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Abstract: This study introduces an efficient view based algorithm for 3D non-rigid object retrieval that accepts
all the models. The algorithm 1s based on describing the 3D Model using multi-scale local visual features. To
reduce the cost of distance computation and features storage, the extracted features integrated into listogram
using Bag of Features (BoF) approach. The proposed algorithm used only 42 depth images to extract the
features which reduced the runtime. The proposed Enhanced Ray Tracing algorithm was used for generating
best quality depth images with great reduction n runtime also. The codebook for the vector quantization 1s
learned via. our proposed Modifed Extremely Randomized Clustering trees (MERC-trees). In comparison
with other algorithms, the proposed algorithm achieved high performance on SHREC’11 and 15 datasets; the
well-known benchmarks. Experimental results show that, the proposed algorithm is very fast, achieved high
retrieval result and robust against 11 types of different transformations with different levels of strength when
tested on SHREC'11-Robust dataset. The proposed algorithm achieved the 6th best performance among
37 methods participated in SHREC15 contest which none of them was view based and all used topological
based features that are easier to discriminate the non-rigid objects.
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INTRODUCTION

The 3-Dimensional (3D) Models are an mnportant
multimeda data type. They have become ubiquitous for
games running on mobile-phones and on game consoles
for such web-based applications as the Google Earth for
medical diagnostics and architectural design. In addition,
to the increasing in the applications that create 3D
Models as CAD, 3D Max, Maya, ..., etc. and the rapid
development of 3D scanming technologies that
produce a huge number of 3D Models, the need to
organize these 3D Models for effective reuse has
prompted research into shape-based retrieval of the 3D
Models. So, the main 1ssue has shifted from the creation
of new 3D Models to the retrieval of existing 3D Models
based on their content. The 3D object retrieval has
become a challenging research area that the retrieval
method must satisfy several requirements for invariance.
A typical set of requirements includes mvarance to
similarity transformations with its different types and
degrees. Invariance to shape representations as the 3D
Model may be in different representation as pomt clouds,
polygonal mesh, ..., etc. Invariance to geometrical and
topological noise. Invariance to articulation or global
deformation. Content-based 3D object retrieval based on

the comparison of the geometry and topological
properties of the 3D Models which based 1s complicated
by the fact that many 3D models mamfest rich
variability especially in case of non-rigid (deformable)
shapes. Non-rigid shapes include a wide range of shape
transformations such as bending and articulated
motiorn.

Up to now, a large number of algorithms for non-rigid
3D shape retrieval have been proposed. Each method of
the 3D non-rigid retrieval methods has its own
advantages and disadvantages. However, most retrieval
approaches specifically designed for non-rigid 3D
objects can only process watertight single-component
meshes.

This study presents a view based retrieval
method for non-rigid 3D objects which accepts different
3D representations so it suites for many different
applications. The proposed method 15 based on rendering
the 3D Model as a set of range 1mages and for each range
image a set of local, multi-scale, salient, visual features are
extracted using Scale Invariant Feature Transform (SIFT)
algonthm proposed by Lowe (2004). As each depth image
yields a few dozen features and there are a few dozen
range images per model, a 3D Model is associated with
hundreds or even thousands of local features. The
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computation of dissimilarity between those sets will be
expensive especially for large datasets which will make the
search very slow process. The proposed method avoids
the costly pair-wise distance computation by integrating
all the local features of the model into a single feature
vector by using the Bag-of-Features (BoF) approach.

The experimental results showed that the proposed
algorithm achieved retrieval accuracy between 52 and 99%
according to the different setting for SHREC’11 but for
robust SHREC’11, 91% accuracy was achieved which
reveals that this approach is highly discriminative for
articulation and for different types of transformations and
noise with different degrees. The retrieval accuracy on
SHREC’15 was between 88 and 94%. The proposed
algorithm compared with other 37 algonthms in SHREC’15
which are based on the topology or the geometry of the
3D Models, 1t was found that the proposed algorithm
achieved the 6th best retrieval performance among those
algorithms, although, the proposed one 1s view based and
the topological and geometric properties algorithms are
more discriminative than view based algorithms.

Literature review Non-rigid retrieval algorithms have
great challenging criteria because they should have a
reasonable computation complexity, robustness to
arbitrary topological degeneracies and discrimiate the
same shapes mn different postures. Non-rigid retrieval
algorithms can be divided to algorithms employing: local
features, topological structures, isometry invariant global
geometric properties, direct shape matching and canonical
forms.

The 1st division is to measure the dissimilarity
between two models based on their local features that are
insensitive to isometric transformations. The 2nd division
used topological structures to compare deformable 3D
objects (Hilaga et al., 2001; Reeb, 1946; Sundar et al.,
2003).

For the 3rd division, isometric-invariant global
geometric properties are used such as: geodesic distance
which was used by Reuter et af., (2005) and the model’s
Laplace-Beltrami spectra which proposed to use by
Jain and Zhang (2007).

The 4th division 1s to compare the mesh itself (direct
shape matching) as by Memoli and Sapiro (2005). The last
division is the canonical form. The utilization of canonical
forms is also a promising solution for non-rigid 3D shape
retrieval. The idea of generating canonical forms in 3D
domain was initially proposed by Elad and Kimmel
(2003).

The approach of local features 1s used in thus
research as it can be applied to rigid, non-rigid and partial
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3D objects retrieval. Tocal features convey enough
information to discriminate 3D objects and at same
time they can handle different kinds of noise (Lian ef af.,
2010).

Local features algorithms can be divided into view
based and model based approach. The advantage of view
based approach that it can deal with 3D objects with
different representations, more flexible, benefit from
existing image processing technologies (Chen et al., 2003;
Furuya and Ohbuchi, 2009; Ohbuchi et al., 2008). The
proposed view-based method uses salient local features
that are extracted using Scale Invariant Feature Transform
(SIFT) algorithm (Lowe, 2004) which is one of the highest
descriptors accuracy and invariant to scale and rotations
(Mikolajezyk and Schmid, 2005).

According to our study BF-DSIFT (Furuya and
Ohbuchi, 2009) and BF-SSIFT (Ohbuchi et ¢l., 2008) are
promising algorithms as they are view based methods
which accepts different 3D representations, so they suite
different applications and they perform well in SHREC’10
track for non-rigid 3D retrieval (Lian et al, 2010).
BF-DSIFT and BF-SSIFT used SIFT descriptor (Lowe,
2004y which 1s one of the most famous descriptors in
image recognition they have achieved high retrieval
results. Moreover, the use of BoF paradigm made them
compact from the storage point of view which makes them
suitable for large detailed databases.

MATERIALS AND METHODS

The proposed approach: The proposed research 1s a
based on the synergy between the two algorithms
BF-DSIFT (Furuya and Ohbuchi, 2009) and BF-SSIFT
{(Ohbuchu et al., 2008) (Fig. 1). The algorithm 1s divided
into 6 phases: model normalization, rendering the
model as a set of depth umages, extract SIFT features,
extract training set and build visual codebook, vector
quantization and finally, the matching phase.

Phase 1; Model normalization: In the 1st phase, pose
normalization is performed which include position
normalization followed by scale normalization. The
position normalization s performed exactly as BF-SSIFT
(Ohbuchi et al., 2008) in which the model centroid 1s
computed using the quasi Monte-Carlo sampling of mass
distribution on the surfaces of the model (Ohbuchi et o,
2008) which 18 inspired by Osada ef af. (2002)’s method.
The main problem of scale normalization 1s to find the
scale value. In the proposed approach to find the scale
value, the absolute values of the minimum and the
maximum coordinates of x, v and z coordinates of
the model must be found after performing the position
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Fig. 1: The steps of the proposed algorithm

normalization process then the maximum absolute 1s
chosen to be the scale value to guarantee that all the
coordinates absolute are <1, so the model can be rendered
mside unit sphere.

Phase 2; Multi-view rendering: In rendering the
multi-view range images, the viewpoints are spaced
evenly in the solid angle by placing them at vertices of
regular or near regular polyhedrons enclosing the
model. Viewpoints are placed at the vertices of an
80 face (42 vertices) semi regular polyhedron (Pentakis
Icosidodecahedron)  generated  with  the  same
methodology i1 BF-SSIFT (Ohbuchi et al., 2008).
However, for generating or rendering the depth image
itself the proposed enhanced Ray Tracing (enhanced-RT)
presented by Almed ef @l (2015) was used. Enhanced RT
algorithm was based on sorting the mesh’s triangles
according to its minimum x coordinate and get the range
of triangles that may intersect with each ray using binary
search. The experimental results showed that the
enhanced-RT decreased the execution time by 99.8% than
the traditional ray tracing algorithm with high quality for
the produced depth images for the standard benchmark
models.

Phase 3; Extract SIFT features: After the range images
are rendered, the SIFT algorithm (Lowe, 2004) 1s applied
on the image to detect the interest points and then to
compute the features at these interest points using SIFT
descriptor. However, in the proposed algorithm, since, the
interest points must lay on the objectwe neglect the key
points on the image background, so the features become
more discriminative to the model itself, this enhanced the
performance of the algorithm used to build the visual
codebook.

Phase 4; Extracting training set and build visual
codebook

Extracting the training set: Extracting the training set is
one of the most important phases. It affects the overall
performance of the algorithm and specially the efficiency
of the codebook. The efficiency of the visual codebook
affects the representation of the SIFT
features and hence the resultant descriptor of the

model’s

model.
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In the proposed algorithm, extracting the traiming set
were done with specific percentage from the total features
of each class. This percentage must be applied to all
classes in the benchmark. The effect of using different
percentage ratios of features from each class which will be
used in the training process is studied and presented in
the experiments and results discussions. The result show
that, the performance enhanced with the mncreasing n the
percentage ratio used.

Building the visual codebook: To build the visual
codebook the tramming set 1s used to train the classifier
(used as the input to the clustering algorithm). In the
proposed approach, Extremely Randomized tree Clustering
(ERC) algorithm was used as a classifier according to
Moosmann et af. (2006) with proposed modifications to
enhance the classifier accuracy. The proposed Modified
ERC (MERC) 1s a supervised classifier in which discrete
labels were assigned to the descriptors. The descriptors
from the same class have the same label. The trees were
trained using a labeled training set. At each node n, the
space 3 will be divided into two chuldren S, and S, which
must satisfy the following conditions:

S =gUsr
8,NS, =@

Recursion continues until further subdivision 1s
impossible when one of the following occur:

All swrviving training examples belong to the same
class

All have identical values for all attributes
|S|<n,where n;, 13 the mimimum sample size for
splitting a node

When one of the previous conditions occurs the
node will be a leaf node. In MERC algorithm, the leaf node
is labeled by the class frequencies which represent how
much this feature may occur in each class. This label will
be considered a visual word.

The rest of the proposed MERC algorithm can be
summarized as follow: to build an M ensemble tree from S,
for each m where 1<m<M, do the following: select
randomly K attributes, {attr, attr, .., afttr,} without
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Table 1: The difference between the ERC and the proposed MERC Clustering algorithms

Parameters ERC MERC Advantage of MERC
Attributes Select K non constant randorn attributes Select K non constant random attributes
Splitting Select random threshold according to the Select T, random thresholds according This guarantees that the split will be done
normal distribution of the attribute to the normal distribution of the attribute at the which maximum score will achieve best
and select the one with the maximum score  classification for this attribute
Leaf label The class with maximum occurrence Labeled by the class frequencies Represents how much this feature may occur in

Histogram of The maximum occurrence in each tree of M
the feature

The summation of all class frequencies
returned from the M ensemble trees

each class

Represents the net result which gives accurate
percentage of the occurrence of this feature at
each class

replacement among all (non constant attributes in 3)
candidate attributes. For each attribute attr; in {attr,,
attr,,
according to the normal distribution of the attr, attribute.
Calculate score for the split 5 according to attribute attr;.
Repeat the previous two steps T. (number of tries) time
and get the maximum score 8* from the K aftributes at
each try of T,. The T, tries will guarantee that the split will
be done at the maximum score which will achieve best
classification for those attributes. Split S into subsets 5
and 3, according to the test s*. Build the left tree t; using
the subset S, and build right tree t,using the subset S by
repeating the previous steps and replace S with 5
and 3.

Create a node n with the split s*, attach t, and t, as left
and right subtrees of this node and return the resulting
tree t.

The MERC-ree parameters are set as follows:
K =128 n,,=2, M=10and T, = 50. The score of each
split will be computes. The difference between the ERC
and MERC and the advantages of MERC can be
summarized in Table 1.

..., attry}. Generate split threshold s randomly

Phase 5; Vector quantization: After extracting the SIFT
features from the training range images of each model.
Each model will have a few hundreds features. This costs
a very huge storage especially for large databases.
Therefore, to save the storage the BoF 1s used to quantize
the features of each 3D Model mto a visual word using
visual codebook which is constructed using the proposed
MERC-trees (Hess, 2010).

The model features will be reduced in a histogram
which will be used as the model descriptor. The histogram
of each model was constructed by using the trained
MERC that is traversed using every SIFT feature. Each
SIFT feature 1s replaced with the frequencies of classes
contained m the leaf that the feature retched to in each
ensemble tree. The bin’s number of the histogram equals
the number of the visual words (vocabulary size) mn the
visual codebook. The histogram will be the accumulation
of the frequencies and 1s used as the descriptor vector of
the model. The histograms generated using MERC are
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more accurate than generated by the ERC as they
represent the similarity percentage among the model and
all the classes.

Phase 6; Matching phase: The two 3D Models can be
compared by comparing their corresponding bags of
features. Therefore, 3D object similarity problem is
reduced to the problem of comparing vectors of feature
frequency. Now for comparing two 3D objects, the bags
of features are treated as the descriptors (histograms)
such that the degree of similarity or dissimilarity can be
determined through calculating the distance between their
bags of features. Similar, 3D Models tend to have a small
dissimilanity value or a large similarity value and vice
versa.

In the model, we use Euclidean distance to compare
among the bag of features:

My
S (x ) (1)
Where:
N, = The vocabulary size
x;andy, = The ith element of the descriptor vector

Experimental and evaluations: The experiments are
designed to test the following:

The effect of using different clustering algorithms for
visual codebook learming

The effect of using different vocabulary sizes

The effect of using different traming set sizes

The effect of using different distance function to
compare the BoFs

The robustness of the retrieval algorithm

In order to evaluate, the proposed approach
performance, the shape retrieval dataset SHREC'11
(Lian et al., 2011), SHREC11-Robustness and SHREC 15
benchmarks are selected for applying the proposed
algorithm  on  them, SHREC is an annual 3D shape
retrieval contest, whose general objective 15 to evaluate
the effectiveness of 3D-shape retrieval algorithms.
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Fig. 2: Examples of 3D Models m SHREC’11 database that 1s

classified mnto 30 categories
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Fig. 3: Examples of 3D Models mn SHREC 11 robust database

SHREC’11 is a large scale dataset consisting of
600 non-rigid 3D Models that are equally classified
mto 30 categories (Fig. 2). The 3D Models are represented
as watertight triangular meshes that are derived from
30 original models, represented in different deformed
Verslions.

SHREC 11-Robustness benchmark 1s a dataset that
includes simulated transformations of different types and
strengths. For each shape, transformations are split into
12 classes (1sometry, topelogy, small and big holes,
scaling, noise, shot noise, missing parts, sampling, affine
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and rasterize) (Fig. 3). In each class, the transformation
appears i five different strength levels. In the
experiments, the traimng dataset 1s used with a total of 684
shapes. The set includes 13 shape classes with null
shapes, each shape have the 12 transformation classes
with different degrees.

SHREC'15 consists of 1200 watertight triangle
meshes (Fig. 4) that are equally classified into
50 categories. The algorithm is implemented on a
standard PC with an Intel Core 17-4702MQ 2.20 GHz
CPU and 8 GB memory.
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Fig. 4: Examples of 3D Models n SHREC’15 Robust database

The performance is measured by using Princeton
Shape Benchmark (PSB) statistics (Shilane et al., 2004)
which are: Nearest Neighbor (NN}, First Tier (FT'), Second
Tier (ST), e-Measure and Discounted Cumulative Gain
(DCQG).

Learning the visual codebook: The first step to apply the
BoF approach 1s to build the visual codebook. The visual
codebook is built using different clustering algorithms:

K-means

Gravitational Search Algonthm (GSA) (Rashedi ef al.,
2009) with 50 run iterations to run it

Proposed MERC-tree classifier which 13 a
modification of the ERC (Geurts et al, 2006,
Moosmann et al., 2006) where K = 128, n_ = 2,
M=10andt, =50

K is the number of attributes randomly selected at
each node, M 1s the number of trees per ensemble, n, 1s
the minimum sample size for splitting a node and t, is the
maximum number of tries to get the maximum score for
splitting as by Moosmarm et al. (2006). Both K-means and
GSA are unsupervised learming but the proposed
MERC-tree is a supervised learning algorithm.

Vocabulary size: In this experiment, the relationship
between the vocabulary size (codebook size) and the
retrieval performance was investigated So, different
vocabulary size values were used. The change in
vocabulary size means the change in the number of
histogram bins and hence, the dimension of the descriptor

vector. The used vocabulary sizes were 30, 60 and 120
which are the number of classes 1 the SHREC™11 and its
multipliers.

Distance function: The used distance functions were
Euclidean distance and Kullback Leibler Divergence
(KLLD) as shown in Eq. 1 and 2. The smaller values of
these measures means the models are most similar and the
larger values means less similar. We also used Normalized
KLD to compare its results with KLD results. The
normalized KI.D is the same as KI.D but with normalizing
the histograms:

Div(x,y) zzi"l(yl-xl)ln%

1

2)

Where:

(%, y) = (v, x;) = The feature vectors

N, = The dimension of the vectors
The KLD is sometimes referred to as information

divergence or relative entropy.

RESULTS AND DISCUSSION

The impact of changing the different settings was
studied in order to select the optimum settings that
achieve the best retrieval results. Intuitively, settings
attaining high values for most evaluation metrics are
considered as the one achieving the best retrieval
results.

There are two different scenarios for evaluating the
performance: The first scenario is to change the training
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set size with different clustering algorithms and the same
distance function. Table 2-4 study the effect of changing
the training set size on different clustering algorithms
with the Euclidean distance used as distance function.
Table 5-7 study the effect of changing the
traimng set size on different clustering algorithms
with KLD as distance function. Table 8-10 study the
effect of changing the training set size on different
clustering algorithms with normalized KI.D as distance
function.

16 (6): 576-587, 2017

The second scenario is to change the distance
function with different clustering algorithms and the same
traiming set size. Table 2, 5 and 8 study the effect of
changing the used distance function with the training set
size equals 50% on different clustering algorithms. Table
3, 6 and 9 study the effect of changing the used distance
function with traiming set size equals 70% on different
clustering algorithms. Table 4, 7 and 10 study the effect of
changing the used distance function with training set is
100% on different clustering algorithms.

Table 2: Performance comparison of the proposed algorithm using different clustering algorithm with 30%% training set of each class features and Fuclidean

distance as distance fimction for SHREC 11

No. of clusters (N,) Clustering algorithm NN FT ST E DCG
30 MERC-trees 0.9417 0.6471 0.6965 0.5132 0.8482
30 K-means 0.4033 0.2059 0.2912 0.1997 0.5275
60 MERC-trees 0.9333 0.4859 0.5262 0.3865 0.7797
60 K-means 0.4133 0.2082 0.2894 0.1974 0.5300
120 MERC-trees 0.9250 0.3685 0.4189 0.3020 0.7125

Table 3: Performance comparison of the proposed algorithm using different clustering algorithm with 70% training set of each class features and Fuclidean

distance as distance fimction for SHREC 11

No. of clusters (N Clustering algorithm NN FT 8T E DCG

30 MERC-trees 0.9633 0.7485 0.7710 0.5731 0.8845
30 K-means 0.5667 0.2737 0.3627 0.2537 0.5920
60 MERC-trees 0.9567 0.4849 0.5016 0.3707 0.7833
60 K-means 0.5683 0.2799 0.3631 0.2559 0.6003
120 MERC-trees 0.9500 0.3440 0.3652 0.2687 0.7065
120 K-means 0.6017 0.2823 0.3656 0.2572 0.6028

Table 4: Performance comparison of the proposed algorithm using different clus
distance as distance function for SHREC*11

tering algorithm with 10094 training set of each class features and euclidean

No. of clusters (N Clustering algorithm NN FT 8T E DCG
30 MERC-trees 0.9967 0.9818 0.9872 0.7345 0.9929
30 K-means 0.7683 04313 0.5639 0.3967 0.7428
30 GSA 0.1167 0.1257 0.2460 0.1567 0.4662
60 MERC-trees 0.9900 0.4769 0.4982 0.3650 0.8203
60 K-means 0.7917 0.4419 0.5757 0.4033 0.7530
120 MERC-trees 0.9867 0.2283 0.2568 0.1842 0.6717
120 K-means 0.8300 0.4445 0.5773 0.4056 0.7611
Table 5: Performance of the proposed algorithm using 50% training set of each class features using KI.D as distance function for SHREC®11

No. of clusters (N Clustering algorithm NN FT 8T E DCG
30 MERC-trees 0.935 0.5999 0.6591 0.4818 0.8334
60 MERC-trees 0.930 0.4571 0.5081 0.3685 0.7688
120 MERC-trees 0.925 0.3685 0.418% 0.3020 0.7125
Table 6: Performance of the proposed algorithm using 70% training set of each class features using KLLD as distance function for SHREC?11

No. of clusters (N Clustering algorithm NN FT 8T E DCG
30 MERC-trees 0.9667 0.6906 0.7181 0.5333 0.8622
60 MERC-trees 0.9583 0.4506 0.4764 0.3501 0.7683
120 MERC-trees 0.9433 0.3133 0.3397 0.2493 0.6869

Table 7: Performance comparison of the proposed algorithm using different clustering algorithm with 10096 training set of each class features and using K1.D

as distance function for SHREC?11

No. of clusters (N Clustering algorithm NN FT 8T e-Measure DCG
30 MERC-trees 0.9200 0.9168 0.9200 0.6817 0.9452
30 K-means 0.7667 0.4435 0.5838 0.4101 0.7527
30 GSA 0.1117 0.1261 0.2458 0.1563 0.4664
60 MERC-trees 0.8917 0.4422 0.4584 0.3337 0.7740
60 K-means 0.7633 0.4283 0.5693 0.3986 0.7417
120 MERC-trees 0.9033 0.2171 0.2441 0.1741 0.6458
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Table 8: Performance of the proposed algorithm using 50%6 training set of each class features using normalized KLLD ag distance finction for SHREC®11

No. of clusters (N,) Clustering algorithm NN FT ST e-Measure DCG

30 MERC-trees 0.9467 0.6395 0.6839 0.5033 0.8445
60 MERC-trees 0.9283 0.4862 0.5292 0.3865 0.7806
120 MERC-trees 0.8950 0.3932 0.4346 0.3170 0.7212

Table 9: Performance of the proposed algorithm using 70% training set of each class features using normalized KLD as distance function for SHREC"11

No. of clusters (N.) Clustering algorithm NN FT ST e-Measure DCG
30 MERC-trees 0.9433 0.7126 0.7307 0.5428 0.8621
30 K-means 0.4950 0.2057 0.2744 0.1910 0.5412
60 MERC-trees 0.9350 0.4709 0.4861 0.3599 0.7722
120 MERC-trees 0.9117 0.3310 0.3509 0.2586 0.6909

Table 10: Performance comparison of the proposed algorithm using different clustering algorithm with 10096 training set of each class features and using

normalized KLD as distance function for SHREC’11

No. of clusters (N} Clustering algorithm NN FT ST e-Measure DCG
30 MERC-trees 0.9200 0.9168 0.920 0.6847 0.9452
30 K-means 0.7183 0.3839 0.5078 0.3553 0.703
30 GSA 0.0333 0.0333 0.0649 0.0405 0.3452
60 MERC-trees 0.8917 0.4422 0.4584 0.3337 0.7741
60 K-means 0.7267 0.3931 0.5218 0.3656 0.7117
120 MERC-trees 0.9033 0.2171 0.2441 0.1741 0.6457
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Fig. 5: Performance of the proposed algorithm on the SHREC 11 using different clustering algorithms and distance
functions with traming set 100% and vocabulary size 30

Table 2 shows the effect of changing the clustering
algorithm and the number of clusters using 50% every
class features as a traming set and using the Euclidean
distance as distance function. The proposed MERC-trees
achieved the best retrieval results with 30 clusters (the
number of classes m the dataset). Increasing the Number
of clusters (N,) than 30 decreases the efficiency of the
refrieval results because it means that, the class 1s divided
to more than one cluster which makes those clusters have
the same characteristics. Hence, the classifier 1s confused
and its efficiency of classification 1s decreased. Butin
K-means the retrieval performance enhanced with
increasing the number of clusters because the error in
clustering decreased with mcreasing the number of
clusters until it reached to zero when each data
object has its own cluster. In Table 3 and 4, the
performance of the retrieval algorithm 1s improved with
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increasing the training set size as the characteristics of
each class will be more obvious, so the clustering
algorithm will be more able to distinguish among different
classes (Fig. 5).

Table 5-7 show the effect of mereasing the training
set size and different number of clusters with KLD as
distance function. In Table 7 with 100% training set size,
different clustering algorithms were compared. The
performance of MERC-trees with 30 clusters achieved the
best retrieval results.

From Table 7, it 1s not noticeable that the NN measure
decreased with 100% tramming set size. This because that
the KI.D which is used as distance function is divergence
measure which may decreased with the increasing in the
details.

Table 8-10 show the effect of increasing the training
set size with different clustering algorithms and different
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Fig. 6 Sample of 3D object retrieval results. Leftmost column: queries with red squares where each of the queries belongs
to different category; ten following columes represent the closest ten retrieved 3D Models for each query

number of clusters with normalized KLD as distance
functions. The proposed MERC-trees with 30 clusters
achieved also the best retrieval results.

To conclude and as revealed from the result,
Euclidean distance outperforms both KLD and the
normalized KLLD as it uses all the elements in the feature
vector but the others uses the non-zero elements only
because of the used “In” function (Eq. 2).

Figure 6 shows the visual retrieval results of the
proposed algorithm with the vocabulary size N, = 30,
training set size = 70% and the proposed MERC to buld
visual codebook. The first model is the query model and
the first retrieved model at the same time (which explains
the highly accuracy for our proposed algorithm with only
70% not 100% training set size. The other nine models are
the followed retrieval results.

Table 2-10 show the performance of the proposed
algorithm (using different clustering algorithms) on
SHREC’11. Table 2-10 show that the proposed
MERC-trees achieved best retrieval result with
different training set sizes and distance functions. Hence,
MERC-trees is applied on SHREC™15 with various training
set sizes and distance function (Fig. 7).

Figure 7 shows that Euclidean distance achieved the
best retrieval results over all training set sizes and the
retrieval performance is improved with the increase in
traimng set size.

Robustness results: To test the robustness of the
proposed algorithm against different transformations with
different degrees, SHREC11-Robutness was used with

12 classes of transformations each with 5°. For the
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Fig. 7. Performance of the proposed algorithm on the
SHREC’15 using MERC-trees for building the
visual codebook

training set we used only the null models which are
12 models from the total dataset (684 models). For building
the visual codebook only MERC algorithm was used with
vocabulary size 12 as each original model and its
transformed versions considered as one class. Table 11
shows the retrieval results for the transformed models but
after excluding rasterization class as rasterize class is
simulating non-pointwise topological artifacts due to
occlusions in 3D geometry acquisition which a
topological wise deformation and not m the scope of the
study. The retrieval results shown in Table 11 are almost
perfect as it explains that the proposed algorithm is robust
against 11 different type of transformation with 5 different
strength degrees. The normalized KLD i1s the best
distance function on SHREC’11-Robust because the
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Fig. 8 Performance using the MERC-trees or K-means
as a clustering algorithm and using Euclidean
distance or KLD as a distance function

normalized KLD is applying KI.D distance function on
normalized histograms. The normalization decreases the
effect of noise.

Evaluations and comparisons: In this study, the
performance of the proposed algorithm 1s compared with
our implementation to BF-DSIFT on SHREC 2011 and the
implementation of the BF-DSIFT (Furuya and Ohbuchi,
2009) on SHREC 2010 with only 200 models.

The proposed algorithm is compared with BF-DSIFT
and Multidimensional Scaling, Clock Matching and
Bag-of-Features (MDS-CM-BOF) (Lian et al, 2010)
algorithms which are view based algorithms participated
in the shape retrieval contest for non-rigid 3D Models in
2011 and also, compared with algorithms shared in SHREC
2015. There is no view based algorithms shared in SHREC
2015 contest, all the algorithms were topological,
geometrical and non-view based local features which are
easier to discriminate the non-rigid objects.

Figure 8 shows that our implementation to BF-DSIFT
achieved very low retrieval performance using the
MERC-trees or K-means as a clustering algorithm and
using Euclidean distance or KLD as a distance function.
BF-DSIFT achieved low retrieval performance as it
extracts SIFT descriptors at random points taken on each
image which maybe not discrimimative to its umage.

Figure 9 shows that our proposed algorithm which
applied on SHREC’11 with 600 models achieved better
than MDS-CM-BOF (Lian et al., 2010) applied on
SHREC’11 and BF-DSIFT performance presented by
Furuya and Ohbuchi (2009) on SHREC 2010 with
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Fig. 9: Performance comparison between the proposed
Algorithm and the implemented “BF-DSIFT”
algorithms on SHREC 2011

Table 11: The retrieval results of the proposed algorithm (using the
proposed MERC classifier and different distance function) on
SHREC’11 Robust without rasterize class

Distance function NN FT ST  e-Measure DCG
Euclidean 0.8926 0.5446 0.6600 0.5346 0.8557
KLD 0.8990 0.5403 0.6557 0.5318 0.8551
Normalized KLD 09151 0.7609 0.8639 0.6660 0.9313

Table 12: Performance comparison between the proposed algorithm and the
algorithms participate on SHREC'15 (Lian et af., 20015

Algorithm names NN FT ST  e-Measure DCG
SV-LSF-kpcas0 0.1000 0.9972 0.9997 0.8357  0.9997
SV-LSF 0.1000 0.9797 0.9974 08292  0.9977
HAPT-run3 0.1000 0.9613 0.9795 08117 0.9915
HAPT-run2 09983 0.9657 0.9821 08150  0.9919
HAPT-runl 0.9975 0.9658 0.9818 0.8150 0.9918
Proposed-100%-ECL 0.9933 09716 0.9768 08150  0.9882
SPH-sparse-1024 0.9975 0.9568 0.9696 0.8047  0.9885
SPH-sparse coding-256  0.9967 0.9510 0.9662 0.8008  0.9368
SPH-SPEM-VLAD-64 0.9958 0.9343 0.9570 0.7911 0.9811
SPH-SPEM-VLAD-32 09942 09106 0.9460 07778 09757
Compact BoFHKS-10D  0.9842 0.8714 0.9082  0.7465 0.9582
Compact BoFHKS-4D 0.9817 0.8722 0.9080 0.7476  0.9581
Compact BoFHKS-19D 09825  0.8672 0.9059 0.7440  0.9575
Compact BoFHKS-5D 0.9775 0.8582 0.8988 0.7356  0.9533
FVF-STHKS 0.9800 0.8249 0.8826 07178  0.9503
FVF-WKS 0.9767 0.8225 0.8945 07242 09518
EDBCF-NW 0.9775 0.7931 0.883% 07076  0.M31
EDBCF-AV 0.9750 0.7699 0.8680 0.6899  0.9358
8G-L1 0.9725 0.7596 0.8143 0.6597 09192
SID-4 09767 0.7188 0.8213 0.6482  0.9200
SID-5 0.9767 0.7109 0.8164 0.6422 09171

200 models. The MDS-CM-BOF takes 66 depth images
and extracts the SIFT features from them. Although,
the MDS-CM-BOF performance is close to the proposed
algorithm, performance, the proposed one takes only
42 depth images which mean that, it has better runtime. Tn
addition, the use of our proposed Enhanced Ray Tracing
algorithm presented by Ahmed et al. (2015) reduced the
time for generating the depth images with the same quality
as the Naive Ray Tracing algorithm.



Asian J. Inform. Technol., 16 (6): 576-587, 2017

In SHREC’15 (Lian et al., 2015) 37 methods were
participated which none of them are view based
method. Table 12 shows a comparison among the top
20 methods and the proposed algorithm performance. The
proposed algorithm (proposed-100%-ECL), using our
proposed MERC classifier with training set size = 100%
and the Euclidean distance as a distance function,
achieved the 6th best performance.

CONCLUSION

In this study, an efficient view based approach for
retrieving 3D non-rigid objects was introduced. The
proposed algorithm is performed in five execution
phases and a great unprovements were done on most
phases. The first phase 13 normalizing the model which
includes position normalization followed by scale
normalization. The second phase is multi-view rendering
which includes placing the viewpoints at vertices of
regular or near regular polyhedrons enclosing the model
and render the depth image for the model from each one
using our proposed Enhanced Ray Tracing algorithm
presented by Ahmed et af. (2015) which achieved a great
reduction in rendering time reached 99.8% with the same
quality as the naive ray tracing. The third phase is
extracting the silent points from each depth images and
extracts the SIFT descriptor at each point. The fourth
phase 1s extracting the traiming set, building the visual
codebook using our proposed MERC algorithm and
building a histogram for each model in the database. The
histogram is the descriptor vector of each model which
represents the frequency of each visual word m the visual
codebook. The fifth and final phase is the descriptor
matching where the Euclidean distance was used to
calculate the dissimilarity between the models
descriptors.

The experimental results lead to the conclusion that
the proposed technique is quite effective for the purpose
of 3D object retrieval, showing very ligh retrieval
accuracy. 1t achieved high performance on SHREC 2011
dataset, SHREC 2015 and 201 1-Robust; the public well
known benchmark s of non-rigid 3D Models. The results
have indeed confirmed that the proposed descriptor
1s invariant agamst different kinds of deformations.
Moreover, it is significant that the proposed technique is
Through employing an
extensive comparative study, the proposed algorithm 1s
compared against other state of art view based algorithms.
These methods had already been evaluated on SHREC
2011 and SHREC 2010 datasets (which contains only
200 non-rigid 3D watertight models and considered only
as a part of SHREC’11) by the shape retrieval contest of

computationally  efficient.
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non-rigid 3D watertight meshes. Tt was shown that the
proposed algorithm clearly outperforms all these state of
the art retrieval methods applied on SHREC 2011 dataset
and on SHREC 2010, regarding different evaluation
metrics. The proposed algorithm was ranked first among
all other methods that we compared it with. To sum up, all
these results lead to conclude that the proposed approach
15!

s Highly discriminative
»  Computationally efficient

» Robust against different transformations with
different degrees
RECOMMENDATIONS

For future research, we intended to explore in depth
the following topics: adapting the proposed 3D object
Retrieval techmque to handle partial matching problem
where retrieval 1s required mnside 3D scenes contaimng an
instance of the query object or when there are missing
parts in an incomplete 3D Models. Extending the
application of the proposed 3D object retrieval techmique
on volumetric 3D Models. Testing the proposed
technique on domain-specific benchmarks (e.g., proteins,
CAD models, faces, etc.); such that it can be reformed for
adapting different domains of knowledge.
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