability may
be difficult to measure and not apparent to the casual
observe, but 1t has practical uses i managing soil fertility
for a given field (Brady and Weil, 2002; Tiang et al., 2006;
Van Meirvenne, 2003).

Salt-affected soils adversely affect plants because of the
total concentration of salts (salinity) in the soil solution
and because of concentrations of special ions, especially
sodium. Salinity is measured primarily as the Total
Dissolved Solids (TDS) or Electrical Conductivity (EC).
Pure water 1s a poor conductor of electricity, but
conductivity increase as more and more salt is dissolved
in the water, thus, the EC of the soil solution gives us an
indirect measurement of salt contents. The EC can be
measured both on samples of soil or on the bulk soil
in situ (Brady and Weil, 2002). Advance in
instrumentation now allows rapid, continuous field
measurement of bulk soil conductivity, which, i tumn, s
directly related to soil salinity. Enough EC data can be
transformed into a map that showing the spatial variation
of soil salinity of a field or across a parcel of land.
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Greenthouse plantation is a major way of vegetable
production during winter in Morth Chita Wany problems
have already appeared it soils of vegetable greenbiouses
utwder heary application of fertilizers and other chemicals
like pesticides and hommones ez, the frequent
ooowtretice  of sodl  bhorne  diseases,  soluble  salt
accwnulation, degradation of sod guality and decrease
in soil productity (Jiangefal, 2003; Jiao and L1, 2003,
Liefad, 2004; Livef of, 2005, Zhang ef al., 2006). Sodl salt
accnilation has beenregarded as a key factor thatlimits
wegetable productionin greenhouges in North China, thus
the survey of salirdty in greenhogse soils is the basis on
which sustainable measures can be taken (L1 ef al., 2004,
Zhangef al, 2006).

The objectives of this shady were to analyze the
spatial wariability of scil electrica condocivty in oa
vegetable greerhouse field with different data sets and to

map and compare the distribition of soid EC using
differerit data sets.

MATERIALS AND METHOD S

Thiz stady was conducted a D aminban town (41° 50
M, 1227553 E), Bhetrrang city, Liaoning Provinee of Clina
in October 2005, It 15 located in a cordinerdal temperate
monsoon zone, with a diy-cold winter and a warm-wret
sumier. The aramal temperatore ranges 7 0-2 097, anrmaal
precipitation ranges 650-700 mm atd armaal non-frost
petiod ranges 150-170 days A wegetable greenhouse with
11 years of plantation was selected as the study site. The
greerthouse was about 0.1 ha and the previous vegetable
planted was tomato, The greerhouse sl was amended
with 4000 kg syrthetic fertilizer ha™ and &0 t chicken
matware ha™ each wear. The soil at the study site is
meadow soil. & micto ates of 53237 m with 0.4=0.3 m
regalar rectangle grids subdivision was chosen and
totally 420 points of soi Electtical C onductivity (EC) was
in-sifu meamwed using a WET.-sensor. The WET -
senst iz a frequency domain dielectric sensor that
meanres permittivity, condoctiwty and temperatore,
which cat be used for m ondtoring soil water content and
EC it horticulture. Figare 1 shows the spatial location of
the total sampling points and the corresponding seil EC
walues.

To compare the spatial variability of soil EC with
different data sets, we used the 420 ine site meamued EC
values as data sets A and divided the total data into three
groups and named as data sets B, © and D according to
the data mamber, i e, data sets B consists in mamber 1, 4,
T and so oty data sets consists inmuamber 2, 5, 8 and so on
and data sets C consists m mamber 2, 6, 9 and so on

Clagsical statistical parameters, ie, mean, standard
denation, coefficiert of vaiation median minimum,
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Fig 1: 3patid location of the total sampling points and
the corresponding soil electrical conduetivity
walue

maxitan and data normaity, were calodated vsing 3P33
11.0 software. Isotropic atd ad sotropd e semivati atees of
data were caloulated using G337 geostatisticd software
(Gamma Design Joftware, 20000, 3 emivariance vl is
defined in the folowing equation

HiL) H

?’(h)=ﬁ§[2[xij—z[xi+hj] (1)

where HNih) isthe mamber of sample pairs at each distance
irterval hoand =) and =it are the walues of variable
at arry two places separated by distance b The
sethivariograt is the plot of the semivariatice againist the
digtarice. Itz shape indicates whether the wariable is
gpatially dependert. Experimental semivariogyatns were
fitted by theoreticd models that have well-known
parameters nugget ), sl O+ and range of spatial
dependence a.

The contoue maps of soil EC obtainedwith different
data sets were constructed using G5 software.

RESULTS AND DISCU SSION

Summary statistics: The summary statistics of sol EC for
the fouwr data sets were lated in Tahle 1. The thean,
mirdttn, maximun, percentiles 25 median sndpercertiles
75 walueswere alittle different among the fowr data sets.
Compared with data sets A, data sets B had higher while
data sets D had low et mean value, data sets © had higher
while data sets D had lower coefficient of wariati on.

Although, the soil EC data were obtained within an
atea of orily 456 m®, the highest value was sbowt barice as
much as the lowest walue for each data sets. The median
values were a littfle lower than the mean values in each
data sets (Table 1, indicding that the test variable was
affected by some extreme higher walues a the stadied
soale (langef al, 20054).



Environ. Res. J., 2 (3): 125-130, 2008

Table 1: Summary statistics of soil electrical conductivity with different
sampling data sets

Data Data Data Data

sefs A sets B sets C sets D
Samnpling number 420.0 140.0 140.0 140.0
Mean (mS m™) 241.7 246.3 243.4 2354
Standard deviation 61.50 62.40 63.30 58.60
Coefficient variation (%)  25.45 25.36 26.00 24.91
Minimum (m$ m™) 129.0 135.0 129.0 140.0
Maximum (mS m) 464.0 464.0 445.0 430.0
Percentiles 25 (mS m™!) 198.0 201.0 200.0 190.0
Median (mS m™) 235.0 236.0 238.0 225.0
Percentiles 75 (mS m™") 277.0 279.0 280.0 268.0
Skewness 0.650 0.770 0.390 0.820
Kurtosis 0.400 0.970 -0.150 0.520

Although, the differences of the ordinary statistical
data were not too great, the Skewness and Kurtosis were
different from each other. The Kurtosis for data sets B
was 0.97, but it was -0.15 for data sets C (Table 1),
indicating that the neighboring data was quite different
from each other within the small field scale.

As shown in Fig. 2 from data set A, about 15% of the
total samples had soil EC value lower than 180 mS m ™',
about 70% of the total samples had soil EC value from
180mS3m ™ to 300mS m ™" and only about 6% of the total
samples had soil EC value greater than 350 mS m™". The
histograms for soil EC showed that the data fitted normal
distribution for each data sets.

Variograms: The directional variograms were computed
i four principle directions of east-west (0°), southeast-
northwest (45°), south-north (90°) and northwest-
southeast (135°) with a tolerance of 22.5°. The model-
fitted parameters were listed in Table 2. The best-fitted
model for data sets A, C and D was exponential,
while that for data sets B was linear. The F-test
showed that all the best-fitted semivarigram models
were significant at the 0.01 or 0.05 level. The anisotropic
semivariograms indicated that the spatial structures
of data sets A, B, C and D were geometrically nested
with an amsotropic ratio of 1.10, 3.55, 1.04 and 1.56,
respectively. The anisotropic semivariograms for all the
four data sets in the 0° exlubited the strongest
anisotropies, as indicated by their maximal differences
between the major and minor axis range parameters (A,
and A;) in their models (Fig. 3 and Table 2). The
anisotropic semivariograms showed that the structural
component of sample variance for data sets B and D was
highly spatial dependence with the ratio of CAC+C)
>75%, while data sets A and C exhibited middle spatial
dependence (Cambardella et al., 1994).

Figure 4 showed the scaled experimental
semivariances and the adjusted semivariogram models for
soil EC with different data sets and the corresponding
model-fitted parameters were listed in Table 3. Soil EC was
spatially dependent and modeled quite well with different
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Fig. 2: Histograms for soil electrical conductivity with
different data sets
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Table 2: Parameters of the best-fitted semivariogram model for anisotropic variograms

Effective range

------------------------------ CHCGHO)
Ttem Model Nugget Cy Sill G+C Ay (m) A; (m) (%) Model R? R3S F-test
Data sets A (n=420)  Exponential 3491 8499 75.4 68.8 589 0.217 5.99x10° 4.57%
Data sets B (n=140)  Linear 3218 12953 68.5 19.3 75.2 0.485 1.56x107 13,714+
Data sets C (n =140)  Exponential 3670 9010 72.7 70.2 593 0.361 7.15x10° 8.22%%
Data sets D (n = 140)  Exponential 2831 11757 1.8 12.72 75.9 0.596 6.17<107 21.47%*
# ## F test significant at the 0.05 and 0.01 levels, respectively
Table 3: Parameters of the best-fitted semivariogram model for isotropic variograms
Item Model Nugget Cy Sill G+C CHGHC) (%) Range A(m) Model R? RSS F-test
Data sets A (n=420)  Exponential 3260 6521 50.0 20.99 0.413 3.33x10° 11.61%*
Data sets B (n=140)  Exponential 3390 6781 50.0 20.99 0.564 2.08x10° 18,83
Data sets C (n=140)  Exponential 3430 6861 50.0 20.99 0.514 2.81x10° 15.30%%
Data sets D (n = 140) Spherical 3420 6841 50.0 13.93 0.576 4.32x10° 19,77
#% F test significant at the 0.01 level

oo % 90°
5008 O 88689 o 45° + 135° |
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Data sets D (n = 140)

n
1] T T T T 0 T T T
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Fig. 3: Anisotropic semivariograms for soil electrical conductivity with different data sets
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Fig. 4: Isotropic semivariograms for soil electrical conductivity with different data sets

data sets. The best-fitted model for data sets A, B and C
was exponential, while that for data sets D was spherical.
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The F-test showed that all the best-fitted semivarigram
models were significant at the 0.01 level The nugget and
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Fig. 5: Maps obtained with block kriging showing the spatial distribution of soil electrical conductivity with different

data sets

the C/(Cy+C) for all the 4 data sets were quite similar. The
range of spatial dependence was 20.99 m for data sets A,
B and C, while that for data sets D was 1393 m.

The nugget effect could be viewed as an indicator
of continuity at close distances, as a semivariogram was
basically a plot of sample dissimilarity between sample
distances (Paz-Gonzalez ef af., 2000). All the data sets
having middle values of nugget effects and 50%% of the
C/HC,#C), indicated that the greenhouse vegetable
plantation have led to sample dissimilarity in the small
sampling distance within a small area.

Spatial distribution of soil EC via kriging: Figure 5
showed the contour maps of soil EC obtained with kriging
with different data sets, respectively. On the whole, the
contour maps were quite similar with each other, but
differences existed in some local areas. The maps obtained
with kriging showed that the smoothing effect existed
with all the four data sets. Kriging aims at local accuracy
through minimization of a covariance-based error
variance, it provides a unique estimation map with a
characteristic uneven smoothing effect that increases
further away from the data locations: the kriging estimator
ig locally accurate but does not reflect the texture (spatial
variability) of the sample data as modeled by the
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covariance (Journel ef af., 2000). The smoothing effect in
this study is clear in this study. Firstly, as comparing
Fig. 1 with Fig. 5, some points with soil EC greater than
310 mS m™ in Fig. 1 were neglected in Fig. 5. Secondly,
there were about 10% of the samples having scil EC
greater than 330 mS m™ as shown in Fig. 2 with data sets
A, but it could not be identified how much area having
goil EC greater than that value in Fig. 5. However, when
the sampling points reduced to one-third of the total
number, as from data sets A to data sets B, C and D, the
maps were similar as shown in Fig. 5, but two-third of the
total data were missing in data sets B, C and D using
classical statistical method. It appears that global
accuracy (semivariogram reproduction) cammot be
obtained without sacrificing local accuracy. Kriging,
notwithstanding its smoothing effect, remains the best
local estimator when it comes to selection at an
unsampled point considered one at a time (Journel ef «l,
2000).

Figure 5 showed that soil EC was very high in the
study area. Zhang et af. (2006) had exarnined the changes
in soil EC and soil salt ions, ie., Ca®, Mg*, K', Na’,
HCO;; CI, SO/ and NO; in vegetable greenhouses in
the same region as in this study and found that Soil EC
was 191, 2.39 and 3.15 times as muchin 1, 4 and 10 year



Environ. Res. J., 2 (3): 125-130, 2008

greenhousesas as in the adjacent upland soil at the depth
of 30 ¢m. The mean scluble salt concentration in 1, 4 and
10 year greenhouses at the depth of 30 cm was 2.09, 2.31
and 3.69 times as much as in the adjacent upland scil,
respectively and it was 77 and 60% higher in 10 year
greenhouse than in 1 and 4 year greenhouses,
respectively. Soil EC value was significantly correlated
with soluble salt concentration and the main contributor
to the salt ions were NO, and K'. The EC value in this
study was similar to that in the 10 year greenhouse in their
study (Zhang et al., 2006). Since, orgamic fertilizers are
often preferred rather than chemical fertilizers to prolong
the time of soil salinization in greenhouses. It is
suggested that measures be taken to avoid the
accumulation of soil salt in greenhouses by applying
fertilizers rationally according to soil fertility, vegetable
varieties and fertilizer properties i the study region.

CONCLUSION

The classical statistical data of soil EC was sunilar but
little difference existed with different data sets. Soil EC
was spatially dependent and modeled quite well with
different data sets. The maps obtained with kriging were
quite similar with different data sets. Although, the
smoothing effect existed with all the four data sets, kriging
remains the best local estimator when the data is reduced.
statistics
considered as an ideal way to examine the spatial
variability of soil properties in a micro- field scale.

Geostatistics combined with classical i
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