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Abstract: Hyperspectral Tmagery (HSI) is widely used in the application domains such as agriculture,
environment, forestry and geology for the identification and observations which demands the efficient
classification accuracy. The supervised classification 1s a challenging task due to limited number of available
training samples compared to large number of spectral bands. This phenomena reduces the classification
accuracy. To overcome this problem, the dimensionality reduction preprocessing step is adopted. This process
reduces the number of spectral bands which leads to decrease in computational complexity and enhancement
n classification accuracy. In this study, ABEPCA (Auto Encoder and Principle Component Analysis) method
is proposed for dimensionality reduction of HSI. The performance of AEPCA is evaluated against AR
(Autoencoder) and PCA (Principle Component Analysis) method. The dimensionally reduced components are
classified using CNN (Convolutional Neural Network) based classifier. The proposed model of dimensionality
reduction demonstrates superior classification accuracy due to effective combination of characteristics of AE
and PCA. The noisy or corrupted pixels are recovered by AE Model and high dimensional image is represented
by efficient fewer number of principle components by PCA is the potential advantage of AEPCA Model.

Key words: Auto encoder and principle component analysis, classification, convolutional neural network, deep

neural network, dimensionality reduction, hyperspectral image

INTRODUCTION

The rich spectral nformation available in remotely
sensed HSI allows for the possibility to distinguish
between spectrally similar materials. However, supervised
classification of hyperspectral images 15 a very
challenging task due to the generally, unfavourable ratio
between the large number of spectral bands and the
limited number of training samples available a priori which
results n the Hughes phenomenon (Hughes, 1968). When
the number of features considered for classification 1s
larger than a threshold, the classification accuracy starts
to decrease. On the contrary, the collection of reliable
traming samples 15 very expensive. To address this issue,
a dimensionality reduction step 1s often performed prior to
the classification process which allows separating the
classes by discarding information that is ineffective for
classification purposes (Zhou et al., 2015).

Dimensionality reduction methods can be divided
into two categories (Sellami and Farah, 2018) feature

selection and feature extraction. Feature selection selects
the best band combmations whereas feature extraction
preserves most important spectral features through
mathematical transformations. Feature extraction mcludes
linear methods and nonlinear manifold learning methods.
The linear methods such as PCA (Tolliffe, 2002) and MNF
(Zhao et al., 2016, Amato et al., 2009) perform well in HSL
data and have low computational complexity. Nonlinear
manifold learning methods features by
reconstructing the underlying mamfold from which the
HSI data was sampled and require ligh computational
complexity. Manifold learning methods are more suitable
for HSI data because of the nonlinear structure of HSI
data that originates from multi-scattering and the
heterogeneity of pixels (Sun ef al., 2014).

Ongoing with the data acquisition process, the
covariance matrix of HST hypercube can be computed in
real time. This offers great potential for HSI embedded
devices to provide not only conventional HSI data but
also pre-processed information (Zabalza et al, 2015).
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Regarding the unsupervised band selection domain, some
approaches were proposed. Cluster-based methods use
clustering techniques in which the first step 1s to compute
a distance measure for each pair of bands. With these
metrics, the bands are grouped in disjoint clusters such
that bands in a given cluster tend to be sunilar to each
other, according to these metrics and bands in different
clusters tend to be dissimilar. After the grouping a
representative  band from each cluster is chosen.
Search-based methods aim at finding a good set of band
by evaluating sub-sets features. Using exhaustive search
strategies to find the best normally
unmanageable for this kind of data, however, several
sub-optimal search strategies like sequential backward

sub-set 1s

selection or evolutionary techmques are used m thus kind
of problem. Rank-based methods use metrics such as
entropy, mutual information and correlation criterion to
sort the bands by their mmportance i the selection
(Lu and Weng, 2007).

Spectral Rhythm (SR) representation 1s a suitable way
to compute bands dissimilarities the proposed SR-based
band selection strategy is as effective as state-of-the-art
hyperspectral dimensionality reduction techniques the
proposed random pixel sampling is able to speed up
the band selection process keeping high accuracy
rates on classification tasks (Santos et al, 2013).

Unlike other mnonlinear dimensionality reduction
methods  the invertibility, volume-preservationand
straightforward  out-of-sample  extension,  makes

Dimensionality Reduction via. Regression (DRR)
interpretable and easy to apply.

The properties of DRR enable learning a broader
class of data manifolds than the recently proposed
Non-Linear Principal Components Analysis (NLPCA) and
Principal Polynomial Analysis (PPA) (Laparra ef al.,
2015). At present, deep learning is one of the foremost

technique in machine learmng and computer vision. This

technique works based on deep neural networks which
has larger capacity of deep feature learning from the
samples. Hinton and Salakhutdno (2006) proposed
dimensionality reduction of the data with deep neural
network (Himton and Salakhutdinov, 2006). The high
dimensional data is transformed into low dimensional data
using multilayer neural network. This 1s achieved by latent
space layer which is smaller than the input and output
layer to reconstruct the high dimensional input vectors.
The Deep Belief Network (DBN) 13 experimented for HSL
dimensionality reduction. The depth of the network plays
an important role in the effectiveness of the dimension
reduction results (Arsa et al., 2016). In this study, a new
method is proposed to reduce dimensions of HSI and
spectral spatial classification (Jia ef al., 2016, Zhao et al.,
2016). The proposed framework is constructed based on
AE for dimensicnality reduction and Convolutional Neural
Network (CNN) for classification. Here, two different HST
data setsare used to evaluate performance of the
proposed model. The overall accuracy at different number
of components, the loss functions are calculated.

MATERIALS AND METHODS

This study mainly introduces to the architecture and
algorithm  of  the
dimensionality reduction and classification of HSI. The
architecture which contains the autoencoder and PCA
Models for dimensionality reduction and CNN Model for
classification purpose as shown in Fig. 1. In first phase,
the HSI with L spectral bands are reduced to the desired
mumber of components PCA or AE or AEPCA
algorithms. In second phase, the spectral spatial features

proposed  methodology  for

are extracted from the resultant components and fed to
CNN Model. The classification model is trained with the
input image feature to produce the predicted classified
map.
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Fig. 1: Architecture for proposed HST dimensionality reduction and classification model
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Fig. 2: Feature extraction using dimensionality reduction method for HSI

Dimensionality reduction: The primary scheme of
dimensionality reduction for HSI 13 given as shown in
Fig. 2. The input T. spectral bands are reduced to M
components which are small numbers compared to L. HSI
is represented by 3D image with the dimension of R™%*,
each pixel P, is represented as P, = [P, P, ..., P, ] where, L
is the number of spectral channels and i =[1, ..., M] where,
M represents spatial features in 2D. Here, M = RxC,
in which R is the number of rows and C is the
number of columns. The objective of reduction of
dimensions of HSI is to get a reduced image Ty from T,
with the lesser dimensions M where M<<L. The
dimensionality reduction can be expressed as:

I = (I, L) (1)

In>
Where:

f()=
L =

The reduction function
The No. of spectral bands of mput image [,

In this study, f () is considered for experimentation
are unsupervised and linear reduction method PCA,
unsupervised and non linear reduction method AE and
AEPCA method which is combination of both AE and
PCA method.

Dimensionality reduction using autoencoder: The
autoencoder model can be used to both dencising and
reduction of bands 1n HSI (Vincent et al., 2010). The AE
Model primarily constructed using multilayer back
propagation neural network. This model consists of 1
input layer, 1 output layer and many hidden layers. In this
architecture, the size of nput and output layer nodes
are equal to L spectral bands. All hidden layers has
bias nodes. The main function of AE i1s that it takes
the pixel vector P as an input to the network and
reconstruct the mnput pixel P at the output O. This is done
by training the autoencoder model in unsupervised
manner. Once, the AE Model 1s tramed up to the desired
accuracy, pixel P represented with L. number of spectral

bands is effectively represented at the latent space with
M number of nodes where M<<L. By utilizing this, L
dimensions are reduced to M dimensions and also this
model denoise the noisy bands if any. The computation
is carried out as in the procedure from Eq. 2-8 by using the
notation which are given in Fig. 3

D = f(wh1= bm) (2)

Where:
hlnet = bhl +Z]LW]P] (3)
For all K nodes and by, is the bias at h, layer.

Similarly for consecutive layers it 13 shown that:

h, = f(WhZ’th) (4)
h, = (W, b,) &)
0o=f(W,b,) (6)

The main intention of training of the model is to
reduce the reconstruction loss between nput p and
output pixel o where, C is a loss function which is given
as in Eq. 7. The mean square error 1s used as loss function
which is expressed in Eq. 8:

p,o= argnﬁn[c(p(i),o(l))] (7

poff ®)

C(w,b):;—nzp:

Where:

w = The set of all weights

b = The biases

n = The total munber of traimng samples
p = The set of input

o = The actual output for the mput p
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Dimensionality reduction using AEPCA: In this method,
the HST is denoised using AE method as explained above.
But the reduced bands are not extracted from latent space
as given m that study. Rather, the reconstructed image at
the output layer 1s considered for the application of PCA
i the next stage for dimensionality reduction. The
procedure for application on AEPCA method on HSI
is depicted in Fig. 4. PCA is a statistical technique
used to transform, inter correlated variables into a set of
new potentially uncorrelated variables. The lnear
transformation of the HSI using PCA results in principle
components these may be more interpretable than the
original spectral bands. Few number of M components
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with maximum amount of variance can represent large
number of T, spectral bands. This ability is an important
economic condition which saves space and computation
time in advanced stages of HSI processing. Tt is required
compute covariance, correlation, eigen values and eigen
vectors while applying PCA on HSIL. The eigen values are
computed using the relation as in Eq. 9. The Eigen values
are representedas E= [+, *,, *5, ..., * ] and Eigen Vectors

EV=1Ja, .,fork=1toL bands andp =1 te M
components ] of the covariance matrix computed:
[A)[X]=%[%] )

Where:
[A] = Covariance matrix
[X] = Eigen vector
+ = Eigenvalues

The resulted eigen vectors are sorted in

descending order such that first principle component
must have more details. Then top M components are
chosen which are able to represent more than 99% of the
input details.

Algorithm for dimensionality reduction of HSI:

Step 1; Denoising by autoencoder model:

i Build the autoencoder model for a given data set. Initialize the
appropriate pararmeters

ii.  Preparation of the dataset-normalize image pixels to [0-1] wvalue.

Separate the pixels training and testing samples

Train the model with the training dataset until the desired accuracy

is achieved for reconstruction or permissible threshold error

Test the model with testing samples. If the testing accuracy is less

than the desirable, then fine tune the hyper parameters of the model

and repeat the process

jii.

iv.

&0
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Fig. 5: HST classification CNN Model for dimension reduced components

Step 2; Dimensionality reduction using PCA:

i. Set the number of principle comp onents M

ii.  Apply PCA algorithm to the HSI with N spectral bands

iii. ~ Sort the principle components in descending order with respect to
their variances

Select the first M components which is nothing but dimension
reduced HSI

iv.

Classification using CNN: In this study, classification of
reduced channels using CNN Model 1s proposed. It 1s a
potential ~ feature learning model and consist of
convolution, pooling and FCN layers (Santara et af., 2017,
Hu et al, 2015). It 1s capable of learning both macro and
micro level features which ensures the better classification
compared to traditional models. This model is adaptive to
the features of the specified input images and trains
both feature extractor and classifier in supervised mode.
This model 1s based on the principle of deep neural
network architecture which learns  spectral-spatial
features (Lin et al., 2013). The architecture diagram
which presented in Fig. 5 gives details of steps involved
m the classification process. The steps are patch
extraction convolution and maxpooling (Stage 1 and 2)
Fully Connected layer (FCN). The output of the model is
predicted class labels for each corresponding pixel of HSL
The whole model is trained by back propagating the error
which is the difference between predicted and ground
truth pixel.

The first step 13 to extract the patch of the M
components which represents both spatial and spectral
information. In this step, a pixel P, represented by a patch
of the input HSI with its neighbourhood of the size R xC,
(Spatial adjacent features), along M, compenents
(Spectral features) s extracted. The successive pixel
representing patches, contains the overlapping window
of the neighbourhood patches. Then, every patch of the
size RxCxM, 1s fed to stage 1 which is consists of a
convolution layer and a maxpooling layer. The entire
patch is convolved by the weights of lkernels of the size

&1

typically 3x3 or 5x5 which s smaller than the patch
size. The kernel weights extracts features local to the
window as well as across the whole image. In the
same way, F, mumber of feature maps are produced,
each representing specific feature. Since, the M
components are input to this layer, the number of F,
depends on the M components. Hence,
computation complexity of CNN will drastically reduces.
The convolution function 1s computed as given Eq. 10.
The convolved output is fed to Rectified Linear Unit
(Rel.l]) activation function as inEq. 11:

varies

AL=3 f(wi* A (10)
1
Where:
A" = The activation of the ith feature map in lth layer
A" = The activation in ith feature map in 1-1th layer that

is previous layer

The convolution kernel (Filter kernel) for A", b
is bias

Represents convoelution operator

F,=f(A})=max(0,A}) (1)

where, F, 1s feature map of ith layer. The output of
activation function is fed to maxpooling layer where in the
maximum value is chosen from the local pool window
of the feature map. This operation makes the features
to invariant to location and distortion (Meher, 2015;
Hu ez al., 2015) by reducing the spatial size of the feature
maps. After maxpooling, successive stage will get half of
the size of the data of its predecessor stage.

The stage 2 layers helps in detecting higher level
features such as curves and textures. Finally, the feature
maps may have the patterns present in the scene as total
visual concept By adding the stages it increases the

visual luerarchy of the concepts with smaller
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representation. Therefore, similar operation of stage 1
repeated
maxpooling operations. The stage 2 output feature maps
of the size (R /4)x(C,/4)xF, are converted to 1-D vector to
feed to FCN. At the output layer, the input pixel is
classified using The
prediction of the label for a pixel 13 calculated based on

is in stage 2 with same convolution and
softmax activation function.

the probabilities of O number of output classes as n
Eqg 12:

(12)

Where:

Vi = [¥1 ¥2 ¥ - Yol = The input to softmax activation
function at the output layer

The conditional probability of

the ith class

P

1

Algorithm for classification:

i. Ruild the classification Model using CNN. Set the appropriate model
parameters
Prepare of the Dataset-Nommalize image pixels to [0-1] value. Separate
the pixels training and testing sarnp les
Train the model with the training dataset until the desired accuracy or
permissible threshold error

Test the model with testing sarmples. Tf the testing accuracy is less
than the desirable, then fine tune the hyper parameters of the model
and repeat the process

ii.
iii.

iv.

RESULTS AND DISCUSSION

In this study, the datasets used, experimental setup,
obtained results at various conditions and result analysis
are discussed.

Experiment set up and datasets: To study the effect of
dimensionality reduction of HSI different images with
diverse specification are considered m this experiment.
Therefore, the unages captured using different sensors
and having significant environment variations in land
cover, spectral and spatial resolutions are chosen. The
Indian pines (Baumgardner ef af., 201 5) image 1s acquired
from AVIRIS (Awbome Visible Infrared Imaging
Spectrometer) sensor and Pavia University image
(Baumgardner et al., 2015) of Ttaly is captured by ROSTS
(Reflective Optics System Imaging Spectrometer) sensors.
The mmplementation has been done using python with the
help of tensor flow which is an open-source software
library. The autoencoder deep network is built for both
denoising and dimensionality reduction with 4 ludden
layers. The mput and output layers has the number of
nodes equal to the number of bands of HSI. In case of
Indian pines images the number of bands are 220 and in
Pavia University scene the size 18 103. About 60% of
samples are used for tramng, 20% for valdation

62

Table 1: Comparison of classification accuracy obtained after dimensionality
reduction using PCA, AE and AEPCA for classification of Indian

pines images
No. of components  PCA AR AFE-PCA
10 0.8881 0.8069 0.9012
20 0.9363 0.8225 0.9431
30 0.9469 0.8300 0.9669
50 0.9587 0.8912 0.9735
100 0.9606 0.8875 0.9681
150 0.9712 0.9225 0.9790

testing and rest of the samples are used for testing
purpose. In this experiment the loss function used is mean
squared error and L, regulanizer used for penalize the large
magnitude weights. The learning rate is tuned between
10°-10°

The CNN Model used in this experiment for HSI
classification 1s built with the convolution layers,
maxpooling layers and fully connected network,
respectively. Tn this phase, the patch of an image of the
size R xCxN, is extracted from the principle component
and fed to CNN Model. The filter size 1s 3x3xF, for all
convolution layers i which F, 1s the size of feature maps.
The number of features maps chosen depend upon the
number of components which are input to the CNN
Model. To reduce the spatial size of the feature maps to
the half, maxpooling operation 1s carried out followed by
convolution step. The resultant feature of stage 2 is
flattened as single dimension vector and fed to FCN. In
this experiment, the size of the hidden layer nodes are
dependent on the size of 1-D vector. The activation
functions selected for hidden layers and output layers are
Rel.LUU and sigmoidal functions, respectively. The
performance of the proposed model is assessed using
overall accuracy:

No. of successful prediction (13)
Total No. of prediction

Overall accuracy =

Dimensionality reduction and classification of Indian
pines image: To assess performance of the proposed
model, different datasets which represents the diverse
environmental setting are considered (Table 1). In this
case, Indian pines umage covers the area of 2x2 miles by
145x145 pixels with the spectral resolution of 224 bands in
the range of 0.4-2.5 um which covers both visible and
infrared region. This dataset contains one quarter area of
building, railway tracks and lighways and remaming
3 quarter area 18 covered by forest vegetation and
agricultural land. The available ground truth for this scene
has sixteen different classes such as steel structures,
road, railway track, wheat fields, soybean, oats, etc. The
overall accuracy as m Eq. 13 1s used as performance
measuring parameter for classification after dimensionality
reduction. In this image scene, some classes have less
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Fig. 7: Classification map of Indian pines image for 50 components using: a) AE-50 bands; b) PCA-50 bands and ¢)

AEPCA-50 bands

samples such as 45 samples for alfalfa and very large
number such as 2456 for soya bean. The obtained results
from the experiment are presented in Table 1 which lists
testing accuracy at different number of components from
10-150 for AE, PCA and AEPCA methods. By the
observation from Table 1, the less number of components
yielding less accuracy but after 50 input components to
classifier, the accuracy is not significantly increasing.
The wvisual inspection of ground truth image and the
predicted image has been carried out at the component
numbers 10, 20, 30, 50, 100 and 150.

For the perception quality observation of the
dimensionality reduction models, the ground truth
andpredicted 1mages are presented in Fig. 6 a-d for
30 components. Siumnilarly, for 50 components. The
predicted images are given in Fig. 7a-c. It is clearly
demonstrates that the predicted image obtained by
AFEPCA method has better classification accuracy of
97% compared to AE and PCA methods. The loss or
the error value across different number of components
are observed as shown in Fig. 8 and 9. From this
graph it is evident that the loss value after 30 components
reached 0.02 for AEPCA method. The AEPCA Model
for dimensionality reduction 1s outperforming with
clagsification accuracy of 97% by 30 components
which is equal to 14% of total nmumber of spectral
bands.
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> 084 | ] B
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0 T T T T T T
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Fig.8: Classification accuracy after dunensionality
reduction for Indian pines 1mage
0.257
\\
0.20 AN — PCA
3 N ———- AE
= AN
= 0.154 e AE-PCA
> e
2 | e
o104 T~
e
0.05 ™
G T T T N 1
0 30 50 100 150

No. of components

Fig. 9: Classification loss after dimensionality reduction
for Indian pines umage



Asian J. Inform. Technol, 18 (2): 57-66, 2019

Vertical pixels
Vertical pixels

0 100 200 300 0 50 100 150 200 250 300

Horizontal pixels Horizontal pixels

Fig. 10: Classification map of Pavia University image for 30 components using: a)

¢) PCA-30 bands and d) AEPCA-30 bands

Vertical pixels
Vertical pixels

0 50 100 150 200 250 300
Horizontal pixels

Vertical pixels

0 50 100 150 200 250 300
Horizontal pixels

0
100 100
200 ., 200
T
X y
300 =300
o
)
400 > 400
500 P 500
600 600

0 50 100 150 200 250 300 0 50 100 150 200 250 300

Horizontal pixels Horizontal pixels

Ground truth; b) AE-30 bands;

Vertical pixels

0 50 100 150 200 250 300

Horizontal pixels
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Dimensionality reduction and classification of Pavia
University image: To expeniment the model with different
set of characteristics, Pavia University image has been
selected. Tn contrast to Indian pines image it has the
better spatial resolution of 1.2 m’ and has spectral
resolution of 103 bands in the range of 430-860 nm. The
image size is 610=340 pixels. The dataset has the signature
of the objects like building, roads covered with different
materials like bitumen, asphalt, gravel, land cover by
meadows, bare soil, metal sheets structures. The ground
truth image has only ¢ classes. This dataset is applied to
the proposed model to study the performance at the
diverse conditions.

From the results from Table 2 and Fig. 12, it can be
examined that the classification accuracy listed in the
table for corresponding number of dimensionally reduced
components, more number components producing the
more accuracy. But the accuracy for AEPCA 1s better

&4

Table 2: Comparison of classification accuracy obtained after
dimensionality reduction using PCA, AE and AEPCA for
claggification of Pavia University images

No. of components  PCA AE AE-PCA
10 0.9433 0.8928 0.9263
20 0.9113 0.8888 0.9355
30 0.9042 0.9225 0.9413
50 0.9615 0.9640 0.9755

compared to other techmques. The balance between the
number of components and the accuracy can be managed
by compromising with very small loss in aceuracy. For 30
components, the accuracy is 92.63% while for 50
components 1t 18 97.55% for AEPCA method with the loss
of 5% accuracy. Tt means, there is a reduction of 5 times in
space and time complexity with the loss of 5% accuracy.
The predicted output of the AE, PCA and AEPCA
methods along with ground truth unages are shown in
Fig. 10a-d by considering 30 components as input to
classifier. Similarly by considerng 50 components as



Asian J. Inform. Technol, 18 (2): 57-66, 2019

1.00 A

O PCA
0.98 1@ AE —
7 0.96 1 8 AE-PCA — ]
Q
S 0.94 1
<
S 0.92 1
2
£ 0.90 -
O
& 0.88 1
0.86 1
0.84 T T T T
10 20 30 50
No. of components
Fig. 12: Classification accuracy after dimensionality
reduction for Pavia image
0.25 1 PCA
—————— AE
——— AE-PCA
0.20 N
\\
\\\
£ 0151 N\
g AN
% N,
/’—\
S 0.10 1 N
0054 TTTTmme—em
0 T T T T
10 20 30 50

No. of components
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for Pavia image

mput to the classifier, the resultant images are shown
m Fig. 1la-c and 12. From the loss function graph
which is specified in Fig. 13, shows the loss value
obtained by AFEPCA 1z moderately varying from
10-50 components and has lowest loss compared
to other methods.

CONCLUSION

In this study, a new HSI dimensionality reduction
model which is combination of AR and PCA is proposed.
To verify the performance of the model, CNN based
classification 1s applied on the reduced number of
components. This model 13 evaluated with individual AE
and PCA techniques and found that outperforming
against those methods. The same model is applied to
other image with diversified characteristics, then also
AFPCA 1s performing better. The model 15 used to
produce 10, 20, 30, 50, 100 number of components and
evaluated for its classification accuracy. It is found that
more than 90% of accuracy obtained by 10 components
reduced out of 220 bands. From this it can be mferred that
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AEPCA Model is out performing with the classification
accuracy of 97% with the quantity of <15% of original
spectral bands.
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