MEDWELL PUBLICATIONS

ASIAN JOURNAL OF
INFORMATION TECHNOLOGY

Journal Home Page: https://medwelljournals.com/journalhome.php?jid=1682-3915

Maintenance Approach to Reduce Efforts in Software Development Life Cycle

Mahtab Alam

Department of Computer Science, Noida International University, Noida, India

Key words: Software maintenance, scalability, reliability,
mean time between failure (MTTBF), mean time to
recover (MTTR)

Corresponding Author:

Mahtab Alam

Department of Computer Science, Noida International
University, Noida, India

Page No.: 227-232

Volume: 18, Issue 10, 2019

ISSN: 1682-3915

Asian Journal of Information Technology
Copy Right: Medwell Publications

Abstract: Software development process is combination
of several phases and maintenance is one of the major
components of it. It has been considered that about 70%
or more of the total software development budget cost is
expending in maintenance of a software application.
Software maintenance is a process of activities when an
application after deployment to modify an existent
software application due to some error or in anticipation
of future problem. A number of works has been done to
reduce the maintenance cost and effort of an application;
herewith, we are proposing an integral approach to reduce
the maintenance cost while designing the software
application. In this particular research work, we are
proposing different approaches at design phase to reduce
the cost and effort of all kinds of software maintenance
during entire life cycle of an application.

INTRODUCTION

Software maintenance is a set of activity performed
when software undergoes modification to code and
associate documentation due to a problem or the need for
improvement (Pressman, 1997). By the laws of software
evolution, maintenance decisions are aided by
understanding what improves to system overtime. We are
interested in change in size, complexity, resources and
ease of maintenance. Software maintenance is become a
major activity in the industry. A surveys and estimate
made between 1988 and 1990 suggested that an average
as much as 75% of a project software budget is devoted to
maintenance activity over the life of the software.
Software maintenance costs are the greatest cost incurred
in developing and using a software system. Maintenance
cost varies widely from application to application but an
average they seem to be between 2.0-4.0 times
developments costs for large software system (Lawrence,
2003).

Software maintenance is the degree to which it can be
understood, corrected, adapted and/or enhanced. Software
maintenance accounts for more effort than any other
software engineering activity. When the changes in the
software requirement are requested during software
maintenance, the impact cost may be >10 times the

227

impact cost derived from a change required during the
software design, i.e., the cost to maintain one line of
source code may be >10 times the cost of the initial
development of that line (Somerville, 1997). Maintenance
in the wildest sense of post development software support
is likely to continue to represent a very large fraction of
the total system cost (Lawrence, 2003). As more
programs are developed the amount of effort and
resources expanded on software maintenance is growing.
Maintainability of software thus continues to remain a
critical area in the software development era. Verification
and Validation (V&V) for software maintenance is
different from planning V&V for development efforts
(Wallace and Daughtrey, 1988).

Maintenance may be defined by defining four
activities that are undertaken after a program is released
for use. First, activity is the corrective maintenance that
corrects uncovered error after software is in use, adaptive
maintenance, the second activity is applied when changes
in the external environment precipitate modification to
software. The third activity incorporate enhancement that
are requested by customers and is defined by perfective
maintenance where most of the maintenance cost and
efforts are spent. The fourth and last activity is preventive
maintenance which is in anticipation of any future
problem. The maintenance effort distributions in Table 1
(Sunday, 1989).

Asian J. Inform. Technol., 18 (10): 227-232, 2019

Table 1: Anticipation of any future problem

Activity Efforts (%)
Enhancement 51.3
Adaptive 23.6
Corrective 217
Others 3.4
Maintainability has been defined as effort of

personnel hours, errors caused by maintenance actions,
scope of effort of the maintenance action and program
comprehensibility is subject to the programmer
experience and performance (Sneed and Kaposi,
1990).

Cost factor is an important element for the success of
a project. Cost in a project is due to the requirement of
hardware, software and human resources. Cost
estimates can be based on subjective opinion of some
person or determined through the use of models (Jalote,
1997). Reliability-constrained cost minimization cost
subject to a system reliability goal. Reliability of a system
is presented as a function of component failure intensities
as well as operation profile and component utilization
parameters. Let n denote the number of software
components. p denotes the system reliability target
and >0 be the mission time, the probability of failure free
execution with respect to time interval [0,] to be at least
p. We assume that O<p<l. The Total Cost (TC) of
achieving failure intensities A1, A2, ..., An and R(A1,
A2, ..., An, 7)>p (Helander et al., 1998):

AM>0forl1=1,2,..,n

The purpose of software cost model is to produce the
total development effort required to produce a given piece
of software in terms of the number engineers and length
of time it will take to develop the software. The general
formula used to arrive at the nominal development effort
by Carlo et al. (2002):

PMiia = c.KLOC*
Where:
PM : Person per month
KLOC : Thousand of line of code

Cand k : Constant given the model

Software metrics are numerical data related to
software development. Metric strongly supports software
project management activities. They relate to the four
function of management which are as follows:

Planning: Metric save as a basis of cost estimating,
training planning and resource planning, scheduling and
budgeting.

Organizing: Size and schedule metrics influence a
project organization.

Improving: Metrics are used as a tool for process
improvement efforts should be concentrated and measure
the efforts of process improvement efforts.

Controlling: Metrics are used to status and track software
development activities for compliance to plan.

The first step on the maintainability analysis using
metrics is to identify the collection of metrics that reflects
the characteristics of the viewpoint with respect to which
the system is being analyzed and discard metrics that
provide redundant information (Muthanna et al., 2000).

Object oriented technologies greatly influence
software development and maintenance through faster
development, cost saving and quality improvement and
thus has become a major trend for methods of modern
software development and system modeling (Chu et al.,
2002). Class, object, method, message, instance variable
and inheritance are the basic concept of the object
oriented technology (Kan, 2003). Object oriented metrics
are mainly measures of how these constructs are used in
designed process. Classes and methods are the basic
constructs for object oriented technology. The amount of
function provided by object oriented software can be
estimated based on the number of identified classes and
metrics or its variables.

Improving the quantity and reducing the cost of
products are fundamental objective of any engineering
discipline. In the context of software as the productivity
and quality are largely determined by the process to
satisfy the engineering objectives of quality improvement
and cost reduction, the software must be improved. Cost
factor is the crucial aspects of project planning and
managing. Cost overrun can cause customers to cancel the
project and cost underestimate can force a project team to
invest much of its time without financial compensation.

MATERIALS AND METHODS

Maintenance; A different opinion: The maintenance of
software is affected by many factors such as the
availability of skilled staff, the use of standardized
programming languages and inadvertent carelessness in
design. Implementation and testing has an obvious
negative impact on the ability to maintain the resultant
software. Additionally, some software organization may
become maintenance bound, usable to undertake the
implementation of new projects because all their
resources are dedicated to the maintenance of old
software. The opinion of programmers, managers and
customers are as follows:

228

Asian J. Inform. Technol., 18 (10): 227-232, 2019

Programmer’s opinion: According to programmer’s
opinion, a program with a high level of maintainability
should consist of modules with loose coupling and high
cohesiveness, simple, traceable, well structured, well
documented, concurrent sufficiently commented code,
well defined terminology of their variables. Furthermore,
the implemented routines should be of a reasonable size,
preferably <80 lines of code with limited fan-in and
fan-out. Finally, the declaration and the implementation
part of each routine must be strictly separated.

Program managers opinion: Program manager always
aims at the limitation of effort spent during the
maintenance process. They also focus on the high
reusability of one program.

Customers opinion: Nowadays because of the high
demand of the successful software systems and external
changes, a high level of modification can be attributed to
changes in requirement.

Design consideration; A better way to reduce cost and
efforts: Several elements affect and shape the design
of the application. Some of these elements might be
non-negotiable and finite resources such as time,
money and workforce. Other elements such as available
technologies, knowledge and skills are dynamic and vary
throughout the development life cycle. Analyze the high
level design of a software system for the purpose of
prediction with respect to change difficulty from the point
of view of the testers and maintainers (Briand et al.,
1993). The decision for scalability is set in the context
of a software engineering environment (Han, 1997).
Although, these elements influence the design of an
application to some extent, the business problems dictates
the capabilities application must have for a satisfactory
solution such are as follows:

Design for scalability: Scalability is the capability to
increase resources to produce an increase in the service
capacity. A scalable application requires a balance
between the software and hardware used to implement the
application. The two most common approaches to
scalability are:

Scaling up: Refers to achieving scalability by improving
the existing servers processing hardware. Scaling up
includes adapting more memory, more or faster processes
or migrating the application to a powerful computer.
Typically, an application can be scale up without
changing the source code. In addition, the administrative
efforts do not change drastically. However, the benefit of
scaling up tapers off eventually until the actual maximum
processing capabilities of the machine is reached as
shown in Fig. 1.

229

Processing
capabilities
gt scalability

Fig. 1: Scaling up

Processing
capacity

Ideal scalability

bbb da

Fig. 2: Scaling out

Scaling out: Refers to distributing the process load across
more than one server. This is achieved by using multiple
computers; the collection of computers continues to act as
the original device configuration from the end user
perspective. The application should be able to execute
without needing information about the server on which it
is executing. This concept is called location transparency.
It increases the fault tolerance of the application as shown
in Fig. 2.

Design has more impact on the scalability of an
application than the other three factors. As we move up
the pyramid, the impact of various factors decreases as
shown Fig. 3. To design for scalability, the following
guidelines should be considered:

» Design process such that they do not waist

Design process so that processes do not complete for
resources

Design processes for commutability

Partition resources and activities

Design component for interchangeability

Design for availability: Availability is a measure of how
often the application is available to handle service
requests as compared to the planned run time. Availability
also takes into account repair time because an application
that is being repaired is not available for use. The
measurement types of availability is shown Table 2. The
formula for calculating availability is:

Availability = (MTBF/(MTBF+MTTR))x100

The MTBF for a system that has periodic
maintenance at a regular interval can be described by
Mondro (2002) as follows:

Asian J. Inform. Technol., 18 (10): 227-232, 2019

Table 2: Measurement types for calculating availability

Names Calculation

Definition

Mean Time Between Failure (MTBF) Hours/Failure count
Mean Time To Recovery (MTTR) Repair Hours/Failure count

Average length of time the application runs before failing
Average length of time needed to repair and restore service after a failure

Hardware tuning

/ Product tuning

Code tuning

Less impact of
scalability

Design tuning

/

Fig. 3: Design pyramid
MTBsz R, (tdt/ (1- R, (t)

where, R(t) = exact reliable function assuming periodic
maintenance every T (hours). Designing for availability
include anticipating, detecting and resolving hardware and
software failures before they result in service errors faults
or data corruption thereby minimizing downtime. To
design for availability of an application the following
guidelines should be considered:

Reduce planned downtime: Use rolling upgrades, e.g.,
to update a component on a clustered server, we can move
the server’s resources group to another server, take the
server offline, update the component and then bring the
server online. Meanwhile, application experiences no
downtime.

Use Redundant Array of Independent Disks (RAID):
Raid uses multiple hard disks to store data in multiple
places. If a disk fails, the application in transferred to a
mirrored data image and the application continues
running. The failed disk can be replaced without stopping
the application.

Design for reliability: The reliability of an application
refers to the ability of the application to provide accurate
results. Although, software standard and software
engineering processes guide the development of reliable
or safe software, mathematically sound conclusions that
quantify reliability from conformity to standard are hard
to drive. Reliability measures how long the application
can execute and produce expected results without failing.
The following tasks can help to create reliable
application.

» Using a good architectural infrastructure

Including management information in the application

230

Implementing error handling
e Using redundancy

Design for performance: Performance is defined by
metrics such as transaction throughput and resource
utilization. An application performance can be defined in
terms of its response time. To define a good performance
the following steps should be taken.

» ldentify project constraints

Determine services that the application will perform
Specify the load on the application

Design for interoperability: Interoperability refers to
the ability to operate an application independent of
programming language, platform and device. The
application need to design for interoperability because it
reduces operational cost and complexity, uses existing
investment and enables optimal deployment. To design
application interoperability the following tasks should be
considered:

Network interoperability
Data interoperability
Application interoperability
Management interoperability

Design for globalization: Globalization is the process of
designing and developing an application that can operate
in multiple cultures and locales. Globalization involves:
* ldentifying the cultures and locales that must be
supported

Designing features that support those cultures and
locales

Writing code that executes property in all the
supported cultures and locales

Globalization enables to create application that can
accept, display and output information in different
languages scripts that are appropriate for various
geographical areas. To design for globalization the
following information should be kept in mind:

Character classification
Date and Time formatting
Number, currency, weight and measure convention

Design for clarity and simplicity: Clarity and simplicity
are enhanced by modularity and module independence by
structured code and by top-down design and implemented

Asian J. Inform. Technol., 18 (10): 227-232, 2019

among other techniques. The allocation of functional
requirements to elements of code represents an important
step in the design process that critically impact
modifiability (Munson, 1978).

The following guidelines for the definition of
modules will have an extremely positive impact on
maintainability:

» Use hierarchical module control structure whenever
possible

Each module should do its own housekeeping as first
act

Module should have only one entrance and exit
Limit module size. Up to 200 statements

Reduce communication complexity by passing
parameters directly between modules

» Use “‘go-to-less’ or structured programming logic
Design for readability: Maintenance will ultimately
result in changing the source code, understanding of
thousand lines source code is almost impossible if source
code is not well supported by meaningful comments. So,
readability of the source code can be estimated by finding
percentage of comments lines in total code. A new factor
Common Ration (CR) is defined as Aggarwal et al.
(2002):

« CR=LOC/LOM

LOC = Total lines of code

LOM = Total lines of commented in the source code

RESULTS AND DISCUSSION

The above practices of designing software will reduce
the cost and efforts of maintaining software during
maintenance phase of software development life cycle.
Design of scalability will help to scale up and scale in of
software at any time while design of reliability will helps
to develop a software which will provide the desired
output. Alam (2010) presented a software secure
requirement metrics using a checklist in which all the
security parameters proposed by Jan Jurjen are
considered. With the help of these available checklists
Degree of Secure Requirement (DSR) metrics can
calculated the security concern of any proposed
requirement (Alam, 2010; Bokhari and Alam, 2014).

CONCLUSION

Software maintenance is a set of activities when
software undergoes for improvement due to an existing
error or in anticipation of future problem. The life span of
software entirely depends on a good design. Software
design provides a blue print in which the entire software
built. A good design software will be less problematic, so,

231

software industries requires a good design paradigm and
approaches for reducing the cost and efforts of software
maintenance. In this study, we have proposed a number of
design approaches for the same. In future, we will develop
some design tool for better way of designing a software
application.

REFERENCES

Aggarwal, K., Y. Singh and J. Chhabra, 2002. An
integrated measure of software maintainability.
Proceedings of Annual Reliability and
Maintainability Symposium, Jan. 28-31, Seattle WA.,
pp: 235-241.

Alam, M., 2010. Software security requirements
checklist. Int. J. Software Eng., (IJSE.), 3: 53-62.

Bokhari, M.U. and M. Alam, 2014. Security requirement
for software quality-a survey of engineering
discipline. Int. J. ICT. Manage., 1: 125-133.

Briand, L.C., S. Morasca and V.R. Basili, 1993.
Measuring and assessing maintainability at the end of
high level design. Proceedings of the International
Conference on Software Maintenance, September
27-30, 1993, IEEE, Montreal, Quebec, Canada,
pp: 88-87.

Carlo, G., J. Mehdi and D. Mandrioli, 2002.
Fundamentals of Software Engineering. 2nd Edn.,
Prentice Hall, Upper Saddle River, New Jersey,
USA.,.

Chu, W.C., C.W. Lu, C.H. Chang, Y.C. Chung, Y.M.
Huang and B. Xu, 2002. Software maintainability
improvement: Integrating standards and models.
Proceedings of the 26th Annual International
Conference Computer Software and Applications,

August 26-29, 2002, IEEE, Oxford, UK.,
pp: 697-702.
Han, J., 1997. Designing for increased software

maintainability. Proceedings of the International
Conference on Software Maintenance, October 1-3,
1997, IEEE, Bari, Italy, pp: 278-286.

Helander, M.E., M. Zhao and N. Ohlsson, 1998. Planning
models for software reliability and cost. IEEE. Trans.
Software Eng., 24: 420-434.

Jalote, P., 1997. An Integrated Approach to Software
Engineering. 2nd Edn., Springer, Berlin, Heidelberg,
New York, ISBN: 9780387948997, Pages: 497.

Kan, K.S., 2003. Metrics and Models in Software Quality
Engineering. 2nd Edn., Addison-Wesley, Boston,
Massachusetts, USA., ISBN: 9780201729153,
Pages: 528.

Lawrence, S., 2003. Software Engineering Theory and
Practices. 2nd Edn., Pearson Education, Upper
Saddle River, New Jersey, USA.,.

Mondro, M.J., 2002. Approximation of mean time
between failure when a system has periodic
maintenance. IEEE. Trans. Reliab., 51: 166-167.

Asian J. Inform. Technol., 18 (10): 227-232, 2019

Munson, J.B., 1978. Software maintainability: A practical
concern for life-cycle costs. Proceedings of the
International IEEE 2nd International Computer
Software and Applications Conference
(COMPSAC’78), November 13-16, 1978, IEEE,
Chicago, Illinois, USA., pp: 54-59.

Muthanna, S., K. Kontogiannis, K. Ponnambalam and
B. Stacey, 2000. A maintainability model for
industrial software systems using design level
metrics. Proceedings Of the 7th International
Working Conference on Reverse Engineering,
November 23-25, 2000, IEEE, Brisbane, Queensland,
Australia, pp: 248-256.

Pressman, R., 1997. Software Engineering: A Practical
Approach. 4th Edn., McGraw-Hill Education, New
York, USA.,.

232

Sneed, H.M. and A. Kaposi, 1990. A study on the effect
of reengineering upon software maintainability.
Proceedings of the International Conference on
Software Maintenance, November 26-29, 1990,
IEEE, San Diego, California, USA., pp: 91-99.

Somerville, 1., 1997. Software Engineering. 5th Edn.,
Addition Wesley, Boston.

Sunday, D.A., 1989. Software maintainability-a newility.
Proceedings of the International Annual Reliability
and Maintainability Symposium, January 24-26,
1989, IEEE, Atlanta, Georgia, USA, pp: 50-51.

Wallace, D.R. and T. Daughtrey, 1988. Verifying and
validating for maintainability. Proceedings of the
International Computer Standards Conference on
Computer Standards Evolution: Impact and
Imperatives, March 21-23, 1988, IEEE, Washington,
DC., USA., pp: 41-46.

