Asian Journal of Tnformation Technology 15 (4): 781-790, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

Preserving the Privacy of Cloud Store Using Oblivious RAM

G. Syjitha, R. Tamil Mozhi and S. Sai Krishna
Rajalakshmi Engineering College, Anna University, 600025 Chennai, Tamil Nadu, India

Abstract: Security and privacy are major concerns that impact the shifting of data to a cloud. A
widely-prevailing solution is to encrypt data before, it is moved to cloud storage. Nevertheless, encryption of
data alone stored to be protected. An Oblivious RAM (O-RAM) comes to the rescue by concealing data access
patterns 1n the cloud. This study describes the concept of O-RAM and proposes optimizations to reduce the
volume of data transferred during data access, achieved by constructing a tree for storing contents in the cloud.
During each access, the contents of buckets are evicted and re-shuffled. The results of the study demonstrate
that greater the size of the tree, the lesser the number of blocks evicted from it.

Key words: Cloud privacy, security, oblivious RAM, binary tree, India

INTRODUCTION

Cloud computing has changed the very notion of
computing as a service-on-demand. Tt has gained
momentum, since it is a pay-as-you go model, offering the
advantage of cost reduction through the sharing of
computing resources as well as storage resources. The
cloud computing network enables a user to access and
manipulate information stored on remote servers. Storage
as a service allows a client to outsource data to the cloud.
Client-stored data in the cloud ought at the very least to
be encrypted (Chor et al., 1998). Unfortunately, however
mere encryption alone is insufficient. Encryption is not
always enough to ensure privacy for outsourced data for,
even if the data 15 in encrypted form the cloud provider
can gain access to sensitive mformation by means of the
data access pattern Researches from MIT and the
University of Califorma argue that data stored n the cloud
can be extracted and decrypted by other users of the
service. Attackers could measure the memory of the
access pattern which leaks sensitive information, causing
a real threat to privacy (Islam et al., 2012).

Recent events have shown that online service
providers are “curious” to acquire private information
about users. Therefore, a general storage system is
presented that lndes data access patterns from the servers
running it, thereby protecting user privacy. Early cloud
storage spaces optimized traditional metrics such as
performance, availability and scalability for distributed file
systems. However, privacy has become an mcreasingly
imnportant affair. Mutually distrustful users expect the
cloud provider to prevent unauthorized cross-user data
access. However, users are entirely likely to distrust, in
general, cloud providers themselves. Even if data 1s

encrypted, user access patterns can leak important
information (Troncoso et al., 2007, Kumar et ai., 2007)
pertaining to the content. Even without data access, an
observer can see how often each item is accessed and
then use statistical inferences to deduce the contents of
encrypted items. For instance, over 80% of encrypted
email queries are based on access patterns alone. A
storage subsystem has been introduced that hides user
access patterns from servers that store user data,
implementing a distributed block mterface (Lee and
Thekkath, 1996) that allows clients to read and write
to addresses 1-N where N is large. Block interface in
oblivious storage servers cannot learn the plain text of
user data, the addresses requested or the relationships
between requested addresses.

MATERIALS AND METHODS

Bogdan proposed a mechanism that combines
Oblivious RAM (O-RAM) access privacy and data
confidentiality with Write-Once-Read-Many (WORM)
regulatory data retention guarantees. Clients can with
complete confidence, outsource their database to a server.
Access privacy is ensured when client access patterns are
tangibly hidden and the server cannot enforce access
control directly. Client access 1s appended only when the
data record has been written, since it cannot be removed
or altered thereafter even by its writer. Williams et al.
(2008) introduced a technique guaranteeing access
pattern privacy computationally-bound
adversary i outsourced data storage. Given the presence
of a small quantity O (n) where n is the size of the
temporary storage database, clients can achieve access

against a

pattern privacy with communication and computational

Corresponding Author: G. Sujitha, Rajalakshmi Engineering College, Anna University, 600025 Chennai, Tamil Nadu, India

Asian J. Inform. Technol., 15 (4): 781-790, 2016

complexities of less than O (log2n) per query.
Pinkas and Reinman (2010) discovered an O-RAM
construction which enables a client to store locally only
a constant amownt of data but to store remotely n data
items and access them while hiding the identities of the
items being accessed. Goodrich and Mitzenmacher (2010)
proposed a novel O-RAM construction which aclhieves
O ((log N)2) amortized cost with O (1) client-side storage
or O (log N) amortized cost with O (N) client-side storage.
Goodrich and Mitzenmacher (2010} construction achieves
the best asymptotic performance of all known
constructions. However, the running cost of sustaiung
their performance is prohibitive. Kushilevitz et al. (2012)
intreduced in the RAM meodel, the context of software
protection by Goldreich and Ostrovsky (1996). A secure
Oblivious RAM simulation allows for a client with a small
(e.g., constant size) protected memory to hide not only
data but also the sequence of locations, it accesses (both
reads and writes) in the unprotected memory of size n.
Carbunar and Sion (2011) proposed a mechamsm for
remote data storage with an efficient access pattern for
privacy and correctness. A storage client can deploy this
mechanism to 1ssue encrypted reads, writes and inserts to
a curlous and malicious storage service provider, without
revealing information or access patterns. The provider is
unable to establish a correlation between successive
accesses or even to distinguish between a read and a
write. Chung proposed another statistically secure
Binary-Tree O-RAM algorithm based on path ORAM.
Their theoretical bandwidth bound is a log n factor worse
than blocks of size (log N). Their simulation results
suggest an empirical bucket size, meaning that their
practical bandwidth cost is a constant factor worse than
Path ORAM, since they require operating on 3 paths in
expectation for each data access while Path ORAM
requires reading and writing only 1 path.

Oblivious RAM was first investigated by
Goldreich and Ostrovsky (1996), in the context of
protecting outsourced data from piracy. The goal of
O-RAM 1s to completely lude the data access pattemn
(which blocks were read/written) from the server. Each
data read or write request will generate a completely
random sequence of data accesses from the server’s
perspective. Shi ef af. (2011) binary tree scheme 1s used to
allow a client to conceal the data access pattern from
remote storage spaces by continuously shuffling and
re-encrypting data as they are accessed. An adversary
can observe the physical storage locations accessed but
the O-RAM algorithm ensures that the adversary has a
negligible probability of learning anything about the true
(logical) access pattern. In today’s cloud era, clients wish
to store data at a remote untrusted server while stll

782

preserving its privacy. While traditional encryption
schemes can provide confidentiality, they do not hide the
data access pattern which can reveal very sensitive
information to the untrusted server, assuming that the
server is untrusted and the client trusted. The goal is to
completely hide the data access pattern with each data
read or write request generating a completely random
sequence of data accesses.

An oblivious RAM is a useful primitive for hiding the
data access pattern and enabling privacy-preserving
outsourced storage where clients store data at a
remote, untrusted server. The O-RAM constructions
(Goodrich and Mitzenmacher, 2010) inherit the hierarchical
solution initially proposed by Goldreich and Ostrovsky
(1996) and these constructions also inherit the periodic
reshuffling operations required by the Goldreich and
Ostrovsky (1996) construction. It can be used in
conjunction with encryption to enable stronger privacy
guarantees in outsourced storage applications.

The goal of an O-RAM is to completely obscure, the
data access pattern (indicating which blocks were
read/written) from the server. Data transfer 1s a major
problem for client devices with a limited memory. An
O-RAM is optimized by reducing the volume of data to be
transferred per data access. These optimizations make an
O-RAM most useful for personal storage in the cloud.
The chief objective involves concealing the data access
pattern 1n a tree structure and preserving the privacy of
cloud data which poses a huge challenge.

The idea behind the working of an O-RAM is that
each read or write generates a random sequence of
accesses in the server, completely independent of the
access pattern. Data transfer becomes the main bottleneck
for O-RAMs well suited as, they are to client devices with
limited memory such as smart phones and PDAs. Since,
these devices are the primary computing platform for
many users, progress 1s made by reducing as much as
possible, the volume of data transferred on each
recquest.

The challenge 1s to design an O-RAM that meets the
following requirements: a client’s storage requirements
must be no more than a few megabytes. Chents with
limited memory capacity may use storage as a service.
Data owners hesitate to adopt the service if it requires
large storage capacity on the client’s side. Furthermore,
the O-RAM’s reshuffling process could take several
hours if the data cannot fit into the memory available.
Clearly such conditions are not practical if the client’s 15
a handheld mobile device.

The amount of data transferred on each request must
be relatively small enough to deliver good latency. A
“pay-as-you-go” model user may be expected to tolerate
a delay of no more than several seconds for a request.

Server

Low bandwidth

Asian J. Inform. Technol., 15 (4): 781-790, 2016

Mdlicious
channel

Encrypted data

\
ék]DD

Designator 5 1D = 1234

Data stored as atree

structure

High bandwicth | Trusted channel

Client | Client
1 storage

Encrypted data before
sending to cloud

[M

G

!

Re-shuffing,
re-encrypting

Fig. 1: Oblivious RAM architecture

Storing data as atree

Creating index table

e TrEE CONStruction
Request
Response
Eviction

| Regquest J—

Response

S
.

I..

Re-inserting
into tree

L

Implementing eviction

=gl
T

Designator 51D = 1234

Fig. 2: O-RAM request-response

Oblivious RAM: Cloud servers are considered curious
and untrusted entities. Data owners hesitate to adopt
cloud technology if there are risks of data exposure to a
third party or even cloud service providers themselves
(Fig. 1 and 2). Therefore, providing adequate security and
privacy protection for sensitive data is vital.

Statistical mferences of frequent queries submitted
by clients allow providers to determine how frequently a

- W I O
(n\]HH/n‘lé[\]

particular piece of data is fetched from the cloud.
Pinkas and Reinman (2010) gave an example in which a
sequence of data access operations to specific locations
{(ul; 2; 3) can indicate a certain stock trading transaction
and such financial information is often considered highly
sengitive by organizations and individuals alike. The
client retrieves all the blocks from the database to hide the
patterns but there must be sufficient storage capacity on

783

Asian J. Inform. Technol., 15 (4): 781-790, 2016

the client’s side to store data. If the client has low
bandwidth, downloading the entire database may take up
a lot of time. Further, since the cloud 1s a “pay-as you-go”
meodel, the client needs to fork out substantial sums for
the service, prompting them to think twice about cloud
services in general.

System design: An oblivious RAM preserves privacy by
continuously shuffling the location of the data as it is
being accessed, thereby completely cloaking what data is
being accessed or even when it was previously accessed.
However, reshuffling could take hours if the data carnnot
fit into the memory available and such conditions are not
feasible if the client has a handheld mobile device with
limited bandwidth and storage capacity. For mstance,
a 64 Gbyte database consumes >200 Mbytes of user
memory in the square root construction of Stefanov et al.
(2011), a quantum of memory unavailable to most clients.
The volume of data to be transferred per data access
must, consequently be reduced.

O-RAM i3 based on binary-tree construction with
storage organized into a binary tree over small data
buckets. Data blocks are evicted in an oblivious fashion
along tree edges from the root bucket to leaf buckets. In
spirit, the bimary-tree based construction tries to spread
reshuffling costs over time; in reality, its operational
mechanisms are based on Goldreich and Ostrovsky
(1996)’s original hierarchical solution. Oblivious RAM
construction leverages the available client-side storage as
a working buffer and this allows drastic optimization of
bandwidth consumption between server and client.

Let N denote O-RAM capacity (1.e., the maximum
number of data blocks that an O-RAM can store) and
assume that data 1s fetched and stored in atomic units
called blocks. The client can read or write blocks. A read
(v) operation takes an address v and returns the block
with that address.

A write (v, b) operation takes an address v and a new
block b and overwrites the old block at address v with b.
Each operation 1s treated 1dentically to make sure that the
server cannot distinguish between reads and writes. This
means ignoring the input block for a read and the output
block for a write. Also, the client re-encrypts and rewrites
each block that is accessed using a semantically secure
encryption scheme so two encryptions of the same block
are different, even if it has not been modified.

Hiding the data access pattern in an O-RAM tree
structure: The O-RAM solutions use the basic memory
structure suggested by Ostrovsky (1990)’s “Hierarchical
Scheme”, a structure arranged as a series of buckets.
When a block 1s requested, the algorithm checks a bucket

784

6119090 d=
6119091 d= 5
6119092 d= 8

A\
¢/

61190 d=3 61192 d= €

N

|

A\

Fig. 3: O-RAM tree

Table I: Tree construction
No. of blocks in 27k N

Bucket size log N No. of paths for the block

272 2 4
273 3 8
274 4 16
275 5 32
276 6 o4
277 7 128
278 8 256
279 9 512
2M0 10 1024

at each level of the hierarchy. If the block is found, the
search continues to hide the location where the block was

found. Fimally, the block 1s reinserted mto the top level
and shuffled.

O-RAM binary tree: The O-RAM construction uses the
binary tree scheme of Shi ef af. (2011), the best kmown
scheme for data requiring constant storage on the client’s
side. To store N data blocks, a binary tree of log N levels
is initiated where each node is referred to as a bucket.
Level i consists of up to 27 buckets. Each bucket
contains O (log N) entries, each of which comprises a
unigue id and a block (Fig. 3).

When a block is added to the tree, it is always
inserted in the root bucket. Hach block is labelled by a
random number between 1 and N, called the designator,
corresponding to the leaf bucket. The path from the root
to the designator is the corresponding path towards
which the block percolates down the tree (Table 1).

As each data block is logically assigned to a random
leaf node every time it is operated on, there is a need for
some kind of data structure to help remember where each
block might be at a point in time. To track an entry’s
location in the tree, the client maintains a mapping from
the unique 1d of the block to its designators mn the index
table as in Table 2. When data blocks are first added to
the bucket at the root of the tree, the bucket’s load
increases as more data blocks continue to be added. To
avoid the danger of the bucket’s overflowing, data blocks

Asian J. Inform. Technol., 15 (4): 781-790, 2016

Table 2: Mapping of block to designator
Block Id

61190

62191

68178

61986

65431

67843

61658

62356

Designator

B ON A W — 0 s

Table 3: Mapping of block to secret key
Block

61190

61191

61192

N

Secret key
TNKoO+26IneOF SNTY AlHg—
rOcYmleSOérehJEoQqtg2Q0—
bSIDRWAKSitGiGACDLz0w=—

residing in a non-leaf bucket are periodically evicted to 1its
children buckets. Two blocks are randomly selected from
the root bucket of the tree from a total of O (log N) entries
mn the bucket and evicted to prevent root buckets from
overflowing. To evict from a bucket, a valid entry is
removed from, it and added to the bucket’s child along the
path toward the evicted designator’s leaf bucket. Each
block gradually percolates down a path in the tree
towards a leaf bucket until the block is read or written
again.

Ensuring security every time a block is accessed is
feasible when its designated leaf node 1s chosen
independently and at random. This 1s necessary to ensure
that two operations on the same data block are completely
unlinkable.

Encryption: All data blocks are encrypted using a
semantically secure encryption scheme before being
inserted into the tree, so two encryptions of the same
plain text cannot be linked. Furthermore, every time a data
block is written back, it is re-encrypted again using a fresh
private key. The client maintains a look-up table as in
Table 3, mapping the block to its private key. To perform
aread or write operation on the data block, it 13 decrypted
by referring to the look-up table. Also, the client
re-encrypts and rewrites each block that is accessed using
a semantically secure encryption scheme so two
encryptions of the same block are different-even if it has
not been modified and the old private key of the block is
replaced in the look-up table by the new key. This
technique guarantees that the storage server cannot track
repeated accesses to the same block.

RESULTS AND DISCUSSION
O-RAM operation: Tn an O-RAM, the database is

considered a set of encrypted blocks and supported
operations are read (block id) and write (block id, new

61192

Fig. 4: Search for a data block

value). Assuming that a block with address v starts at the
root bucket and slowly percolates down the tree toward
the leaf indicated by the designator, the block will always
be found somewhere along the path from the root to the
corresponding designator. Then, a read or write operation
can be performed by reading all buckets in the tree along
the path mdicated by the designator. When, the block 1s
found, 1t 1s removed from its current bucket and added to
the root bucket using a new designator. Every time, the
client requests a read or write at an address v, the
corresponding block 1s assigned a new random leaf
bucket and reinserted in the root bucket. It follows that
the paths taken to look up v in two different requests are
independent of one another and cannct be distinguished
from the lookup of any other two addresses.

Read and write operations: The standard O-RAM
adopted (Sanchez-Artigas, 201 3) (worst) exports read and
write mterfaces. To hide whether the operation 1s a read or
a write either operation generates both a read and a write
to the O-RAM. Goldreich and Ostrovsky (1996) proposed
O-RAMs that support a few enriched operations,
exporting a read and write operation and a re-insertion
operation. The performance of searching for a block 1s
described in Fig. 4. The client looks up the index table to
find out which designator is associated with the
requested block id. For mstance, i the case of read
(61192), mdex structure Table 2 1s referred to for the
designator associated with the block id 61192,

Upon receiving all the buckets in the corresponding
path, the client decrypts the necessary block using the
look-up Table 3. Data remains unchanged, the operation
being read. After the read operation, the client chooses a
new designator (new random leaf) for the block and
updates the index table with the new designator value
Table 4.

Even when, the same block is requested the next time,
it is fetched from the path that is different from
the previous access, ensuring that there 1s no linkability

Asian J. Inform. Technol., 15 (4): 781-790, 2016

Table 4: Updated index table

Block Designator
61190 5
61191 4
61192 8
N R

Table 5: Updated secret key look-up table

Points Secret key

1 TANK o0+ 26IneOF SNTYAIHg—
2 rOcYmleSOérehJEoQqtg2Q0—
3 bS 1DRwAKsitGiGACDLAzQw—=

between two operations on the same data block. The
client then removes the block from the bucket where it
was found and puts 1t instead in the root bucket in Fig. 2.
Before being inserted into the root bucket, the block
1s re-encrypted and the new secret key replaced in the
look-up (Table 5), so two encryptions of the same block
are different even if it has not been modified. This
technique guarantees that the storage server cannot
track repeated accesses to the same block. Since, the new
re-encrypted block 13 placed at the root, this operation
does not violate the tree invariant that is being
maintained. Every time, the data block is accessed from
the O-RAM tree, its designator 1s changed randomly and
updated m the index table. Even if queries submitted by
the client access the same data block each time, it is
fetched from a different path.

The cloud provider can have no access to sensitive
mformation about data blocks by using access patterns,
since patterns change with each request.

A statistical inference of frequent queries submitted
by the client does not allow the provider to determine how
frequently a particular piece of data is fetched from the
cloud. This is because data is re-encrypted and decrypted
each time using a different secret key at each request.
When a client requests a write operation at a bloclk, the
said client looks up the block’s designator in a table that
maps the block 1d to its designators. There after, all
buckets in the tree along the path between the root and its
designator are read. When the entry i1s found, it is
removed from its current bucket and rewritten at the top
of the tree using a new desighator. Before being inserted
mto the root bucket, 1t is re-encrypted and the secret key
look-up table 1s updated. Thus, repeated reads for the
same entry produce different lookup paths through the
tree.

Table 5, mapping block id to designators and block
1d to the secret key, must itself be accessed obliviously.
However, it containg O (N) mappings, making it far too
large to be stored locally. Fortunately, each mapping is
tiny, no more than small bits. Thus, recursively, the same
O-RAM scheme can also be applied to a smaller collection
of blocks.

786

61192d=2

WA aAL

Fig. 5: Tree re-insertion

Optimizing oblivious-RAM: An oblivious RAM allows a
client to outsource her data to a remote server (e.g., the
cloud) and access, it efficiently and privately. In
particular, the client can access individual elements of her
data without disclosing to the server the elements, she 15
accessing. The quantum of time spent by the client and
server on each such data access should be small and
essentially independent of the size of the client’s entire
data. Using an O-RAM, a client can privately execute
arbitrary RAM computations over her remotely stored
data without having to download the data from the server
in its entirety. In particular, the client/server computation
and commumnication are essentially only proportional to
the time-complexity of the RAM computation itself.
Therefore, O-RAM offers tremendous savings when the
client wants to execute simple computations (e.g., binary
search) over huge amounts of data.

Binary tree: To store N data blocks, a binary tree of log
N levels is initiated where each node is referred to as a
bucket. T.evel i consists of up to 271 buckets. Each bucket
containg O (log N) entries, each of which contains a
unique 1d and a block (Fig. 5). To find the entry for a given
1d, the index table 1s referred to for the block’s designator
and the path through the tree followed, dictated by that
designator. For each bucket on the path, all entries are
read in that bucket. This continues along the entire path,
even if the block bemng looked for 1s found, so as to hide
the entry’s actual location from the server. After reading
or writing the entry, we remove it from wherever it was
found, assign it a new designator, re-encrypt and remsert
1t into the top-level bucket. Since, the block-to-designator
table is large, it is itself stored in a recursive version of the
O-RAM structure. Each stage is smaller than the one it
stores designators for.

Bucket structure: Data blocks are evicted in an oblivious
fashion along tree edges from the root bucket to leaf

Asian J. Inform. Technol., 15 (4): 781-790, 2016

buckets. In spirit, the binary-tree based construction tries
to spread reshuffling costs over time while, in reality, its
operational mechanisms bear little resemblance to prior
schemes (worst) based on Goldreich and Ostrovsky
(1996)’s original hierarchical solution (worst). As entries
keep getting added to the root bucket, it eventually
overflows. To prevent internal buckets from overflowng,
the client must evict-on each request-blocks from internal
buckets to their children. While the server learns which
buckets were chosen for eviction, the eviction algorithm
makes sure that the server does not know which cluld
buckets received the evicted blocks. If no empty space
exists in that child, the eviction algorithm fails. The size of
buckets has a determining impact on the efficiency of the
scheme. Since, bucket size is largely determined by the
efficacy of the eviction procedure, a natural 1dea to reduce
the capacity of buckets is to improve eviction.

Optimization: At each node of the tree, a bucket has the
capacity for several blocks. The problem lies mn that
bucket size has a strong impact on the scheme’s
efficiency. The reason is that the client needs to search
over L log N items for buckets of size L. If the buckets are
too small, there 1s every probability of their overflowing
and any overflow can leak information about access
patterns. For example, let us suppose that a bucket near
the root of a tree overflows. The cloud provider realizes
that certain of the last-accessed blocks lie in that part of
the tree and, consequently can likely leamn something
about private data based on the pattern of immediate
accesses to the tree. Therefore, it is necessary to choose
bucket size for efficiency with bucket size reduced to log
N where N is the database size. If N = 1024 then bucket
size 18 10 which could be prohibitive for client devices.

Eviction procedure: Upon every data access operation for
each depth m the hierarchy, numbers of buckets are
chosen randomly for eviction during which one arbitrary
data block is evicted to each of its children. More
specifically, eviction is an oblivious protocol between
client and server i which the client reads data blocks
from selected buckets and writes each block to a child
bucket. Over time, each block gradually percolates down
a path mn the tree towards a leaf bucket, until the block 1s
read or written again. Whenever a block 1s being added to
the root bucket, it is logically assigned to a random leaf
bucket, thereby maintaining the index table. Thereafter,
this data block gradually percolates down towards the
designated leaf bucket, until the same data block 1s read
or written again. To find the particular data block, it is
essential to search the data block in all buckets on the
path from the designated leaf node to the root (Fig. 6).

787

61194d=2
61120d =4

61198d=1

Xy

‘ ‘ 61197d=17

i
L LI

Fig. 6: Tree before implementing eviction

For security reasons, it is important to ensure that
every time a block 1s accessed, its designated leaf node
must be chosen independently and at random. This is
necessary to ensure that two operations on the same data
block are completely unlinkable. The bucket sequence
accessed during the eviction process must reveal no
information about the load of each bucket or the data
access sequence. The choice of which buckets are to be
evicted is randomly selected and independent from the
load of the bucket or the data access sequence.

Eviction rate: The client must, on each request, evict
blocks from internal buckets to their children. At each
level of the tree, the client randomly chooses buckets for
eviction. Let, the eviction rate be two. Whenever, the
eviction algorithm 1s invoked, the client randomly selects
two buckets to evict along every depth of the tree. To
evict from a bucket, an arbitrary data block 1s removed
from the selected bucket and inserted in the child bucket
lying on the path toward the designated leaf node. If no
empty space exists in that child then two arbitrary data
blocks are removed from that particular child bucket and
inserted into the bucket below, it that lies on the path
toward the designated leaf node (Fig. 7).

Eviction is now performed in the child bucket. Finally,
optimizing construction when searching for a data block,
the client accesses every bucket on the path from the root
to the leaf indicated by the designator. There is then, a
natural optimization to take advantage of each path
traversal so as to opportunistically move blocks down the
tree. From the standpoint of privacy, nothing prevents the
client from moving blocks from the currently accessed
bucket to its child in the path. The client has already
scanned this bucket during path traversal; therefore the
sequence of accessed buckets 1s 1dentical to that of the
original construction. The only requirement is for the
client to have sufficient memory to store two buckets: the
current bucket and its child which is less than the storage
required by our new eviction procedure and algorithm
(Fig. 8-10).

Asian J. Inform. Technol., 15 (4): 781-790, 2016

61190d =2
61191d=E
\ 61193d =€
61194d=2 61197d=6
61120d=4 61191d=5
61197d=7
61198d=1 61194d=¢ 61193d=8
61198 61193
Fig. 7: Tree after implementing eviction
3.5 7
40
35 4 3.0 1
304
2.5
251
g
& ~ 204
o> 201 g 2.0
£ <
= o
15 1 £
= 1.5 4
10
1.0
5 -
0 ? I‘ ? I‘ T T T T T T T O 5 -
cLfoirzsris |
(<\| [S| <<\1 §\| <<\| <<\| c<\| IS I <<\|
No. of blocks 0.0 . . : : . . . :
. . . [o < bl o o~ o o =
Fig. 8: O-RAM tree construction time &S s & & &8 b3
No. of blocks
Eviction algorithm
Eviction: Fig. 9: Eviction time
For d =D-1 to 0 do */D is the number of levels®/
Cormpute the set of the buckets to evict end if
at level D end for
for each bucket in Buckets to evicit do end for
for each block in buckets do end for
1 ~designator of block
b~(D-d-1) th bit of . .
if child b is not furll then Let, L. be the bucket capacity and | the size of a block
Child_b. Add (block) inbits. Observing that a read or write request performs

788

Asian J. Inform. Technol., 15 (4): 781-790, 2016

H Evicted blocks
@ Not evicted

100

80

60

Eviction ratio (%)

404

| [l

1

O

<
!

No. of blocks

Fig. 10: Evicted ratio

one operation on each of log N buckets, the amount of
data transferred thus is 1. log N. Similarly, the eviction
algorithm operates on O (log N) buckets (two buckets per
level). Then, the cost 1s O (IL log N). Setting L = O (log N)
to prevent bucket overflows, the owverall worst case
complexity of this scheme 15 O (1 log2 N).

Evaluation: To assess the practicality of O-RAM for
different values of N where N 15 the db size, tree
construction and O-RAM operations are evaluated.
Bucket size depends on the size of N, with smaller buckets
being used for efficient eviction procedures. If the
buckets are too small, there is a high probability of their
overflowing and any overflow can leak information about
the access pattern. Bucket size 1s reduced to log N. The
key observation 1s that as N mcreases, the relative bucket
size of our scheme decreases significantly and tree
construction time mcreases.

Eviction is performed for each read or write
request after being re-inserted into the tree. At each level
of the tree, the client randomly chooses two buckets
and one arbitrary data block. The tree level increases
as N increases and the time taken for eviction also
increases.

Oblivious RAM construction 1s efficient as database
size increases. In general, a reshuffle could take hours for
a large dataset. In the O-RAM storage system, since the
client randomly selects from the chosen bucket only two
buckets and one arbitrary block for eviction, the number
of evicted blocks decreases as N mcreases.

789

CONCLUSION

Securing user data within a data center requires more
than mere encryption for hiding data access patterns adds
additional protection agamst malicious servers and
hackers. An oblivious RAM hides all information about
block accesses. Deploying such oblivious storage in a
data center creates new challenges and opportunities,
including issues of scale, parallelism, maliciousness, fault
tolerance and worst-case performances. Data transfer
becomes the main bottleneck for O-RAMSs well suited as
they are to client devices with himited memory such as
smart phones and PDAs. Since, these devices are the
primary computing platform for many users, we have made
progress in reducing as much as possible, the volume of
data transferred on each request. These optimizations are
key to make O-RAMSs attractive for personal storage.

IMPLEMENTATIONS

Future enhancements of this research include
implementing a path oblivious RAM, an efficient integrity
verification method (Ren et af., 2013) and improving
integrity verification to increase Path ORAM latency
by 17%.

REFERENCES

Carbunar, B. and R. Sion, 2011. Write-once read-many
oblivious RAM. IEEE Trans. Inform. Forensics
Secur., 6: 1394-1403.

Chor, B., E. Kushilevitz, O. Goldreich and M. Sudan, 1998.
Private information retrieval. J. ACM, 45: 965-981.

Goldreich, O. and R. Ostrovsky, 1996. Software protection
and simulation on oblivious RAMs. J. ACM., 43:
431-473.

Goodrich, M.T. and M. Mitzenmacher, 2010. Mapreduce
parallel cuckoo hashing and oblivious ram
simulations. https: /arxiv.org/pdf/1007.1259.pdf.

Islam, M.S., M. Kuzu and M. Kantarcioglu, 2012. Access
pattern disclosure on searchable encryption:
Ramification, attack and mitigation. Proceedings of
the 19th Annual Network and Distributed System
Security Symposium, February 5-8, 2012, San Diego,
CA., USA, pp: 1-14.

Kumar, R., I. Novak, B. Pang and A. Tomkins, 2007. On
anonymizing query logs via token-based hashing.
Proceedings of the 16th International Conference on
World Wide Web, May 8-12, 2007, Banff, AB,
Canada, pp: 629-638.

Kushilevitz, E., S. Lu and R. Ostrovsky, 2012. On the
{(in)security of hash-based oblivious RAM and a new
balancing scheme. Proceedings of the 23rd Annual
ACM-SIAM Symposium on Discrete Algorithms,
Tanuary 17-19, 2012, Kyoto, JTapan, pp: 143-156.

Asian J. Inform. Technol., 15 (4): 781-790, 2016

Lee, EX. and C.A. Thekkath, 1996. Petal: Distributed
virtual disks. ACM SIGPLAN Notices, 31: 84-92.

Ostrovsky, R., 1990. Efficient computation on oblivious
RAMs. Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, May 13-17,
1990, Baltimore, MD., USA., pp: 514-523.

Pinkas, B. and T. Remman, 2010. Oblivious RAM
revisited. Proceedings of the 30th Amnual
Cryptology Conference, August 15-19, 2010, Santa
Barbara, CA., USA., pp: 502-519.

Ren, L., C'W. Fletcher, X. Yu, M. van Dyjk and 5. Devadas,
2013. Integrity verification for path oblivious-RAM.
Proceedings of the 17th IEEE High Performance
Extreme Computing Conference, September 10-12,
2013, Waltham, MA., USA., pp: 1-6.

Sanchez-Artigas, M., 2013. Toward efficient data
access privacy in the cloud. TEEE Commun. Mag.,
51: 39-45,

Shi, E., THH. Chan, E. Stefanov and M. Li, 2011.
Oblivious RAM with O((logN)3) worst-case cost.
Proceedings of the 17th International Conference on
the Theory and Application of Cryptology and
Information Security, December 4-8, 2011, Seoul,
South Korea, pp: 197-214.

Stefanov, E., E. Shi and D. Song, 2011. Towards practical
oblivious RAM. http:/farxiv.org/pdf/1106.3652 . pdf.

Troncoso, C., C. Diaz, ©. Dunkelman and B. Preneel,
2007. Traffic analysis attacks on a
contimuously- observable steganograplc file
system. Proceedings of the 9th International
Workshop on Information Hiding, Tune 11-13, 2007,
Saint Malo, France, pp: 220-236.

Williams, P., R. Sion and B. Carbunar, 2008. Building
castles out of mud: Practical access pattern privacy
and correctness on untrusted storage. Proceedings
of the 15th ACM Conference on Computer and
Communications Security, October 27-31, 2008,
Alexandria, VA., USA., pp: 139-148.

790

	781-790_Page_01
	781-790_Page_02
	781-790_Page_03
	781-790_Page_04
	781-790_Page_05
	781-790_Page_06
	781-790_Page_07
	781-790_Page_08
	781-790_Page_09
	781-790_Page_10

