Asian Journal of Tnformation Technology 15 (8): 1405-1410, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

GNA Based Test Case Prioritization

'R. Uma Maheswari and *D. Jeya Mala
"Department of Computer Applications, K.L. N.College of Engineering, Sivagangai, India
Department of Computer Applications, Thiagarajar College of Engineering, Madurai, India

Abstract: Changes in software can affect some of its behavior that had been implemented until that point. To
discover such a problem, the perfect solution is testing the entire system completely again but there is a lack
of time or resources for doing that. A different approach is to order the test cases and execute a subset of them
which guarantees that the essential tests are executed first. Such an approach is known as regression test case
priortization (TCP). In this study, a new test suite prioritization techmque which is a variant of Genetic
Algorithm i1s presented. The proposed approach 1s based on Global Neighborhood Algorithm (GNA) which
combines local search and global search. In the proposed system, the chromosomes represent the test case
Sequence and gene represents the test case numbers. The aim 1s to find a test case sequence with 100% Fault
Coverage m mimmum time. Exammation on whether the proposed approach overtakes existing test prioritization
approach based on Genetic Algorithms (GA) for software test Prioritization 1s carried out. From the analysis of
the results of the experiments, it 18 inferred that: computation time of GNA based Approach 1s very negligible
over GA based Approach and GNA based approach is best in finding global optimal solution.

Key words: Regression testing, test case prioritization, global neighborhood algorithm, genetic algorithm,

approach

INTRODUCTION

The affirmation with respect to any alteration in the
product 1s given by the procedure called regression
testing. Tt ensures that modifications have not influenced
functional characteristics of software. Tt is very costly
method to be utilized. Some techniques such as test
selection reduction and test prioritization (Yu and Lau,
2012) have been proposed by researchers for viable cost
minimization in regression testing. Test Case prioritization
i regression testing orders the test cases such that
highest priority test case 1s to be executed first and so on,
according to selected criteria such as Statement, Path,
Branch and Fault coverage.

In TCP, we have to find the 1deal sequence’s that will
give the best fitness. In the event that every possible
combinations are to be checked, then the aggregate
number of the combinations will be N!. In case of Large
Test suites, TCP is observed to be NP-hard with no
deterministic solution and has exponential complexity in
the worst case. Tt will be hard to tackle the TCP issue by
utilizing conventional mathematics or using numerical
mnduction techmques. So, Meta heuristic techmques pick
up prominence in TCP Problem Solving. Meta-heuristic
search technmiques are high-level frameworks which utilize

heuristics i order to discover solutions for combinatorial
optimization at sensible computational expense.

A new optimization techmque GNA 1s a population
based and derivative free algorithm like other evolutionary
optimization. Tt is developed to optimize combinatorial
problems. Tt will work to find the global optimal value
among the optima by switching between
exploration and expleitation. It has been tested and
proved to be effective to solve traveling salesman
problem (Alazzam and Lewis, 2013). In our approach, the
functionality of the GNA 1s extended to solve TCP to
reduce the manual work and mnproves the confidence on
the software by testing it with the coverage of the given
software. In our approach Fault coverage 1s used as test
adequacy criteria. Since an 1mproved rate of fault
detection can provide earlier feedback on the system
under test, enable earlier debugging and increase the
likelihood that if testing is prematurely halted, those test
cases that offer the greatest fault detection ability in the
available testing time will have been executed.

local

Literature review: Many prioritization techniques
have been described in the research literature
(Krishnamoorthn and Mary, 2009, Pamgrahi and Mall,
2013; Jacob and Ravi, 2013; Maheswari and Mala, 2013)

Corresponding Author: R. Uma Maheswari, Department of Computer Applications, K.L.N.College of Enginecering, Sivagangai,

India

1405

Asian J. Inform. Technol, 15 (8): 1405-1410, 2016

for TCP. Several meta-heuristic search techniques such as
Genetic Algorithm (GA) (Wang et al., 2015) Ant Colony
Optimization (ACO) (Mala and Mohan, 2009) and
Cuckoo Search (Nagar et af, 2015), etc. Hybrid
Techniques (Maheswari and Mala, 2015; Suri et al., 2011)
have also been proposed for Prioritization.

The important issues noticed in literature study of
Meta heuristic based TCP are:

* The results of Genetic algorithm are not stable and
found to stick at local optima often. The convergence
is slow and non-explicit memorization of best
individuals

* The drawbacks of Ant Colony Optimization are long
length test sequences and repetition of nodes within
the same sequence without any improvement in test
adequacy criteria

* In Tabu search based approach, more amount of
memory 1s required

The earlier said issues of existing worl have made us
to concentrate on an alternate approach which has the
merits of population based approaches without the 1ssue
of local optima. The new Optimization techniques GNA
has provided us a lot of hope as it is used to solve
Traveling Salesman Problem successfully which
resembles TCP Problem Solving. In the light of the above
consideration, we applied GNA for software test suite
Prioritization.

Gna algorithm-an introduction: GNA 13 a population
based and derivative free algorithm like other evolutionary
optimization. It 1s developed to solve combinatorial
optimization problems. The combinatorial optimization
problems may contain more than one local and global
optimal value within the huge search space. By Transiting
between exploration and exploitation, GNA will work to
find best optunal value. Exploration searches the whole
huge Explottation focuses i the
neighborhood of the best solution.

In GNA, set of (m) solutions are first arbitrarily

solution space.

created from the huge search space. Then the fitness for
the above solution will be found using the objective
function .The solutions are then ordered by their fitness
obtained. Let S1 is the best solution among them. Tt is
taken as a good measure for the local optimal solution and
also as the current best solution.

Next population is formed by including m/2 solution
from neighborhood of best solution 81 and m/2 solution
from the entire search Space. Solution from huge search
space allows exploration of search space. Solutions from

neighborhood allow exploitation. Tt is done because the
function that needs to be optimized could have more than
one local optima and 1t may stuck at one of these local
optima.

The best solution in the newly generated population
15 calculated. It 1s then compared with the current best
solution S1 and replaces it if found better. The process 1s
then repeated until a specified number of iterations (t), or
when there is no further improvement on the final value of
the optimal solution.

Pseudocode:

Define fitness function (f)

Tnitialize GINA parameters: Population size m, No of Tteraions t
Create (m) random solutions from the entire search space
Calculate the fitness of m solutions

Optimal solution= the best solution.

i=1

While i<t

Generate m/2 solutions from the neighborhood of the best solution
Generate m/2 solutions from the search space

Find the best solution from the (m) generated solution

If best solution is better than optimal solution

Optimal solution=best solution

End If

i++

End DO

End DO

Proposed approach- GNA based TCP: The GNA algorithm
was used to solve the Test Case Prioritization Problem.
The Framework for the GNA based TCP 15 given in Fig. 1.
The TCP Problem consists of finding a sequence of test
cases in a test suite .Tn order to optimize the TCP Problem,
the optimal sequence of test cases that maximizes the fault
coverage in mimimum time has to be found.

Problem statement: Given a test suite, T, the set of
permutations of T , PT and f, a function from PT to the set
of real numbers, Preblem: find T © PT such that:

(¢ T?) (T°€ PT) (T°+T”) [{(T")=£(T™)]

In the above definition, PT represents the set of all
possible pricritizations (orderings) of T, and f is a function
that applies to any such ordering, yields an award value
for that ordering.

Genetic coding: To apply GA for any optimization
problem, one has to think a way for encoding solutions as
feasible chromosomes so that the crossovers of feasible
chromosomes result in feasible chromosomes.

Since test cases are to be ordered in some sequernce,
Permutation encoding is selected. The Chromosome
represents the test case Sequences. Hach gene in a

140¢&

Asian J. Inform. Technol, 15 (8): 1405-1410, 2016

Test
Suite T

e

GNA ‘ Random Population ‘

Coverage

Information

Find Best

g

Stop

' '

50% from neighborhood 50% from Global
of Best Solution SearchSpace

—— | MNew populaion

L

Prioritized Test Suite T*

Fig. 1: Framework for GNA based TCP

chromosome represents test case numbers. In permutation
encoding, every chromosome is a string of numbers,
which represents number n a sequence.

+ Chromosome A153264798
+ Chromoseme B856723149

Population: Population is a set of solutions represented
by chromosomes. Solutions from one population are taken
and used to form a new population. New solutions are
selected according to their fitness. This 13 repeated until
some condition (for example number of populations or
unprovement of the best solution) 1s satisfied.

Fitness function: Tt interprets the chromosome in terms of
physical representation and evaluates its fitness based on
traits of being desired in the solution. A total of 100%
fault coverage m mimmum time 1s taken as fitness criteria.
Given Test cases along with the set of faults covered by
them and execution time, Fitness function selects test
cases and sum up their execution time until all the faults
are covered.

Mutation: The mutation operator performs random
changes in a chromosome. By doing so, it ensures that
new parts of the search space are reached also ensures
that no mmportant features are prematurely lost.

Order Changing is the commonly used mutation
operator in case of permutation encoding. Tt is performed
by picking two alleles at random and swaps their
positions. It Preserves most of adjacency and disrupts the
order more.

Example: Consider the following chromosome:

1 2 |3 |4 ‘5 ‘6 |7 |8 |9 |

It 2nd and 5th are randomly chosen then after
mutation it yields:

1 5 3 4 2 6 7 8 9

Stopping criteria: The Procedure stops when no of
generation reaches 10000 or the fitness reaches the limit
specified by the tester.

MATERIALS AND METHODS

» Imtially ‘m’ Chromosomes which represent different
test cases sequences are generated from global
search space to form a population
¢ Evaluate Fitness for each Chromosome in initial
population
* Among them, S which has the highest Fitness 1s
chosen and set as current best solution B
s Form new population as follows
¢ QGenerate m/2 Chromosomes from neighborhood
of Current Best Solution

s This done by applying Mutation

¢ Generate m/2 Chromosomes from Global Search
Space

» Evalvate Fitness for each Chromosome in new
population

¢ Chromosome S with highest fitness is identified and
compared with current Best Solution B

» 1f S better than B then make it the current Best
Solution

¢ Check Stop criterion reached, if so stop otherwise go
to step 4

RESULTS AND DISCUSSION

This section presents an experiment set up which
includes subject Programs, Techmiques involved,
metrics, results and their evaluation in order to prove the
effectiveness of proposed approach.

1407

Asian J. Inform. Technol, 15 (8): 1405-1410, 2016

Table 1: Subject programs

Test suite No of test cases No of statements No of paths No of faults
P21 21 50 18 11

P34 34 72 21 15

Test Coverage information needed by Algorithm 1s
considered to be readily available as they can be easily
obtained from past runs of Program. Tt is also out of scope
of our research.

Subject programs: Two data sets with test suite sizes of
21 and 34 are taken. The data sets are henceforth referred
to as p21 and p34, respectively. Table 1 shows the basic
information of these data sets.

Run test case prioritization techmiques: Test Case
Prioritization algorithms like GA and GNA techniques
considered in our experiment. Each algorithm was
executed 10 times for the two data sets mentioned in
Table 1. About 25% of the execution time of the entire test
suite is chosen to represent the tight time schedule.
About 50% of the execution time of the entire test suite 1s
chosen to represent for average time schedule. These time
budgets are used to prove that the proposed GNA based
TCP is more effective even in case of time constraints.

The parameters for the GNA algorithm were as the
following:

+ Population Size m: 10
s+ Number of Iterations: 10000

The parameters for the genetic algorithm were as the
following:

¢ (Generation size: 10

* Crossover probability: 75%
+ Mutation probability: 75%

¢+ Number of iterations: 10000

The bunch of varying results for the same are plotted
mn Fig. 2-9. Output value/Fitness in above graphs plotted
represents the time in seconds needed to achieve 100%
fault coverage by the GA and GNA algorithms. By
analyzing the graphs, it 13 found that it produces optimal
results over GA almost in all executions for both subject
Programs P21 and P34.

Evaluate results: This study presents a graph that
compares the proposed GNA based TCP to GA based test
case prioritization techmques based on Optimal Results
Produced by them and computation Time of them to
achieve the same. Three Cases are considered for
evaluation:

-
:

Fig. 2: Execution of P21 in tight time schedule

T —a

"EVE LH—E.—!JZQ

i z E § 4 5 L} i a3

Fiinan

(= _

Fig. 3: Execution of P21 in tight time schedule

R
-

Fig. 4: Execution of P34 in tight time schedule

I

Finess
o B 8 B E

1 X 3 4 5 & F B 5 140
Exrsastisvn Moy

Fig. 5: Execution of P34 in tight time schedule

—Wﬁw—ss

- oy

Pt
o BEEE

14 * 3 4 5 & F B 95 10
Exrastaows Mo

Fig. 6: Execution of P21 m average time schedule

* Best Case-Best among the 10 runs of Algorithm

» Worst-Case-Worst among the 10 runs of
Algorithm

s Average Case-average of values of the 10 runs of
Algorithm to show the consistency of Algorithm in
producing the result

1408

Asian J. Inform. Technol, 15 (8): 1405-1410, 2016

"]

Ftnass

c B 8B E
S
S

i 2 3 4 53 & F B 5 1D

Exrsustaen Mo

Fig. 7: Execution of P21 in average time schedule

il 1

ST
i
i

Fig. 8: Execution of P34 with 50% test suite time

1200 -
100 A0
I e = ==
¥ o
i an -
20
4]
1 2 3 4 5 & 7 8 S 10
Excrastavn Moy
Fig. 9: Execution of P34 m average time schedule
s0
€ L
g oo
= S4s5n0 EGa
x 50 7979
E =GHa
=
o
Best g Worst
Fig. 10: Execution of P21 in Tight time schedule

ol I Scimel
aBEEE

Fig. 11: Execution of P34 in tight time schedule

Figure 10-13 shows that GNA based test cases shows
better performance when compared to GA based ones.
GNA based Test Case Prioritization performs well and
generates global or nearly global optimum solutions in all

cases both for tight and average time schedule.

Timaln sacends
o B 888

LN =%
| GiA
Fig. 12: Execution of P21 in average tune schedule
- 190 103
E 100 -9 B4 87
F. HGA
= 50
- = GHA
E o
=
Best AvE Worst
Fig. 13: Execution of P34 in Average time schedule
0000
B | 19638
g 20000 143 TY
= R - oA
= 10000 —:{.a;-%ﬂ—ﬁdf—
E T .
=
Best Ave Worst
Fig. 14: Execution of P21 in tight time schedule
P -
bl SO
| : -
= Tl ol
E o -——— B GNA
l_
Best Awp Worst

Fig. 15: Execution of P34 mn tight time schedule

Best Aarw Worst

Fig. 16: Execution of P21 in average time schedule

Figure 14-17 shows that computational time of
algorithm 15 very negligible for GINA over GA. It shows
that the GNA quickly converge to results in huge search
space by transit between Global and Local Searches. The
performance of GNA 1s found to be superior and takes

only less time for test case Prioritization process.

1409

Asian J. Inform. Technol, 15 (8): 1405-1410, 2016

- 2O
'E > 1RF 106 =

b 25
o -— A
— i
" - EMA
E o

Bre==t B Wor=t

Fi

—

g. 17: Execution of P34 in average tune schedule
CONCLUSION

TCP strategies allow testers sort the test cases as
indicated by certain measure, for example, increasing the
rate of fault detection or maximizing code coverage, so
that vital test cases are executed before in the testing
process. In this study, we exhibited the application of
GNA in software test case Prioritization and proved the
dominance of the proposed approach over the existing
GA based approach. Drawbacks of GA include risk of
suboptimal solution and delayed convergence. No
assurance for global optimal solution even when it may be
attained. But GNA based test case Prioritization produces
global or near global optimal results m short tme compare
with GA. The steps in the proposed approach are very
clear and can be effortlessly trailed by software testers. It
will surely diminish the time & cost of programming
testing and improves the testing procedure and reduces
the number of test cases to be examined.

RECOMMENDATIONS

In future, the GNA based approach will be
mvestigated for multi criteria test case optimization and
fitness evaluation.

REFERENCES

Alazzam, A. and HW. Lewis, 2013. A new optimization
algorithm for combinatorial problems. Intl. J. Adv.
Res. Artif. Intelligence, 2: 63-68.

Tacob, T.P. and T. Ravi, 2013. Optimization of test cases
by prioritization. J. Comput. Sci., 9: 972-980.

Krishnamoorthi, R. and 8.5.A. Mary, 2009. Factor oriented
requirement coverage based system test case
prioritization of new and regression test cases. Inf.
Software Teclnol., 51: 799-808.

Maheswari, R U. and D.J. Mala, 2013. A novel approach
for test case prioritization. Proceeding of the
International IEEE Conference on Computational
Intelligence and Computing Research, December
26-28, 2013, IEEE, Enathi India, ISBN:
978-1-4799-1594-1, pp: 1-5.

Maheswari, R.U. and D.J. Mala, 201 5. Combined genetic
and siumulated amealing approach for test case
prioritization. Indian J. Sci. Technol., 8: 1-5.

Mala, D.J. and V. Mohan, 2009. ABC Tester-Artificial bee
colony based software test suite optimization
approach. Intl. J. Software Eng., 2: 15-43.

Nagar, R., A. Kumar, G.P. Singh and 3. Kumar, 2015. Test
case selection and prioritization using cuckoos
search algorithm. Proceeding of the International
IEEE. Conference on Futuristic Trends on
Computational Analysis and Knowledge
Managemen, Feburary 25-27, 2015, TEEE, Noida,
India, ISBN: 978-1-4799-8432-9, pp: 283-288.

Pamgrahi, CR. and R. Mall, 2013. An approach to
prioritize the regression test cases of object-oriented
programs. CSI. Trans. ICT., 1: 159-173.

Suri, B., I. Mangal and V. Srivastava, 2011. Regression
test suite reduction using an hybrid technique based
on BCO and genetic algorithm. Spec. Issue Intl. J.
Comput. Sci. Inf., 1: 2231-5292.

Wang, S., S. Ali, A. Gotlieb and M. Liaaen, 2015.
Automated product line test case selection: industrial
case study and controlled experiment. Software Syst
Model., 28: 1-25.

Yu, Y.T. and M.F. Lau, 2012, Fault-based test suite
prioritization for specification-based testing. Inf
Software Technol., 54: 179-202.

1410

	1405-1410 - Copy_Page_1
	1405-1410 - Copy_Page_2
	1405-1410 - Copy_Page_3
	1405-1410 - Copy_Page_4
	1405-1410 - Copy_Page_5
	1405-1410 - Copy_Page_6

