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Abstract: This research focuses on Particle Swarm Optimization (PSO) and its variant approaches for dynamic
task scheduling problem. Scheduling m a multiprocessor architecture has increased in the past decades due
to the changing markets characterized by global competition and rapid development of new processes and
technologies. The concepts of PSO and its variants are successfully tested with dynamic tasks with load
balancing and without load balancing in a multiprocessor architecture, to reduce the makespan of the entire
schedule. The mtroduction of the bad experience component in the velocity equation called worst particles
have proven to be a significant improvement in the results when applied to the problem of multiprocessor task
scheduling. Further, the concept of proposed TPSO is hybridized with Ant Colony Optimization (ACO) to
achieve better schedule for task scheduling problem n a multiprocessor architectire. To speed up the
convergence, parallel IPSO approaches such as Parallel Synchronous Improved Particle Swarm Optimization
(PSTPSQ) and Parallel Asynchronous Tmproved Particle Swarm Optimization (PATPSO) are proposed. Thus, the
results reveal that, the proposed parallel approach PATPSO yields better results for dynamic task scheduling
problem.
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INTRODUCTION

Global optimization problems are important in the
fields of science, manufacturing industries, engineering
and business. The goal of optimization is to find the best
value for each variable in order to achieve satisfactory
performance. Optimization is an active and fast growing
area of research and has a great impact on the real world.
Most of the NP-hard (Non-Deterministic Polynomial-Time
Hard) problems cannot be solved using exact methods
(Salman ez al., 2002; Garey and Johnson, 1979). Hence,
many heuristic and metaheuristics methodologies are
bemg used to find near optimal solutions for the
optimization problems. The objective m such problems 1s
to find the optimal of all possible solutions that minimize
or maximize an objective function. A stochastic high
quality approximation of a global optimum is more
valuable than a deterministic poor quality local
minimum provided by a classical method (Mitten, 1970;
Adam eral., 1974).

Some complex multidimensional problems cannot be
solved using classical optimization techniques. This
insight has led to an increased interest in a special class
of searching algorithms, namely heuristic algorithms
(Lee et al., 1988; Selvakumar and Murthy, 1994). These
algorithms find approximate solutions and suggest some
approximations to the solution of optimization

problems with low time complexity. There can be a
single or multiple objective functions that evaluate the
quality of the generated solution. In recent decades,
evolutionary and stochastic algorithms are hybridized
with other evolutionary, intelligent and metaheuristic
algorithms to solve extremely challenging problems
such as single and multi-objective functions (Lee and
Lee, 1998).

Scheduling, in general, 13 concerned with allocation
of limited resources to certain tasks to optimize few
performance criterion, like the completion time, waiting
time or cost of production. Job scheduling problem is a
popular problem in scheduling area of this kind. The
importance of scheduling has mcreased in recent years
due to the extravagant development of new process and
technologies. Scheduling, in multiprocessor architecture
can be defined as assigning the tasks of precedence
constrained task graph onto a set of processors and
determine the sequence of execution of the tasks at each
processor (Wu and Gajski, 1990). A major factor m the
efficient utilization of multiprocessor systems 1s the
proper assignment and scheduling of computational tasks
among the processors. This multiprocessor scheduling
problem is known to be Non-deterministic Polynomial
(NP) complete except in few cases have been proposed
earlier to solve tlus kind of problem (Deeba and
Thanushkodi, 2009).
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Eberhart and Kenedy (1995) and Eberhart and Shi
(1998) proposed a new designed crossover and mutation
operators based on the characteristic of the job shop
problem itself are specifically designed. Based on these,
an improved genetic algorithm 1s proposed by Allahverd:
et al. (2008) and Lee and Lee (1996) proposed a new
course grain genetic algorithm m which the utial
population is divided into multi sub population toward for
reduce solution search speed and to prevent early
convergence by migration between subpopulations.

Activity network of heterogeneous  systems
represented by Directed Acyclic Graphs (DAG) (Ahmad
and Kwok, 1999; Casavant and Kuhl, 1988) proposed an
effective memetic algorithm to solve Hybrid Flow Shop
Scheduling with Multiprocessor Task (HFSMT) problem
(Alba And Troya, 2001). Higginson et al. (2005) analyzed
the mportance of simulated parallel annealing within
a neighbourhood for optimization of bio-mechanical
systerns. Schutte ef al. (2004) discussed the paralleization
of an increasingly popular global search method, the
Particle Swarm Optimization (PSO) algorithm in detail to
obtain enhanced throughput and global search capacity.
In the next sections discusses about the job scheduling
in multiprocessor architecture, Optimization algorithms
such as GA, PSO, Proposed Improved PSO (TPSO), Hybrid
Algorithms I[PSO with ACO and Parallel IPSO algorithms

for Dynamic job schedulng in multiprocessor
architecture.
MATERIALS AND METHODS

Job scheduling in multiprocessor architecture: Job
scheduling, considered m this study, is an optimization
problem in operating system in which the ideal jobs are
assigned to resources at particular times which minimizes
the total length of the schedule. Also, multiprocessing is
the use of two or more central processing units within a
single computer system. This also refers to the ability of
the system to support more than one processor or the
ability to allocate tasks between them. In multiprocessor
scheduling, each request 1s a job or process. A job
scheduling policy uses the information associated with
requests to decide which request should be serviced next.
All requests waiting to be serviced are kept in a list of
pending requests. Whenever, scheduling is to be
performed, the scheduler examines the pending
requests and selects one for servicing. This request is
A request leaves the server
when it completes or when it is preempted by the

handled over to server.

scheduler, m which case it 1s put back into the hist of
pending requests. In either situation, scheduler performs

Preempted jobs
gngggg Scheduled jobs ool
f ompl et
joos .
. »| Server
u y Jobs
Scheduler
Pending
Requests/jobs

Fig. 1: A schematic of job scheduling

scheduling to select the next request to be serviced. The
scheduler records the mformation concerning each job in
its data structure and maintains it all through the life of
the request in the system. The schematic of job
scheduling mn a multiprocessor architecture 1s shown in
Fig. 1.

Dynamic task scheduling: Tn this research, the dynamic
task scheduling 1s examined with the following scenario.
The processors in the system are heterogeneous and they
are capacitated with different units of memory and
processing resources. Hence a tasks execution cost varies
it it is executed on different processors. And assumed all
commurication links are identical. If commumcation need
exists between two tasks executed on different processors
then there exists a communication cost. For the execution
task need some resources consume from its execution
processor. Load balancing of dynamic tasks is particularly
useful m a system, where processor utilization 1s the major
issue instead of minimizing execution time of the
applications. The tasks are scheduled as and when they
arrive in the queue.

The objective i1s to minimize the average total
execution cost encountered by the task assignment, of all
tasks allocated to the processors. i.e., minimisation of
makespan of the entire schedule. A particle 1s evaluated
by calculating its fitness function Fitness function
indicates the goodness of the schedule. Dynamic task
scheduling can be done under two cases namely:

» Considering only the arrival time of the tasks
(without load balancing)

s Considering both the time of arrival of each task and
efficient processor utilization. (with load balancing)

Fitness function to minimise the schedule length
varies for the above said two cases, hence dealt
individually 1n the following subsections.

Dynamic task scheduling without load balancing:
Dynamic task scheduling 1s adopted to schedule the tasks
in such a way that how they are arriving. Dynamic load
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balancing does not require the prior knowledge about the
tasks as like static, 1.e., it need not be aware of the
run-time behaviour of the applications before execution.
In dynamic scheduling, tasks are redistributed among
processors during the execution time. This redistribution
15 done by transferring tasks from the heavily loaded
processors to the hghtly loaded processors (called
load balancing), to improve the processor utilization
and performance. To minimise the makespan of the
schedule, the equation 1s formulated and represented as
Eq. 1 and 2:

TFT (B,) = arrival, + 3 fin, (1)
i=1
exe, if arrival, £ fin
fin, = 2
arrival, +exe, otherwise

Fitness function i1s formulated to minimise the
average of total finishing time Eq. 3:

S TF(R)

F(X)=mins = 3)
m
Where:
‘o’ = The number of tasks
‘m’ = The number of processors

TFT(P;) = Total Finishing Time of Processer (j)

arrival, = Arrival time of task (i)
fin, = Finishing time of task (i)
exe, = Execution time of task (1)

Dynamic task scheduling with load balancing: The
drawback in the previous study, ie., in dynamic
scheduling without load balancing, some of the
processors may be lightly loaded and some are heavily
loaded. To overcome the problem and also to improve the
processor utilization and performance, load balancing 1s
considered, which gives a significant improvement in the
processors utilization. To achieve load balancing m a
dynamic task scheduling, tasks has to be allocated in
such a way that they are arriving, 1.e., makespan of the
schedule has to be minimized and processor utilization
has to be increased. To achieve better load balancing, first
the tasks has to be assigned to the processors m such a
way to reduce the makespan and to increase the
utilization. Hence, equations are formulated and are
represented as follows Eq. 4-6:

TAQ(P}) = arrival (t, ) + [1} Avg Utilization
maxspan
(4
Utilization(PJ ) = L(PJ) 5
Imaxspan
S Utilization (P, 6)
Avg Utilization = =
m
Where:
TAQP) = The used to evaluate the Quality of
task assignment in a processor
arrival(t,) = The arrival time of task 1
max span = The total fimshing time of the
schedule
CT(P) = The completion time of processor j

Avg Utilizationn = The sum of all processors
utilization divided by the total
number of processor

m = The number the processor

Effective utilization of processors supports the
concept of load balancing. If all the processors are used
to their maximurm, then the loads, which are the measures
of 1dleness of processors are effectively reduced. Hence,
fitness function calculates the average of the total
execution time of the set of tasks allocated to the
processors as Eq. 7:

S TA(R)
F(X) = max En (7
m

Optimization techniques: Several heuristic traditional
Algorithms were used for solving the job scheduling n a
multiprocessor  architecture, which includes Genetic
Algorithm (GA), Particle Swarm Optimization (PSO)
algonthm, Simulated Ammealing, Artificial Immune System
(AIS) and Ant Colony Optimization. In this study a new
Parallel Improved PSO (PTPSQ) is suggested for the job
scheduling problem in dynamic environment.

Particle swarm optimization for scheduling: The Particle
Swarm Optimization (PSO) technmique appeared as a
promising algorithm for handling the optimization
problems. The PSO is a population-based stochastic
optimization technique, inspired by social behavior of bird
flocking or fish schooling. The PSO is inspired by the
ability of flocks of birds, schools of fish and herds of
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animals to adapt to their environment, find rich sources of
food and avoid predators by implementing an information
sharing approach. PSO techmique was invented in the mid
1990s wlile attempting to sunulate the choreographed,
graceful motion of swarms of birds as part of a socio
cogmtive study mvestigating the notion of collective
mtelligence in biological populations.

PSO procedures based on the above concept can be
described as follows. Namely, bird flocking optimizes a
certain objective function. Each agent knows its best
value so far (pbest) and its XY position. Moreover, each
agent knows the best value in the group (ghest) among
pbests. Hach agent tries to modify its position using the
current velocity and the distance from the pbest and
ghbest. Based on the above discussion, the mathematical
model for PSO is as follows, Velocity update equation is
given by Eq. 8:

V1 :WXV1+C1XI"1X(PIJ _Si)+C2Xr2X(ghESt1_Si)

(8)

Using Eq. 4, a certain velocity that gradually gets

close to pbests and gbest can be calculated. The current

position (searching point in the solution space) can be
modified by the following Eq. 9:

est;

S =8, +V, @)
Where
V.. = Velocity of particle
S, = Current position of the particle
w = Inertia weight
C, = Cognition acceleration coefficient
C, = Social acceleration coefficient

Pui = ©Own best position of particle i
S — lobal best position among the group of

particles

1, 1; = The umformly distributed random numbers in
the range [0-1]

8 = The current position

8;+; = Themodified position

vy = The current velocity

v;,, = Themodified velocity

Ve = Lhe velocity based on pbest

Vaen — Lhe velocity based on gbest

Figure 2 shows the searching pomnt modification of
the particles in PSO. The position of each agent 1s
represented by XY-axis position and the velocity
(displacement vector) is expressed by vx (the velocity of
X-axis) and vy (the velocity of Y-axis). Particle are
change their searching point from S-S., by
adding their updated velocity V; with current position S;.

YA

a4

Fig. 2. Flow diagram of PSO

Each particle tries to modify its current position and
velocity according to the distance between its current
positien 3, and V., and the distance between its current
position S, and V.
Improved Particle Swarm Optimization (IPSO): Particle
Swarm Optimization (PSO) 1s a popular swarm based
optimization technique that mimics the bird’s flocking
behavior. Even though PSO shows better performance,
premature convergence and local optima are the two major
problems faced by the PSO approach for scheduling
problem.

To overcome this difficulty, an Improved Particle
Swarm Optimization (IPSO) is proposed in which a split
up 18 made 1 the cogmtive behavior. That 1s the particle
is made to remember its worst position also. In this new
proposed Improved PSO (IPSO) having better
optimization result compare to general PSO by splitting
the cogmitive component of the general PSO mto two
different component. The first component can be called
good experience component. This means the bird has a
memory about its previously visited best position. This is
similar to the general P3O method. The second
component is given the name by bad experience
component. The bad experience component helps the
particle to remember its previously visited worst position.
To calculate the new velocity, the bad experience of the
particle also taken into consideration. On including the
characteristics of Py, and P,... in the velocity updation
process along with the difference between the present
best particle and current particle respectively, the
convergence towards the solution is found to be faster
and an optimal solution is reached in comparison with
conventional PSO approaches. This infers that including
the good experience and bad experience component in the
velocity updation also reduces the time taken for
convergence. This modification helps in exploring the
search space very effectively to identify the promising
solution region. The introduction of the worst particle, 1.e.,
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9

gbest -, cognitive part

s, momentum
part

bad
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Fig. 3: Concept of iproved prticle sarm otimization search
point

in the
component yields a significant improvement in the results
when applied to the task scheduling problem. The
including of the worst particle plays a major role in the

the bad experience component coghitive

achievement of a better solution than with only using with
good experience component called best particle in the
velocity equation. The new wvelocity update Eq. 10 1s
given by:

\[1 WX \[1 +clg ><I.1 X(Pbesti_s1)x I

best; + Clh * I =

(81 - Pwurst, )X Pwurst, + Cz RIS ( Ghest, - Sn )
(10)
The position update Eq. 11 1s given by:
S TS 1Y, (1)
Where:
Cy, Self-confidence factor which accelerate the
particle towards its best position
C,, = Self-confidence factor which accelerate the
particle away from its worst position
C, = Swarm confidence factor (ranges from 2-2.5)
P ne: = Worst position of the particle (1)
I;; = The umformly distributed random numbers in
the range [0-1]
S = The current position
S+ = The modified position
V, = The current velocity
V., = The modified velocity

The positions are updated using Hq. 11. The
mclusion of the worst experience component m the
behaviour of the particle gives the additional exploration
capacity to the swarm. By using the bad experience

component; the particle can bypass its previous
worst position and try to occupy the better position.

Figure 3 shows the concept of IPSO searching points.

The proposed improved PSO algorithm:

s Stepl: Select the number of particles, generations,
1z Cp and C; and
random numbers 1, 15, 1; to start the optimal solution
searching

tuning accelerating coefficients C

»  Step2: Imtialize the particle position and velocity

s Step3: Select particles individual best value for each
generation

»  Step 4: Select the particles global best value, 1.e.
particle near to the target among all the particles is
obtained by comparing all the individual best
values

»  Step 5: Select the particles individual worst value, 1.e.
particle too away from the target

»  Step 6: Update particle individual best (P,,,), global
best (Gy..), particle worst (P.) m the velocity
equation (2.1) and obtain the new velocity

» Step 7: Update new velocity value in Eq. 11 and
obtain the new position of the particle

» Step® Find the optimal solution with minimum
‘F* by the updated new velocity and position

The flowchart for the proposed model formulation
scheme 1s shown in Fig. 4.

Proposed parallel improved particle swarm optimization:
To obtain an improved computational throughout and
global search capability, the parallelization of an
increasingly popular global search method 1s exploited,
namely, the Parallel Particle Swarm Optimization (PPSO)
algorithm. In view of improving the efficiency and
performance in dynamic environment, more effort is still
required. Hence, the present chapter aims at developing
a new Parallel approach of Improved Particle Swarm
Optimization to solve the multiprocessor scheduling
problem. Parallel synchronous Improved Particle Swarm
Optimization (PSIPSO) and Parallel Asynchronous
Improved Particle Swarm Optimization (PAIPSO)
methodologies are tested for the multiprocessor
scheduling problem. The performances of the parallel
Improved PSO (PSIPSO and PATPSO) approaches
are better than that of the Parallel Synclronous
Particle Swarm Optimization (PSPSO) and Parallel
Asynchronous Particle Swarm Optimization (PAPSO)
when applied to the multiprocessor task scheduling
problem (Fig. 4).
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Initialize the population Input number of processors, number of jobs
and population size

v

Compute the objective function

\ 4
Invoke ImPSO

If E<best ‘E’ (P best)
so far

1

For each generation | Search is terminated optimal solution

+ reached

| For each particle |

4

Current value = new p best

v

| Choose the minimum ‘F of all particles as the g best

v

| Cadlculate particle velocity

v

Calculate particle position

v

Update memory of each particle

< >
<& >

Return by using ImPSO

Fig. 4: Flowchart for the proposed improved particle swarm optimization

There are different types of parallelism namely  Proposed parallel approach: Advancement and the recent
Bit-level, instruction level, data parallelism and task trends in the computer and network technologies have

parallelism. This research worl uses data parallelism. direct towards the developments of parallel optimization
Parallel computing has advantages such as time algorithms. Synchronous parallel PSO method is proposed
consumption and to solve complex problems at faster rate. first for the task scheduling problem, which requires a
In analogy to parallel GAs, the Parallel Particle Swarm  synchromization pomt at the end of each optimizer
Optimizers (PPSO) is classified into three categories iteration before continuing to the next iteration. The
namely global PSO, migration PSO and Diffusion PSO. heuristic algorithms such as simulated annealing, pattern
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matching genetic algorithm and particle swarm
optimization methods wait for completion of all function
evaluations by the population before determining a new
set of design variables. In the same way, parallel gradient
based algorithms determining a new search direction after
gradients calculated for all design variables. Particle

Swarm optimization algorithm i1s well suited for a coarse

grained parallel implementation on a parallel or distributed
computing network. This study uses Master-Slave model.
The parallelism 1s carried out a master-slave approach.

Proposed parallel Synchronous Improved PSO (PSIPSO)
algorithm: The procedure for parallel synchronous PSO
1s as follows (Fig. 5):

Initilize the population Input number of processors, number of jobs and
population Sze

v

Compute the objective function

v

Invoke ImPSO

v

The master sends the unique combination of different particles to the daves |

v

v v

v

Slave 2
A

Slave 3

Slaven

v v

y

The master receives the updated best particle form all the slaves after pre-determined number of
iterations is completed

The master decides the global best value

If E<best'E (P
best) so far

Search isterminated
optimal solution reached

For each generation

v

| For each particle

A 2

Current value = new pbest

v

Choose the minimum ‘F of dl particles as the gbest

v

Fig. 5: Continue
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Cadlculate particle velocity

v

Cdculate particle position

v

Update memory of each particle

Y

Return by using ImPSO

Fig. 5: Proposed parallel synchronous PSO algorithm

¢ Configure the master slave environment

¢ The initial swarm is generated and initialized by the
master Stop

*  The master sends the mitial swarm to all the salves

¢+ The slaves evaluate the initial swarm using the
fitness function and select the personal best and
global best of the swarm

»  Each of the slaves calculates the fitness function
and then updates the velocity and position and
sends each of its optunal solution to the
master after the specified number of iteration is
completed

¢ The master decides the best solution after receiving
the results from all the slaves based on the objective
function after the maximum number of iterations
specified 1s completed

Proposed Parallel Asynchronous Improved Particle
Swarm Optimization (PATPSO): The weakness in the
synchronous parallel PSO algorithm 1s schedule for the
next iteration are analyzed after the current iteration 1s
completed and it can be overcome by considering a
parallel asynchronous algorithm. The goal is to have no
1dle processors as one move from one iteration to the next.
To implement a parallel Asynchronous Improved PSO
algorithm is to separate the update actions coupled with
each sequence and those linked with entire swarm.
PAIPSO 15
approach. The master processor holds the queue of
feasible particles to be sent to the slave processors. The

imnplemented using a maser-slave

master performs all decision making processes such as
velocity updation, position updation and convergence
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Fig. 6: Parallel synchronous TPSO algorithm
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Fig. 7. Parallel asynchronous TPSO algorithm

[

checks. The slaves perform the function evaluations for
the particles sent to them. The tasks performed by the
master and slave are as follows:

e Master processor

. Tnitialize all optimization parameters and particle
positions and velocities

. Holds a queue of particles for the slave
processors to evaluate

*+  Updates the particle positions and velocities
based on the currently available information

. Sends the next particle in the queue to an
available slave processor

*  Receives cost function values from slave

Processors
. Checks convergence

e Slave processor
. Receives the particle from the master processor

. Evaluates the objective function of the particle
sent to all slaves

. Sends the cost function value to the master
processor

Block diagrams for parallel synchronous and parallel
asynchronous PSO algorithms are shown in Fig. 6 and 7.
Grey boxes indicate first set of particles evaluated
by each algorithm. After completion of imtialization step
by the master processor, particles are sent to the slave

From slave
processor

P r

" [)

k £

k-1 } k

. k-1

2

1

2
| 1
To slave
processor

Fig. 8 Block diagram for first-in-first-out centralized task
queuewith p particles on a k- processor system

processors to evaluate the objective (analysis) function.
The mtial step of the optimization 1s 1dentical to that of
the PSPSO algorithm. After mitialization, the PAPSO
algorithm uses a first-in-first-out centralized task queue to
determine the order in which particles are sent to the slave
Processors.

Whenever, a slave processor completes a function
evaluation, 1t returns the cost function value and
corresponding particle number to the master processor
which places the particle number at the end of the task
queue. Since, the order varies in which particles report
their results, randomness n the particle order occurs
(Fig. 8).

Once a particle reaches the front of the task queue,
the master processor updates its position and velocity
and sends 1t to the next available slave processor. If the
number of slave processors is the same as the number of
particles, then the next available processor will always be
the same processor that handled the particle initially. Tf
the number of slave processors 1s less than the number of
particles, then the next available processor will be
whichever processor happens to be free when the particle
reaches the front of the task queue. Even with
heterogeneity in tasks and/or computational resources,
the task queue ensures that each particle performs
approximately the same number of function evaluations
over the course of an optimization. The proposed parallel
synchronous and  asynchronous  algorithms  are
experienced with multiprocessor task scheduling.
Dynamic (with and without load balancing) task
scheduling problems are simulated in MATLAB
environment. The results of both the algorithms are
compared.
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RESULTS AND DISCUSSION

The present section provides the details of the
simulation carried out for implementing the proposed
parallel approaches PSIPSO and PAIPSO. Benchmark
datasets are taken from EricTailard’s site for dynamic task
scheduling. Two datasets are taken for simulation. Data
set lmvolves 50 tasks and 20 processors. Data set 2
involves 100 tasks with 20 processors. To demonstrate
the effectiveness of the proposed hybrid algorithm. Abut
30 independent trials with different values of random
seeds and control parameters. The optimal result is
obtained for following parameter settings.

Improved particle SWARM optimization:

. The imitial solution i1s generated randomly

. C,, Cpand C, =22 and 2

. Population size = Twice the number of tasks
. Woia - Woe = 0.5

. Tteration = 500

The proposed hybrid approaches PSIPSO and
PATIPSO aredeveloped using MATLAB R2009 and
executed in a PC with Intel core i3processor with 3 GB
RAM and 2.13 GHz speed.

Dynamic task scheduling without load balancing: The
foremost goal of dynamic task scheduling problem i1s to
reduce the makespan. Hence, to minimize the total
execution tume the objective function 1s the same as
represented in the FEg. 1-3. The proposed parallel
approaches PSIPSO and PAIPSO are tested for the
dynamic tasks scheduling problem with datasets specified
in the simulation procedure. The results obtained are
shown in Table 1.

Parallelization of the Tmproved Particle Swarm
Optimization is proposed to speed up the execution and
to provide concurrence. The obtained results, best,
average and worst cost for dynamic task scheduling using
the parallel algorithms PSIPSO and PAIPSO have been
compared with that of the hybrid algorithm TPSO-ACO.
The results show that the best cost achieved
usingPATIPSO 1s 2126 for data set 1 and 4196 for data set
2 and is shown in Table 1. When compared to the other
methods, the average cost obtamed 1s also better inthe
case of the proposed algorithm. The convergence time is
drastically reduced for the proposed parallel algorithm
PATPSO compared with hybrid approach TPSO-ACO and
is 1.86s for dataset 1 and 2.56s for dataset 2. Thus, it

Table 1: Best cost, Worst cost, average cost and convergence time for
TPR0O-ACO, PRIPRO and PATPRO for dynamic task scheduling
without load balancing

Methods IPSO -ACO Proposed PSIPSO  Proposed PAIPSO
No. of tasks 50 100 50 100 50 100
Best cost 21310 42260 2126 41960 2126 4196
Worst cost 28530 47930 2792 47510 2786 4703
Average cost 24920 4509.5 2459 4473.5 2456 4506.9
Convergence 5.9822 81236 3.4862 44642 18674 2.5691
time in seconds
2132 2131
2131
2130
% 2129
S 2128
2127 2126 2126
2126
2125
2124
2123
IPS0-ACO PSIPSO PAIPSO
Approaches

Fig. 9: Best cost for 30 tasks and 20 processors using
TPSO-ACO, PSIPSO and PAIPSO

4230 4226
4220
w4210
S 100 4196 4196
~ 0 o o
4180

IPSO-ACO PSIPSO PAIPSO

Approaches

Fig. 10: Best cost for 100 tasks and 20 processors using
IPSO-ACO, PSIPSO and PAIPSO

is inferred from the result that the Asynchronous version
of IPSO performs better than the Synchronous parallel
version of IPSO. PATPSO 1s (4-6s) faster than the hybrid
approach [PSO-ACO.

Figure 9 and 10 depicts the best cost obtained using
the proposed hybrid method Improved Particle Swarm
Optimization with Ant Colony Optimization for data set 1
and data set2. The Parallel approach PAIPSO is faster and
performs better than with all other algorithms proposed in
the present research.

Performance comparison: The performance of the
proposed parallel approach PATPSO iscompared with the
previously proposed approaches PSPSO and PAPSO for
the same datasets and for multiprocessordynamic task
scheduling (Table 2).
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Table 2: Performance comparisons of ImP8O-PAPSO with Parallel PRO

approaches
Methods PSPSO PAPSO Proposed PAIPSO
No. of tasks 50 100 50 100 50 100
Best cost 2186 4496 2186 4496 2126 4196
Worst cost 2983 4968 2888 4712 2786 4703
Average cost 25945  4768.9 2477.6 45203 2456 4506.9
Convergence  3.4256 44648 1.9619 27571 1.8674 25691

time in seconds

Table 3: Best cost, worst cost, average cost and convergence time using
IPSO-ACO, PSIPSO and PAIPSO for dynamic taskscheduling
with balancing

Methods IPSO-ACO Proposed PSIPSO  Proposed PAIPSO
No. of tasks 50 100 50 100 50 100

Best cost 13.0582 221531 13.0942 22164 13.0942 221644
Worst cost 11.4922 209624 11.4983 209761 124386 21.9982
Average cost  12.2752 21.5576 122964 21.5703 121528 22.0814
Convergence 7.56950 10.6314 4.8964 57687 2.10320 2.8712

time in seconds

The PSPSO produces the best cost for dataset 1 as
2186, PAPSO produces best cost as 4496 and the
proposed PATPSO produces 2126 as best cost for dataset
1 and 4196 as the best cost for dataset 2. Comparing the
convergence time, the proposed PATPSO is faster than the
parallel approaches PSPSO and PAPSO.

This comparison reveals that the proposed parallel
approach PAIPSO achieves better results and also that
there 1s a significant difference mn the convergence time,
when tested for the multiprocessor task scheduling
problem.

Dynamic task scheduling with load balancing: In order to
unprove the processor performance and utilization, load
balancing of tasks have to be considered. Therefore the
concept of load balancing 1s dealt, in which the objective
function is the same as represented in the Eq. 4-6.

Table 3 shows, the best cost, worst cost, average
cost and convergence time for the hybrid algorithms,
IPSO-ACO, PSIPSO and PAIPSO for dynamic task
scheduling with load balancing. The best cost obtained
for dataset 1 wusing the parallel hybrid approach
IPSO-ACO 18 13.0582, using the proposed parallel
approach PSTPSO is 13.0942 and using the proposed
parallel approach PAIPSO 1813.0942. For dataset 2,
TPSO-ACO produces 22.1531 as the best cost, the
proposed PSIPSO produces 22.1644 as the best cost and
the proposed PAIPSO produces 22.1644 as the best cost.
The convergence time for the hybrid approach is 7.6s,
10.63s for dataset]l and dataset2. The proposed parallel
approaches PSIPSO and PATPSO produces convergence
time as 4.89s, 2.1s for dataset 1 and 5.76s, 2.87s for

Table 4: Performance comparisons of TmPSO-PAPSO with Parallel PSO

approaches
Method PSPSO PAPSO Proposed PATPSO
No. of tasks 50 100 50 100 50 100
Best cost 12,982 21.998 12,982 21998 13.0942 22164
Worst cost 10.863 19429 12348 21.008 124386 21.99%%2
Averagecost  11.789  21.032 12.215 21.816 121528 220814
Convergence  3.9831 51956 23041 3.1553 2.10320 2.8712

time in seconds

dataset 2, respectively. Thus, the convergence time
achieved reveals that the proposed parallel approach
PAIPSO produces better results faster than PSIPSO and
the hybnid approach IPSO-ACO. The best cost achieved
using the proposed parallel approaches PSIPSO and
PAIPSO are compared with the hybrid approach
IPSO-ACO for data set 1 and data set2. The best cost
obtamed using the proposed hybrid method Improved
Particle Swarm Optimization with Ant Colony Optimization
for data set 1 and data set2. The PAIPSO converges faster
than the PSIPSO because the idle time of the processors
1s considerably reduced.

Performance comparison: The performance of the
proposed parallel approaches PSIPSO and PAIPSO are
compared with the previously proposed parallel methods
PSPSO and PAPSO for the same datasets and for
multiprocessor dynamic task scheduling (Table 4). The
PSPSO produces the best cost for dataset 1 as 12.982,
P3PS0 produces 12.982 and the proposed parallel
approach PATPSO produces 13.0942. For dataset 2, PSPSO
produces best cost as 21.998, PAPSO produces 21.998
and the proposed parallel approach PAIPSO produces
22.1644. The convergence time for the dataset 1 using
PSPSO 13 3.98s, using PAPSO 1s 2.3s and using the
proposed PATPSO 1s 2.1s.

The proposed parallel approach PATPSO converges
very fast whencompared with the other parallel
approaches PSPSO and PAPSO. Thus, theresult reveals
that the proposed parallel approach PATP SO outperforms
the other parallel approaches PSPSO and PAPSO, because
of the mnclusion of thebad experience particles m the
velocity equation of IPSO which plays a majorrole along
with parallelization concept, improves the results to near
optimalsolution when applied to the task assignment
problem with dynamic tasks.

CONCLUSION

The proposed parallel approaches PSIPSO
andPAIPSO to solve dynamic task scheduling with and
without load balancing. The proposedparallel approaches
locate the optimum solution iteratively from the
initialrandomly generated search space. The performance
of the proposed PAIPSOis tested using random and
bench mark data sets.
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The proposed parallel approach PATPSO is applied
to dynamic taskscheduling without load balancing. The
results achieved by the proposedparallel approach
PAIPSO 18 compared with parallel approaches
proposedearlier namely PSPSO and PAPSO. For dataset],
the best cost achieved byPSPSO 1s 2186, PAPSO achieves
best cost as 2186 and the proposed parallelapproach
PATPSO achieves the best cost as 2126 which is better
thanapproaches compared. The proposed parallel
approach PAIPSO is 5.5s fasterthan the hybrid heuristic
approach IPSO-ACO for dataset 2 and 4.11s fasterthan the
result produced by the hybrid approach IPSO-ACO for
dataset 1.Theproposed parallel approach have been
compared with the other previouslyproposed parallel
approaches namely PSPSO and PAPSO and the
comparisomresults concludes that the proposed parallel
approach 1s 0.18s faster thanPAPSO and 1.89s faster than
PSPSO for dataset2.

The proposed parallel approaches PSIPSO and
PATPSO are appliedto dynamic task scheduling with load
balancing. The results achieved by theproposed
approaches are compared with parallel approaches
proposed earliernamely PSPSO and PAPSO. For dataset
2, the best cost achieved by PSPSO1s 21.998, the best cost
achieved by PAPSO is 21.998 and the best costachieved
by the proposed parallel approach PATPSO is 22.1644.
Theproposed parallel approach PAIPSO converges
1.8799s faster than PSPSO,0.2s faster than PAPSO for
dataset 1. For dataset 2, PAIPSO 1s 2.3244 timesfaster than
PSPSO, 0.2841s faster than PAPSO. The proposed
parallelapproach yields better results for both static and
dynamic task schedulingproblem.

From the results of simulation, it is observed that the
proposedparallel approach PAIPSO rapidly mereases the
performance of the solutionand prevents trapping to a
local  optimal  wvalue. Fuwther, the proposed
PATPSOenhances the probability to find the global best
solution, thereby allowingfaster convergence for all the
data sets. Thus, the proposed parallel approachPATPSO
produced sigmficant result than GA, standard PSO and
hybridapproaches (TPSO-SA, TPSO-ATS and TPSO-ACO).
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