Asian Journal of Tnformation Technology 15 (8): 1307-1313, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

QoS Oriented Node Selection in High Performance Clusters

'R. Reshmi and °D. Shanthi
'Anna University, Chennai, India
"Department of Computer Science and Engineering,
PSNA College of Engineering and Technology, Dindigul, Tamil Nadu, India

Abstract: A scheduler has to assign the tasks to heterogeneously distributed computing sites to process with
the objective to achieve the customers’ Quality of Service (QoS) requirements as well as to optimize the
performance. In this study, a QoS oriented mechanism, evaluates nodes in a high performance cluster based
on various static and real-time parameters. It selects the most appropriate node to perform the task at hand with
regard to their quality of service. The nodes are gauged on parameters, spanning a broad spectrum from power
usage to fan speed. This system offers an mherent flexibility as it can be tailored to bias the selection towards
a particular parameter or can be maintained on a balanced plane. Tn particular, the focus was on designing a
power aware system, where power usage, CPU temperature etc. play a critical role in determining the QoS of a
node. The result of our experiments that upholds the optimality of QoS based selection algorithm 1s also

presented.

Key words: High-performance systems, quality-of-service, power aware systems, job scheduling, tailored

INTRODUCTION

The Quality of Service (Qo3) provides an
industry-wide set of standards and mechanisms for
ensuring high-quality performance for critical
applications. High performance clusters (Katz et al.,
2002, Chare et al., 2001) were designed to meet the
heavy requirements of such applications are called as
massively parallel systems. Massively parallel
algorithms that have huge resource requirements are
needed to be run in quick succession for obtaining an
optimal scheduling. The scheduling 1s an operation
which select among own jobs stored in a buffer to be
transmitted over a specific link. These clusters are
constituted of many computing nodes comprised of
multiple processors linked together as a single system.
Performance is a critical aspect of these systems, as
very often, the applications are simulations of high risk
operations. The choice must be taken m a very small
period of time and 1t 1s related to job tumaround time.
Scheduling amounts to allocating the jobs and
resources optimally to the distributed nodes with
diverse Quality-of-Service (QoS) requirements.
Scheduling oriented algorithms are used in many
decision support systems which integrates human
factors and agronomics for problem solving
(Gacias et al., 2012). In large scale computing or in big
Data context, efficient scheduling algorithms play an
essential role. Sfrent and Pop (2015) deals with the
problem of scheduling a set of jobs across a set of

machines and specifically analyzes the behavior of the
system at very high loads, which 1s specific to Big Data
processing. Development of high-performance distributed
applications are extremely challenging because of their
complex runtime environment coupled with their
requirements of high-performance and Quality of Service
(QoS). Such applications typically rim on a set of
heterogeneous machines with dynamically varying loads,
connected by heterogeneous networks possibly supporting
a wide variety of communication protocols. In spite of the
size and complexity of such applications, they must provide
the high-performance and QoS, mandated by their users. In
order to achieve the goal of high-performance, they need to
adaptively utilize their computational and communication
resources. Performance of a scheduler 1s based on how
efficiently the resources of a cluster are utilized while
maintaining the QoS provided to end-users within a pre-
negotiated range. Selection of a node to perform a task at
hand 1s crucial as this in turn affects the performance of the
cluster. The nodes offer different quality of services (QoS)
based on various static and dynamic parameters and it makes
sense to choose the node with the best QoS to serve a
requirement. QoS model aims to provide service stability and
dependability on individual resources, leading to standard
parts which enable predictable performance.

QoS of nodes m a high performance cluster has
garnered a lot of attention, as it directly reflects performance
and scalability of the system (Norris et al., 2004). Various
parameters can be used in conjunction to determine the QoS
of a node. Focusing on energy efficiency, we have devised

Corresponding Author: R. Reshmi, Anna University, Chennai, India

1307

Asian J. Inform. Technol, 15 (8): 1307-1313, 2016

a power aware mechanism for QoS assessment that
addresses the relevance of parameters that are
indicative of the power consumption 1 a cluster. The
power aware parameters considered were power usage
of the nodes, the temperatures of the CPUs that
constitute a node and the respective fan speeds. Apart
from these, the other parameters like memory usage,
network send/receive rate, performance, CPU load, CPU
speed and CPU cache memory together determine the
QoS of a node. In short, the QoS of a node is the
welghted average based on the relative grade of these
parameters.
Literature review: Quality-of-service (QOS)
provisioning becomes an issue of great mmportance,
concerning commumnication networks and high
performance distributed systems. QoS is specified
through a set of measurable performance parameters
that quantify and categorize the degree of service
quality availed to end-users. Much attention has been
focused on characterizing QoS requirements in high

performance distributed clusters application level.

Scheduling can be improved by focusing the
Quality-of-Service which 1s derived from an objective
metrics. Quality of Service plays a critical role in
effective resource reservation.

Energy computing using
mnproved hardware design techniques have been
developed (Huang and Feng, 2009). Their highly
modular approach regulates power consumption while
not sacrificing the performance aspect of the cluster.
Studies have been reported on managing energy and
server resources (Jacobs and Bean, 1963) as well as
energy proportional computing (Barroso and Holzle,
2007). Optimizing power consumption in data centers
that handle huge quantum of data 1s presented by
Moore et al. (2005). Xian-He and Ming proposes a
prediction model in GHS system for long-term
application-level performance prediction which
addresses the challenge of non-dedicated clusters.
(Shan et al., 2002) introduces mechanisms to correlate
contents and priorities of incoming HTTP requests
used for server process scheduling with the load

efficient clusters

balancing policies for Web-server clusters. This
approach enables both load balancing and Web QoS.
Crovella propose a policy favoring short
comections for static files. The shortest remaining
processing time (SRPT) scheduling policy is analyzed
by Bansal and Harchol (2001). Other mechanisms and
policies for Web QoS, such as operating system
control, server-side application-level-only mechanisms
(Eggert and Heidemann, 1999), web content adaptation

for server resource management, control-theoretical
approach for performance guarantees (Abdelzaher and
Bhatti, 1999) were discussed. The scientific commumty
15 acknowledging the need for efficiency even when
high performance is the need of today.

In class of multi-criteria scheduling problems, vector
processing can be considered to improve computational
time, supported by fine-gramed parallel computing
Smutnicki et al., 2015). Distributed systems are expected to
provide QoS that guarantees to users as obligatory by
multimedia and other real-time applications.

In this study, we present a mechanism where the
different nodes in a high performance cluster are assessed
on a multitude of parameters to calculate their QoS which is
used as selection criteria to choose the nodes to schedule a
job. Our QoS oriented mechanism attempts to strike a
tradeoff between efficiency and performance through careful

monitoring of the parameters discussed.
MATERIALS AND METHODS
Cluster architecutre: Much of the prior work on
performance momtoring for distributed systems had focused
on high level architecture of clusters and its implementation
issues. In this research, the cluster series promises higher

efficiency and better computational facilities for large-scale
applications.

Dhakshina-HPC cluster: Dhakshina Cluster Series 1T
(DKA ysen) 18 & High Performance Computing System
developed using the Beowulf Architecture, it has a peak
speed of 180 Gflops. Inspiration and abundant factual
assistance was drawn from the Tinux cluster installations red
books distributed by IBM.

Nodes in DKA,,....r The nodes in the cluster are divided
based on their function. The functionalities of various nodes
are explained below.

User: The user node is the gateway for the outside world
to access the cluster. Users may login to the user node
machine and compile or run their tasks. Hardware
redundancy 1s recommended on this machine node as, if it
fails, users may not access the cluster and use its powerful
computational capacity. If the user node is not up and
running, the cluster cannot function, because there is no
opportunity to run a task. The user node can also be on the
same server that 1s used for management or mstallation.
RAID adapters are used to protect the data on the user node.

Control: The control node can be on the same machine that
takes care of management and installation functions. Tt is

1308

Asian J. Inform. Technol, 15 (8): 1307-1313, 2016

responsible for controlling the cue or batch jobs. The
control node provides services such as Dynamic Host
Configuration Protocol (DHCP), Domain Name System
(DNS) and Network File System (NFS). Redundancy 18
required on hardware and data because, unlike in the
case of compute nodes, the failure of the control node
may affect the availability of the entire cluster.

Management: Meanagement 1s the function that
manages and controls the cluster and its components,
for example, switches. It is either on dedicated
machines called management nodes, or, for budget
reasons, shares the machine with other functions, such
as the master, mstallation and compute nodes. It may
also be found on a dedicated virtual local area network
(VLAN), defined as management and accessible only
by the administrator (for security reasons). As the
cluster manager, it takes control of the nodes and
collects Simple Network Management Protocol (SNMP)
alarms.
Storage: The storage function is performed by
dedicated machines and 1s responsible for storing large
amounts of data needed by the applications running on
compute nodes. The storage node provides a solution
to the problem of feeding large amounts of data to the
cluster. Since, it is difficult to store large amounts of
data on a single server or on one of the cluster nodes,
there is a need for a SAN (Storage Area Network) or
dedicated servers; the network may be a bottleneck at
this pomt Storage equipped with
ServeRAID controllers (that give data protection using
one of the different RAID levels available), Gigabit
Ethernet for higher bandwidth performance.

nedes are

Tnstallation: The installation node is responsible for
the installation of the compute nodes and is sometimes
referred to as a staging server or node. It is a server
that exports a file system containing the operating
system, libraries and all the necessary software for the
compute nodes. Tt has a Gigabit Ethernet PCT adapter to
allow more bandwidth and to speed up the cluster
mstallation. An mstallation server shares a file system
that can be accessed via NFS, Web or File Transfer
protocol (FTP). It 1s the only node on the public
network, since users need to access it to be able to run

their jobs.

Computation: The compute function or node is the
computational heart of the cluster. Its main activity 18

just to perform calculations. The choice of hardware and
configuration parameters of the compute node 1s based on
the applications that will be run on the system. The
following characteristics are normally considered:

* Processor Type

* Size and speed of L2 cache

¢ Number of processors per node
* Speed of front-side bus

* Memory subsystem scalability
¢+ PCT bus speed

The application drives the decision on how to build the
compute nodes. For example, if the compute node is required
to access the cache frequently, the size of the L2 cache and
memory subsystem should be considered; a large cache may
enhance the performance. On the other hand, applications
that use intensive amounts of memory will benefit from a
faster CPU, system bus and memory subsystem. From
processar performance point of view, one processor per
compute node. Budgetary restrictions make an SMP machine
a viable option. It 1s possible that a compute node can take
control of other functions too such as management,
mstallation and control.

Configuration: Here we discuss the characteristics of nodes
that constitute DK A 4. . We also describe how the nodes
are intercomected in order to behave as a single functional
unit:

Hardware Configuration: The hardware configuration of
the components of Dakshina cluster are as follows:

* Nodes: 40 execution nodes and all are Intel Pentium 4
(3.6 Ghz), 945 G Chipset, 1.23 GB RAM, 80 GB SATA
HDD, 1 G Ethemet

* Momnitor Node: exactly 1 momtor node which is Intel
Pentium 4 (2.6 GHz), 865 G Chipset, 1.23 GB RAM, 80
GB PATA HDD, 100 M Ethernet

* User Login Machines: 5 different user login machines,
all Intel core 2 Duo 2.6 Ghz, 1 GB RAM, 80 GB SATA
HDD, 1 G ethernet, 15” TFT monitor, 52x CD ROM, 104
Std keyboard, Optical Mouse

* SGE Server: The cluster has one Sun Grid Engine server
which is Intel Xeon 2.2 Ghz Quad Core x 2, 2 GB RAM,
146 GB SASHDD x2, 1 G ethernet x2

* NFS + LDAP Server: A single such server that 1s Intel
¥Heon 2.2 Ghz Quad Core x 2, 2 GB RAM, 146 GB SAS
HDD %2, 1 G ethemet x2 13 an mtegral part of Dhakshina

* Project Server: The cluster has a project server which 1s
Intel Pentium 4 2.6 Ghzx2, 512 MBRAM, 120 GB HDD,
1 GB and 100M ethernet

* Switches: Dhakshina uses two 24 Port Gigabits/sec
switches

1309

Asian J. Inform. Technol, 15 (8): 1307-1313, 2016

Connectivity: The cluster nodes in Dhakshina are
mterconnected using the Gigabit Ethernet LAN. The
data transfer takes place at the speed of around 990
Mbps among the servers and around 665 Mbps among
the client nodes. The Gigabit Ethernet uses copper
cables. As we require effective comnection to the
already existing copper cable network of the campus,
the cluster also uses UUTP copper cables in the LAN.
The cabling uses a category 6 Unshielded Twisted Pair
(UTP) patch chord IEC 332-1 four pair, ETL verified to
TIA/ELAS68-B; cables from Molex.

QoS-parameters and measurement: Quality of Service
of a node mn a High Performance Cluster 1s a dynamic
estimate of its performance. Various measurable
parameters that are descriptive of a node’s current
service quality are closely monitored to worlk out this
estimate. When a process request is handed over to
the HPC, the QoS of the participant node serves as an
indicator of the quality of service that can be expected
out of it. As a proactive measure, this QoS could be
used to choose the node for executing the process
request. The various parameters used to measure
node’s QoS are elaborated in this section. The
measurement process for each parameter is also briefly
outlined. Every node in an HPC might have one or more
constituent processors. The parameters momtored
essentially belong to the categories, node parameter
and CPU parameter.

Node parameters: These parameters are measured
directly from a node. Power Usage: This is the power
consumed by a node at a given pomnt of time. It 18
expressed in MW and is a dynamic parameter. By
dynamic parameter, we mean this parameter has to be
measured every time a decision has to be made
regarding the selection of next node. The power usage
1s measured by means of the Baseboard Management
Controller (BMC) which 1s a specialized microcontroller
embedded on the mother- board of a computer and is
the intelligence component in Intelligent Platform
Management Interface (IPMI), a standard Intel
specification.

Memory Usage: This value is the memory of the
node that is being currently used. Tt is also a dynamic
parameter and 1s measured in MB. Depending upon the
0OS m the node, this measure can be read off an
appropriate file.

Send/Receive Usage: This is yet another dynamic
parameter that speaks of the current network mterface
rate of the node. If the node has multiple NICs,

averages of the respective send/receive rates is a good
enough indicator. Measurement 1s taken from the standard
TCP/IP parameter dump.

Status: The guard measure of the node, it has to be *ON’
for the node to be considered available. Performance: This 1s
measured in FLOPS, number of floating point operations per
second. It 1s a static parameter and 1s collected using
benchmarking tools (nBench for Linux).

CPU parameters: Very often it i1s the case that a node 1s
functionally comprised of multiple processors. The CPU
parameters are those that are measured off every individual
CPU and are subsequently aggregated sum or average
depending on the nature of the parameter. These parameters
are:

CPU Name: The CPU name brings along the attached
brand wvalue. This qualitative measure can also be a
contributor to the QoS of the node, if one is presented with
relative processor ratings. CPU Temp: This measure plays a
critical role in designing power aware systems. It 1s measured
by

means of the BMC sensors. It 18 a dynamic measure
expressed in degree centigrade. If a node has multiple CPUs,
the temperature value attributed to the node 1s an average of
the constituent CPU temperatures.

CPU Load: a dynamic parameter, that is a percentage
indicator of the load of a CPU. The value is refreshed every
2 seconds to ensure that the QoS calculated is as current as
possible. It is read off OS specific files. Averaging
aggregates multiple CPU loads appropriately for our
purpose.

CPU Speed: this is a static parameter that clearly
projects the performance of a CPU. The greater its value
offers better QoS of the node. An average of the speeds in
case of multiple processors proves to be an unbiased
measure.

CPU Type: like the CPU name, this qualitative measure
can also be utilized if relative grades of the different CPU
types are known beforehand. It is a static parameter.

CPU Cache: This is a static parameter for the cache
memory of a CPU. In a multi-processor case, sum of the
different cache values evenly carries off the reading to the
QoS calculation.

CPU State: this 13 the CPU power state according to the
Advanced Configuration and Power Interface (ACPI)
specification. A state ‘Cy” 1s an equivalent of an operating
state and is mandatory for the CPU to be considered an
effective part of a particular node.

In addition to the node and CPU parameters,
of the of fans and

we also keep note number

1310

Asian J. Inform. Technol, 15 (8): 1307-1313, 2016

their
The average fan speed can be an index of a node’ s

respective speeds for a given node.

powWer awareress.
RESULTS AND DISCUSSION

The QoS of the nodes i a cluster can help the
scheduler to take an informed decision while selecting
the node to process a given request. When the QoS
value is determined by taking into consideration many
current and performance indicative quantities, it serves
a fair ranking for each node 1 a cluster. In this section,
our approach to QoS calculation of the nodes in
DKA e 15 explained in detail

The node parameters like Power Usage, Memory
Usage, Network Send/Receive Ratio, Performance and
CPU parameters like Load, Temperature, Speed, Cache,
CPU Type and the fan parameters. Fan Speed are
measured periodically and stored into a relational data
store. The node parameter’ s and the CPU parameters
like Cache, CPU Type (are static quantities) requires
only one time measurement. All other parameters are
dynamic variables and are periodically refreshed in the
database. Every time the scheduler 15 faced with a new
process request, the algorithm calculates the QoS of
every available node using the most current values of
these parameters to let the scheduler take an informed
decision regarding the node to be chosen to process
the request. To keep the approach open, flexible and
extensible, the QoS 1s currently calculated as a
weighted average. It i1s often the case that a single
node mn an HPC has multiple CPUs and multiple fans.
Hence these parameters are aggregated as average or
sum, as given in the proposed algorithm.

The parameters such as node performance, CFU
speed and CPUJ cache bear a direct proportionality to
their grades, that 13 the higher the absolute value of
these parameters, the better its grade. The other
parameters like power usage, memory usage, network
send/receive usage, CPU load, temperature and fan
speed have an inverse relationship with their grades.
Subsequently, every parameter value i1s graded into
one of the five grades: ("A’,B’C’"D’’E") with “A’
having the highest weight and ‘E” having the least
weight in a range from 10-2 respectively. The grade
values corresponding to these grades are shown in
Table 1.

The parameters also carry a weight that had been
assigned after careful analysis. Parameter weights can
be modified by reallocating current job scheduling
which help one to bias the algorithm towards these
parameters. As the focus is on devising a power
optimal mechanism, the weightages are given to power
aware parameters such as CPU temperature, power
usage and fan speed which are > the rest. These

Table 1: Grades and values

Grades values
A 10
B 8

C 6

D 4

E 2

CPU load CPU speed

power

fan spead

network temparature

memary

Woeights in Qo5 ranking
w

Parameters

Fig. 1: Parameter weights

weights are on a scale from 1-5 and shown in the Fig. 1. Once
the parameters are fetched, aggregated and graded the QoS
18 caleulated as a weighted average. The HPC scheduler, now
takes the QoS as a cue to choose the possibly best node to
process the current request.

Algorithm for QoS determination:

Input : Node parameters, CPU parameters, Fan parameters of all nodes in
HPC
Output: QoS of nodes in the HPC
Read designated weights for relevant parameters
Read designated grade values for the relative grades
for every node with status *ON°
do
Read node parameters: Power Usage, Memory Usage, Network Send/Receive
Usage, Performance
for every CPU of this node with ACPI status *Cy’
do
Read CPU parameters: Load (1), Temperature (ty), Speed(s;), Cache(cy)
Calculate net node load(L,), net node temp(T;), net node speed (S)), net node
cache(C)
L= VnxFh j * 1y
T, Ui
S = 1My j* 8
G= En3=l i Gy
for every fan of this node with status *OK”
do
Read fan parameter: fan speed (f;)
Calculate net node fan speed (F))
F, = Un=Y jx f
Assign relative grade for each of these parameters as ['A”,’B°,°C°,"D’,’E’] for
each node.
Calculate QoS of each node,
QoS; _ (1/ ¥ Parameter Weight)=(} Grade Valuex
Parameter Weight)

1311

Asian J. Inform. Technol, 15 (8): 1307-1313, 2016

65000

60000 | .

55000} .

50000} L

ature
-

§ 45000} L

Temp

L]
40000 5 . N
35000 f

30000 ¢ . .

BOG——=1¢ B 0 B 0 B 0 &
Node 1D

Fig. 2: Node ID temperature

9.0 ~

8.5

30}]

45

0 5 10 15 20 25 30 35 40 45
Node ID

Fig. 3: Node ID vs QoS Rankp

Experimental results: The result of our experiments for
QoS determination of the nodes in DKA,, ., 18
presented. The HPC consisted of 40 different nodes, all
at different states and differently loaded. The QoS of
the active nodes were determined at different instances
of time and fed to the cluster’s scheduler. The node vs
net CPTJ temperature scatter diagram and the node vs
QoS scatter diagram is shown in Fig. 2 and 3
respectively, were chosen to show the inverse
relationship between CPU temperature and QoS.

For node 23, the net CPU temperature 1s 60 degree
centigrade, the QoS 18 7.18 on a scale of 10. Some
nodes with relatively high temperature (Node id 20)
have a high QoS (8.3) as well.

This is because, in spite of the high temperature, many
other parameters are on a favorable zone for this node. The
weightages for the different parameters as discussed can be
revisited and improved after careful analyses and constant
monitoring. Currently, the system has been biased towards
power aware parameters as efficiency and performance need
to be given due unportance.

CONCLUSION

High Performance clusters address the growing need of
processing mammoth data for extremely intricate calculation.
When the scheduler in HPC is faced with the task of allotting
a node(s) for processing a certain request, it greatly helps to
gauge nodes on ther current quality of service. Our
approach thus uses QoS as a critical input for node
selection. The QoS is based on various measurable
parameters of the nodes in a cluster. The parameters
considered span a relatively broad spectrum thus ensuring
that the QoS 1s all inclusive. In order to help the scheduler to
behave in a power aware manner, the parameters like power
consumption and CPU temperatire were given higher
weightage. The QoS determination mechanism however 1is
inherently flexible and can be fine-tuned to suit a different
requirernent for tomorrow. The algorithm can be extended by
mtroducing more parameters to make it more efficient. Also,
by keeping track of the node selection over a period of time,
machine learning techniques can be employed for auto
scheduling in turn eliminating the need to calculate the QoS,
every time a new request 1s made.

Separate graphs are plotted for every parameter for its
relative grading. This study supports an overall effort to
achieve end-to-end QoS assurance for individual high-
priority jobs in a high performance distributed cluster. This
study focuses on specification and parameterization of QoS
requirements for performance monitors in high performance
monitors systems. The problem of scheduling workflows in
terms of certain quality of service (QoS) requirements is
challenging and it significantly mfluences performance of
clusters.

REFERENCES

Abdelzaher, T.F. and N. Bhatti, 1999. Web server QoS
management by adaptive content delivery. Proceedings
of the 1999 Seventh International Workshop on Quality
of Service, 1999, 31 May-4 Jun, 1999, IEEE, London,
UK., ISBN: 0-7803-5671-3, pp: 216-225.

Bansal, N. and M. Harchol-Balter, 2001. Analysis of SRPT
scheduling: Tnvestigating unfairness. ACM. Sigmetrics
Perform. Eval. Rev., 29: 279-290.

1312

Asian J. Inform. Technol, 15 (8): 1307-1313, 2016

Barroso, L.A. and U. Holzle, 2007. The case for
energy-proportional computing. Comput. 12: 33-37.

Chase, I.S., D.C. Anderson, P.N. Thakar, A M. Vahdat
and R.P. Doyle, 2001. Managing energy and server
resources 1n hosting centers. ACM. SIGOPS.
Operating Syst. Rev., 35: 103-116.

Eggert, L. and J. Heidemann, 1999. Application level
differentiated services for web servers. World
Wide Web, 2: 133-142.

Gacias, B., J. Cegarra and P. Lopez
Scheduler-oriented algorithms to
human-machine cooperation n transportation
scheduling support systems. Eng. Appl. Artif.
Intell., 25: 801-813.

Huang, 5. and W. Feng, 2009. Energy-efficient cluster

2012,
improve

computing via accurate workload characterization.

of the 2009 9th ITEEE/ACM
International Symposium on Cluster
Computing and the Grid, May 18-21, 2009,
IEEE Computer Society, Washington, USA_, ISBN:
978-0-7695-3622-4, pp: 68-75.

Jacobs, I.8. and C.P. Bean, 1963. Fine Particles, Thin
Films and Exchange Anisotropy: Effects of Finite
Dimensions and Interfaces on the Basic Properties

Proceedings

of Ferromagnets. Research Information Section,
Knolls, USA., Pages: 73.

Katz, M.I., PM. Papadopoulos and G. Bruno, 2002.
Leveraging standard core technologies to
programmatically build linux cluster appliances.
Proceedings of the 2002 IEEE International Conference
on Cluster Computing, September 23-26, 2002, IEEE,
Chicago, Illnois, [ISBN: 9780769517452, pp: 47-53.

Moore, I.D., I.8. Chase, P. Ranganathan and R.K. Sharma,
2005. Making scheduling cool: Temperature-aware
workload placement in data centers. Proceedings of the
Amnnual Conference on USENIX Annual Techmnical
Conference General Track, April 13, 2005, USENIX
Association, Berkeley, USA., pp: 61-75.

Norris, B., T Ray, R. Armstrong, L.C. Mclnnes and
D.E. Bernholdt et al., 2004, Computational quality of
service for scientific components. In: Component-Based
Software Engineering. Cmkovic, I, J.A. Stafford, H'W.
Schmidt and K. Wallnau (Eds.). Springer Berlin
Heidelberg, Berlin Heidelberg, Germany, ISBN:
978-3-540-21998-9, pp: 264-271.

Sfrent, A. and F. Pop, 2015. Asymptotic scheduling
for many task computing in big data platforms. Inf. Sci.,
319: 71-91.

Shan, Z., C. Lin, D.C. Marmmescu and Y. Yang, 2002.
Modeling and performance analysis of QoS-aware load
balancing of web-server clusters. Comput. Netw., 40:
235-256.

Smutnicki, C., J. Pempera, J. Rudy and D. Zelazny, 2015. A
new approach for multi-criteria scheduling. Comput. Ind.
Eng., 50: 212-220.

1313

	1307-1313 - Copy_Page_1
	1307-1313 - Copy_Page_2
	1307-1313 - Copy_Page_3
	1307-1313 - Copy_Page_4
	1307-1313 - Copy_Page_5
	1307-1313 - Copy_Page_6
	1307-1313 - Copy_Page_7

