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Abstract: In Wireless Sensor Networks (W SNs), the major problem in multiple sinks 18 efficient data collection
and scheduling which can be overcome by aggregated tree construction and TDMA based scheduling
technique. Earlier, the techniques used for aggregated tree construction process takes more iteration to
complete entire process which maximizes the scheduling delay. Therefore, there 1s need of an efficient
aggregated tree construction which reduces the wastage of iteration time. In this study, we propose energy
Efficient Multi-swarm fruit fly Optimization (EMO) algorithm for scheduling. In our EMO, the multi-swarm fruit
tly optimization techmque 1s applied in Pocket Driven Trajectories (PDT) to minimize the delay and save energy.
Then Breadth First Search (BFS) algorithm is used for time slot scheduling process. The proposed EMO
algorithm reduces the iteration time to maximize the aggregated tree construction speed. The simulations show
that the proposed EMO algorithm significantly reduces the data collection delay and energy consumption.
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INTRODUCTION

A Wireless Sensor Network (WSN) comprises a
group of small radio-enabled sensing devices in
geographical area for processing and sensing the data
and for providing communication among the sensor
nodes. WSN is used in application such as battlefield,
emergency relief, patient health monitoring using
biomedical sensors, environment monitoring and so, forth
(Chen et al., 2009a, b, Wang and Deshpande, 2008; L1 and
shatz, 2010, L1 et al., 2013; Chilamkurti et ai., 2009,
Yao et al., 2015). The number of sensor nodes ranges from
a few hundred to several thousands. These nodes enable
commumication among them via. a wireless medium and
perform collaborative data processing with distributed
sensing. The power of the networks 1s defined as the
ability to deploy large numbers of tiny nodes that are
adaptable and self-manageable with limited computations,
sensing environment and wireless communication
(Javed et al., 2012, Han et al., 2013). Owing to the limited
battery resources on each node, the data extracted from a
sensor network 1s difficult although, WSN provides new
data sources for a wide application (Sheng et al., 2013;
Xiao et al., 2012, Yao et al, 2015; Sengupta et al.,
2012).

In WSBN, data collection 1s performed for gathering
sensing data from the sensor nodes to certain sink nodes
and for analyzing the collected data (Chen et af., 20092, b).
Efficient data collection plays a significant role in power

conservation (Wei et al., 2011; Chuet al,, 2006; Liet al.,
2010). While designing an energy-efficient data collection
protocol, we must consider some challenges n WSN.
They are as follows: the strong spatio-temporal
correlations in most W3Ns must be effectively exploited
and the routing plan for data movement must be
optimized. The data generated in sensor node in most
sensor network deployments (in case of envirormmental
monitoring) 18 lighly correlated in time (future values are
correlated with current values) and space (two colocated
sensors are strongly correlated). By prior domain
knowledge or by historical data traces, these correlations
are captured by the predictive model constructions. These
correlations are optimally exploited very hard due to the
distributed nature of data generation and sensor node’s
resource-constrained nature (Liu ef al., 2015, Wang and
Deshpande, 2008). ITn WSN, the issues while collecting
data are as follows.

Sensor nodes cannot run sophisticated data
compression algorithms as it has limited memories and 1s
computationally constrained (Xu et al., 201 5; Nittel et al.,
2005).

As WSN communicate in a broadcast manner all
nodes within the radio range can receive the message on
transmitting a message by a node (Wang and Deshpande,
2008).

Since, there 1s more consumption of energy during
wireless medium commumnication, data transmission back
to a central node for offline storage, querying and data
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analysis becomes expensive in case of non-trivial size
WSNs. This can reduce the processing time, thereby
mnproving the result accuracy and energy efficiency
(Nittel et al., 2005).

Problem identification: In most sensor network
deployment the sensor node initiated data 1s mainly used
i environmental monitoring applications 1s extremely
correlated both in time (future values correlated with
current values) and in space (Liu et al., 2015). In wireless
networks, the data collection has a challenge of radio
mterferences which intercepts packet transmission of
nearby sensor nodes concurrently. In data collection,
scheduling data transmissions is done by ignoring such
mferences result in sigmficant delay. In wireless
sensor networks Multiple-Sink data collection problems
(Rulik et al., 2008) transmits a large amount of data to one
of multiple data sinks that can be terminated by the
design of Linear Programming (LP) based approximation
algorithm (ISI., 1989) which reduces the data collection
schedule latency and provide a constant-factor
production guarantee. Tn addition, a heuristic algorithm
(Chen et al., 2009a, b) derived from breadth first search
was presented for this problem. The approximation
algorithm outperforms the heuristic upto 60% and
evaluated using simulation. However, it requires more
iteration i approximation algorithm as well as m heuristic
algorithm leading to increased time.

Pockets are referred as a set of participating nodes
formed by one or more geographically clustered sets.
Pocket Driven Trajectories (PDT) (Kulik et al, 2008)
algorithm used for optimizes the data collection paths by
PDT algorithm reduces the number of non-selected nodes
by spatially restricting the aggregation path to a corridor
that connects the pockets in an energy efficient manner in
the data collection structure (Kulik et al., 2008). But too
PDT fails to preserve iteration time in data collection
process  which scheduling speed when
compared to Data Collection by grouping the sensors in
Agpregation Zones (DCAZ) (Cano ef al., 2008), Jot
Frequency Time Slot Scheduling (JFTSS) (Incel et al.,
2012; Li et al., 2015) and Naive Query Processing (NQP)
(Madden ef al., 2002) approach. To address the above
1ssues 10 this study an energy Efficient Multi-swarm fruit
fly Optimization (EMO) is combined along with PDT
algorithm to optimize aggregated tree that reduces the
iteration time. Then using Breadth First Search (BFS)
(Cano et al., 2008) each empty time slot 1s searched to
perform time slot allocation process.

reduces

Literature review: Sengupta et af. (2012) have proposed
a Pocket-Driven Trajectories algorithm for optimizing the
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paths used for data collection by approximating the global
minimal Steiner tree using local spatial kenowledge. They
identified the spatial factors responsible for efficient data
collection. Some of the factors are the location and
dispersion of the data clusters, the distribution of
participating nodes over the network, the location and
size of communication holes and the location of the smk
that 1ssues a query. To measure the efficiency of all
algorithms, a near-optimal solution that is globally
approximated minimal Steiner tree is computed. However,
the variation in the physical conditions for the sensed
enviromment — may
participation.

Li et al (2015) have proposed an efficient way for
performing data collection by grouping the sensors in
aggregation zones, thereby allowmg the aggregators to
process the generated data inside the aggregation zone.
This can be performed for reducing the amount of
transmissions to the smk. Moreover, a security
mechamsm has been used based on hash chains
for securing data transmissions in networks with
low-capability sensors and without any need for an
instantanecus source authentication. However, the total

cause varlattons m  node

load of the network increases while providing
security.
Chen et al (20092, b) have proposed an

approximation algorithm for reducing the latency caused
during data collection schedule. They also showed that
this algorithm provides a constant-factor performance
guarantee. Based on breadth first search, a Heuristic
algorithm has been presented. They evaluated the
performance of these two algorithms. Finally, they
showed that the approximation algorithm outperforms the
heuristic up to 60%.

Li et al. (2015) have observed that the node-based
(RBCA) and link-based (JFTSS) chammel assignment
schemes are efficient in terms of eliminating
interference when compared with allocating different
channels on different branches of tree (TMCP).
Elimmating interference completely proved that the
achievable schedule length is lower bounded with the
help of half-duplex radios by max (2nk-1, N) for raw-data
converge cast and by maximum degree in the routing tree
for aggregated converge cast. By optimal converge cast
scheduling algorithms, it is shown that lower bounds
are achievable using appropriate routing algorithms.
However, in case of dense deployments, a single
transmitter can jam others due to their small internode
distances and higher level of interference.

Liu et al (2015) have presented coordinated
query processing mechanisms in order to handle
mobile generated remote queries in mobile sensor
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multitier heterogeneous networks. They discussed
three approaches such as a Naive Query Processing
approach (NQP) and two Coordmated Query Processing
mechanisms (CQP-1 and 2). However, the percentage of
query injection decreases while increasing the worlkload,
since, query generation rate increases when the number

of members m each group increases.
MATERIALS AND METHODS

Network model: In this study, an energy efficient
multi-swarm fruit fly optimization combimed PDT algorithm
1s proposed (EMO). An aggregated tree is extended for
multiple sinks in absence of high energy dissipation.
Create path on each tree bonds using separate sinks. This
path maximizes the use of mvolved nodes n the tree and
conversely minimizes the number of iterations. In efficient
data collections a number of spatial factors are recognized
as distribution of mvolved nodes over the networks, the
location and dispersion of the data clusters, the location
of the sink preceding a query as well as the placement and
size of communication holes.

TDMA scheduling 1s used for fast time slot allocation
which an eliminate collisions and retransmissions. The
BFS time slot assignment algorithm 1s applied over each
PDT towards the multiple sinks and a lower bound will be
determined for the schedule length. The network model of
proposed design 1s shown in Fig. 1.

Energy efficient tree aggregation techmique: In tiny
aggregations a powered, storage-rich base
station, users masquerade aggregation queries. Through
piggybacking on the offered ad hoc networking protocol,
query-executing operators are disseminated into the
network. Sensors sent the data towards the user using
routing tree entrenched at the base station Based on
aggregation function and value-based partitiomng
indicated i the query, data are aggregated. For example,
take a query that calculates the number of nodes n
unprecise-sized network. First, msert the request to
calculation into the network. Every leaf node under the
tree then informs a count of 1 to their parent. After that
the internal nodes add the count of their children, then
add 1 to it and state that value to their parent. In this
mode, counts broadcast up the tree and out at the
root.

from

Pocket formation using PDT algorithm: PDT algorithm
15 based on spatial correlation m sensor values joined
with query perspicacity outcome in a set of contributing
nodes created by one or more geographically clustered
set. These geographically clustered set are called Pockets
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Fig. 2: Pocket formation

P (L1 et al, 2015). The squared remoteness between
two vectors in multidimensional space is the summation
of squared differences 1n their coordmates and
multidimensional distance i1s known as Euclidean distance.
Mathematically, the Euclidean distance between two
vector p, q in N dimension can be compute as follows:

n

Dp,q = E(Pi'qi)2 (1)
=1
Where:
pandq = The distance vectors
n = No. of dimensions in the network

Based on the distance of base station and each node
in the system are grouped to create pockets in the given
network and the pocket formation process is shown in
Fig. 2.

Pocket head selection using Multi-Swarm fruit fly
Optimization algorithm: The osphresis organs of fiuit fly
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can find all kinds of scents floating in the air, it can even
smell food source from 40 km away. Then, after it gets
close to the food location, it can also use its sensitive
vision to find food and the company’s flocking location
and fly towards that direction too (Yuan et al., 2014).
When a fly decides to go for hunting, it will fly randomly
to find the location guided by a particular odor. While
searching, a fly also sends and receives information from
1ts neighbors and makes comparison about the so far best
location and fitness (Yuan ef af., 2014). If a fly has found
its favorable spot, it will then identify the fitness by taste.
If the location no longer exists or the taste is “bitter’, the
fly will go off searching again. The fly will stay
around at the most profitable area, sending, receiving and
comparing information with its swarm at the same time
(Yuan et al., 2014).

Based on the food finding characteristics of swarm
fruit fly swarm although, the swarm inspired by swarm
behavior of fruit fly and the implement procedure of
swarm fruit fly 1s less complex one. The multi-swarm fruit
fly structure 1s modified by include crossover with
osphresis operation. The proposed EMO algorithm starts
with initialization step that arrange the swarm locations
and generate random number of Populations (P,). The
control values are as follows:

£, =E™ +rand (0, 1)x(§§ﬂ_§;ﬂin) y=L2..n 2

Where:
n
iymm an d gymax

= No. of control variables
Minimum and maximum limits of control
variable

After define control values and limits, perform the
first set generation, here to perform operations on
randomly generated population vector to get Best
Population Vector (Besty,). The random operations such
as osphresis foraging and crossover is performed each
iteration in full module. Tn osphresis foraging operation,
food sources of the population P, are generated randomly
around the current fruit fly swarm Locations (L). The
location of swarms are not fixed one L, 1s set of the
randomly initialized swarm location as follows:

L,=(£.E. .E) (3)

Consider the generated food sources S, S;, ..., 5, and
the search space as follows:
4)

I

-

8., = ¢, trand{0, )y =1,2,

Tn osphresis foraging food sources generated around
its swarm location within a radius equals to one. This
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radius is fixed and cannot be changed during iterations.
For optimal solution this search region 1s too small and
considerable increase needed m iterations. Hence, search
radius can be changed dynamically with iteration number:

I
*
Imax
Crossover is an efficient recombination operator has
been used to search swarm food location in certain long

(5)

tnin

A —lmaxxexp{log[i

[

L

range. But by recombination crossover, new swarm
locations are generated using the following crossover
Eq. &

8, =(1-A)s(L y)+Ass(x, y)

x=12 . ,Pady=12...,n

(6)

New control variables are used for computation of
total number of food sources whose limits have to be
checked, new population vector 1s obtained and its fitness
vector 18 evaluated. In wvision foraging phase, compute
Best food source Location (Best,) with lowest fitness was
given as follows:
=12 (7

3

P

5 e Iy

Best, = arg(min(alle )) X

Only if the computed Best Location (Best) 1s
superior to the current fruit fly swarm location, swarm
location will move on to the new position. Otherwise,
swarm location will not change.

If the maximum number of generations 1s reached,
the process stops. Or else move to the control variable
calculation step and repeat the process up to the defined
maximum number of generations. EMO algorithm used to
compute the best value among collection of values using
following fitness metrics. In each node of the Pocket, we
notice varymng attributes such as packet delivery/loss
ratio, energy consumption, packet overhead, bandwidth
and throughput. Best optimized value of each attributes
1s computed from our proposed EMO algorithm.

Packet delivery/loss ratio: Let us assume that the average
number of packets sent from one node to another node for
forwarding process 1s marked as N, and the average
number of valid data received from one end is marked as
N

recaved:

ssent

¥ = (8)

received

During the transmission of packets to the value is
updated at each wnode corresponding to its
neighboring node. After establishing the route from
the source to the destination at each node the trust value
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is calculated for its neighboring node. Based on the

number of packets forwarded and number of packets

forwarded without tampering, the ratio model as
1-=

S

where, 1 18 the packet rate, for example, if packet rate 1s 10
packets/sec and the number of packets forwarded P, = 7

follows:

1 (9)

packets and number of packets forwarded without
tampering Py = 7 paclets. the obtained delivery and loss
ratio is 2.9.

Energy model: The energy consumption is derived from
basic energy model by Hemzelman et al. (2000) which
examine both the transmitter and receiver part energy
requirements. The energy consumption of wireless node
depends on the amount of the data and distance to be
sent. The energy consumption of a node 18 proportional
to square of Distance (D*) when the propagation Distance
(D) less then the threshold Distance (D), otherwise, it is
proporticnal to (D®). The total energy consumption of
each node in the network for transmits and receivesbit
data packet:

E,.=E (n d)+E (n) (10)

where, E, (n, d) and E, (n) are energy consumption of
transmitting and receiving node:

nxE__+nxe D% if D <D,
n=E,, +nxe, D' if D= D,

E (n d)= (11)

E (n)=nxE,, (12)
where, B, the energy is dissipated per bit to run the
transmitter or receiver circuit, amplification energy for free
space model (e;) and for multi-path model (e ) depends
on the transmitter amplifier model D, is the threshold
transmission distance.

Packet overhead: Ratio of the number of packets sent as
a fraction of the number of packets delivered to their
destination nodes in the network.

Bandwidth: The rate of data transfer, bit rate or
throughput, measured in bits per second. The amount of
data that can be carried from one node to another in a
given time period is known as BandWidth (BW). It

820

measures how much data can be sent over a specific
comnection in a given amount of time and 1t 15 derived
from the Quality factor (Q):

=_0 (13)
. f,—f
Where:
f, = The center frequency
f, = Low cutoff frequency £ = fo( /407 1/2Q
f, = The high cutoff frequency ¢ - fD( 1+1/4Q2_1/2Q)
f,-f, = £y (14
Q

Throughput: Total number of packets delivered over
the total simulation time:

(15)

N
T=""
t

From above metrics, the fitness function of
multi-swarm fruit fly optimization algorithm 15 described.
The pocket head node mantains the condition namely
maximum packet delivery, bandwidth and throughput,
minimum packet loss, energy consumption and packet
overhead than other nodes in the pockets. If the condition
is satisfied means, the node is considering as pocket head
node, otherwise its normal node. The pocket head
selection process 1s shown n Fig. 3.

Spatially  limiting  aggregation  path
passageway which attaches the pockets m an
energy-efficient approach, EMO algorithm reduces the
number of non-selected nodes in the data collection
structure. The algorithm for constructing the aggregation
tree by consider a unit disk graph:

to a
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Fig. 3: Pocket head selection process
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{0 Sensor nodes (g Poster head nodes +’; Sink node

Fig. 4: Smallest spanmng routing aggregated tree

M=(N,L)

Where:
N
L

The set of sensor nodes

The set of communication links

Each Query  1ssued by a sink S selects a subset n of
N apply EMO algorithm discover a set of pockets for a
given query Align the aggregation tree to the spatially
optimal path connecting these pockets. This path
maximizes the use of participating nodes in the tree and
conversely minimizes the number of non-participating
nodes identify a number of spatial factors for efficient
data collection such as distribution of participating nodes
over the network. The smallest spanning routing tree with
the sample network 13 shown in Fig. 4. When there are no
interfering links, the algorithm executes O(|e;|%) time and
play down the schedule length. The working flow of EMO
algorithm is shown in Fig. 5 and algorithm steps are
shown in Algorithm 1.

Time slot assignment algorithm: Here, an edge is
selected in Breadth First Search (BFS) order initializing
from any node in each iteration. That edge is assigned
with the minimum time slot which is different from all
its.neighboring edges concerning interfering constriction
The working steps of BFS based slot allocation are
present n Algorithm 2.

After the comstruction of aggregation tree the
wastage of time m iteration 18 reduces. For this, TDMA
scheduling 1s applied. In this process first, a lower bound
on the schedule length is estimated and then a time slot
assignment scheme is applied that achieves the bound.
BFS time slot assignment algorithm is applied over each
pocket towards the multiple sinks for assignment of time
slot. In this algorithm an edge (e)is initialized from any
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Fig. 5: Work flow of proposed EMO algorithm

P

( )

{8} Sink node
(3 Poster head node

®
()

Fig. 6: Tune slot scheduling: a) Aggregated time slot with
convergence cost and pipeline structure and b)
BSF based

node in the pocket using BFS order and the edge is
allocated to the mmimum time slot (Fig. 6). BFS based
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scheduling minimize the schedule length in the absence
mterfering links for each pocket and reduce the wastage
time of iterations. The maximum run time of BFS is
O(|e:|%). The aggregated time slot convergence cost and
pipelining is shown in Fig. 6a and our contributions based
time slot allocation 1s present in Fig. 6b.

Algorithm 1; Aggregating routing tree formation:

Tnput: Nodes (W) and links (T.)

Output: Aggregated routing tree

1:  Assume network with k nodes that is represented by associated unit
disk graph M = (N, L) where N is the set of sensor nodes and L is the
set of communication links

2:  Each Query () issued by a Sink S selects a subset n of N and start
Pocket formation

3. After grouping pockets, base station gathers packet delivery, loss,
energy consumption, packet overhead, bandwidth and throughout and
those are optimized by EMO technique

4:  Frame the rule: Max (packet delivery, bandwidth and throughput), Min
(packet loss, overhead and energy consumption

5 Tfthe node satisfy above conditions, the node consider as pocket head

6: The sink calculates an inclusive graph based on the EMO results and

the base station aligns the routing tree based on the smallest spanning
tree path based on the Pocket head strength

Algorithm 2; Time slot scheduling:

Input: Packet Head (PH) and edges (e)

Output: Compute time slot needed edge (e)

1: Initialize the number of Pocket Head node (PHs) and corresponding
edges

2. Check edge slot condition
3. TIfthe edge is not free compute next free edge firom all edge details ser
based on breadth first search algorithm
4: Allocate lowest time slot to the slot free edge (e) regarding neighboring
and interfering constricts and update the all edge detail by er-eT{e}
5:  Repeat step 2-4 until complete scheduling, the maximmim round is
O(ler®
RESULTS AND DISCUSSION
Simulation model and parameters: The Network

Simulator (NS2) (ISI., 1989) Version 2.32 is used to
simulate the proposed architecture. In the simulation,
100 mobile nodes move ma 500 =500 m region for 50 sec of
simulation time. All nodes have the same transmission
range of 250 m. The simulated traffic is Constant Bit Rate
(CBR) (Table 1).

Performance metrics: The proposed energy efficient
EMO algorithm based scheduling technique (EMO) is
compared with Greedy BFS technique (3iao et al., 2012)
and Receiver Based Channel Assignment (RBCA)
(Yao et al., 2015). The data generation rate 1s varied as 50,
100, 150, 200 and 250 kB and the performance is evaluated
mainly, according to the following metrics: packet delivery
ratio, packet drop, energy consumption and end to end
delay.

Figure 7 shows the delay of all the 3 techniques for
varying rate scenario. Increase in sending rate yields more
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Table 1: Sirmulation settings and parameters

Parameters Values
No. of nodes 50
Area size 500500
Mac TEEE 802.11
Transmission range 250 m
Rimulation time 50 sec
Tratfic source CBR
Packet size 512
Tnitial energy 2017
Receiving power 0.395
Transmission power 0.660
Rate 50, 100, 150, 200 and 250 kB
159 m-EMO
—i— BFS
’é\ 10 ——-RBCA
=2
™S
k|
& 5
0 T T T T T 1
50 100 150 200 250
Quety sendingrate (kB)
Fig. 7. Rate vs. delay
1.57 -= EMO
—i— BFS
-+~ RBCA
4§ 1.0
E
X 0.5-
0.0 T T T T 1
50 100 150 200 250
Query sendingrate (kB)

Fig. 8 Rate vs. delivery ratio

15000
-B- EMO

- BFS

10000 -+ RBCA

g

5000+

200
Query sendingrate (kB)

Fig. 9: Rate vs. drop

packets and hence, the data collection time mcreases
resulting mn the increase of delay. But EMO has 36%
lesser delay than BFS and 19% lesser delay than
RBCA.

Figure 8 and 9 show the packet delivery ratio and
packet drop, respectively of all the 3 techmques for
different rate scenario. Since more packets are buffered in
the queue, the packet drop will be more and delivery ratio
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-= EMO

50 100 150 200

Query sendingrate (kB)

250

Fig. 10: Rate vs. energy consumption

will be slightly degraded which can be seen from Fig. 9
and 10. It is clear that EMO outperforms the techniques
by obtaining delivery ratio 20 and 7% higher than BFS
and RBCA, respectively. The corresponding packet drops
for EMO 1s 50 and 32% lesser than these two techniques.
In both the metrics, the performance of RBCA is very
close to EMO.

The average energy consumption of all the
3 techmiques are given in Fig. 10. The energy consumed
by the nodes increases slightly when the traffic rate is
mcreased. Figure 10, we can see that EMO has the least
energy consumption followed by BFS and RBCA. Tt is
less by 18 and 14% than these two approaches.

CONCLUSION

In this study, we proposed an EMO algorithm that
can attain minimum delay and energy consumption in
TDMA scheduling for multiple sk WSNs. At first, we
combined energy efficient multi-swarm fruit fly
optimization technique with PDT which maximizes the
participating node with lessen wastage of time in iteration.
Then, we continue to implement time slot allocation
using BFS techmique for empty slot searching process.
Simulation results show that the proposed EMO
algorithm remarkably reduces iteration delay and energy
consumption m terms of various test scenarios.
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