Asian Journal of Tnformation Technology 15 (4): 756-764, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

Intra and Inter XML Query Answering Using Holistic Boolean
Twig Pattern Matching

J.C. Miraclin Joyce Pamila and Divya Rajagopal
Department of Computer Science and Engineering, Government College of Technology,
Tamil Nadu, India

Abstract: The XML is used as a standard for expressing semi structured data, a form of data that does not
conform to the formal structure of relational data models but nonetheless contains tags to separate semantic
elements and enforce hierarchies within the data. Semi structured data model allows information from several
sources with related but different properties to be integrated, thereby enabling sharing of information.
Answering the queries issued on such data is therefore, a great challenge. Twig pattern matching is a critical
operation for XM, query answering and holistic approaches have shown superior performance over other
methods. The existing holistic approaches research on handling Boolean twigs, twigs which contain arbitrary
occurrences of the logical comnectives AND, OR and NOT. In this study, we extend the holistic Boolean twig
pattern matching approach to support two different query formats, intra query and mter query which provide

a different context to the query.

Key words: Ancestor-descendant, boolean, holistic, inter query, intra query, parent-child, ML

INTRODUCTION

An XML document consists of data enclosed within
a set of user-defined tags. The tags should be properly
nested, they should be paired and there should be one
and only one root tag. The XMIL offers simplicity,
flexibility, standardization and interoperability. Hence,
XML 15 being widely used as a data representation format
for representing nearly all kinds of data. However, XML
documents are often very large and have a deeply nested
structure. Further, the XMI. data can also be very
complex. Hence pattern matching algorithms are needed
to retrieve the data from such documents by answering
the queries 1ssued. A sample XML document 1s shown in
algorithm 1.

A query on the XML document describes a
tree-shaped or hierarchical search pattern which is often
referred to as a twig pattern (Bruno ef al., 2002). The XMI.
queries are thus called tree queries or twigs and the
relationships between the components of the twig are
represented as edges. Single backslash (/) 1s used to
represent a parent-child edge or PC edge. When/is used
at the beginning of a query for example/book, it will define
an absolute path to node “book™ relative to the root. In
this case, it will only find “bool’” nodes at the root of the
XML tree. When/is used mn the middle of a query for,
e.g../book/author, it will define a path to node “author”
that 1s a direct descendant (i.e., a child) of node “book™.
Double backslash (/) is used to represent an
ancestor-descendant edge or AD edge. When//is used at

the beginning of a query for example/book, it will define
a path to node “book™ anywhere within the XML
document. In this case, it will find “book™ nodes located
at any depth within the XML tree. When//is used 1n the
middle of a query for, e.g../book//author, it will define a
path to node “author” that is any descendant of node
“book™.

The core operation of XML query answering 1s twig
pattern matching: finding m an XML document tree ‘D,
all matches of a given tree-type query ‘Q’ called twig. A
match is identified by a mapping from nodes in ‘Q’ to
nodes in ‘D’ such that query node predicates are satistied
by the comresponding document tree nodes and also
the structural relationships (AD or PC) between query
nodes are satisfied by the corresponding document tree
nodes.

The answer to query ‘Q° with ‘n’ nodes can be
represented as an n-ary relation where each tuple
(dl,...,dn) consists of the document tree nodes that
identify a distinet match of ‘Q” in “D”.

Holistic twig pattern matching approaches avoid
large sets of urelevant mtermediate results by considering
the structural inter-dependencies among the XMIL
elements. Holistic approaches optimize pattern matching
in two phases:

» Labeling: assigns to each node x in the data tree t, an
integer label, label (x) that captures the structure of t

s Computing: exploits the labels to match a twig pattern
P against t without traversing t again

Corresponding Author: J.C. Miraclin Joyce Pammla, Department of Computer Science and Engineering,
Government College of Technology, Tamil Nadu India

Asian J. Inform. Technol., 15 (4): 756-764, 2016

A twig that contains a single path from root to leaf is
called a plamn twig. It does not contamn any boolean
predicates. A twig that may contain arbitrary combination
of ANDs, ORs and NOTs is referred to as an
AND/OR/NOT twig or Boolean-twig (or simply B-twig).
Normalization is the important pre-processing module
which is performed on the B-twig to effectively restrain
the complexity n a B-twig. In this study, we extend the
holistic Boolean twig pattern matching approach
proposed in (Che et al., 2012) in order to support two
different query formats, intra query and mter query which
provide a different context to the query.

When a logical Boolean predicate is used within a
query as a condition such a query format is called intra
query. The context represented by this query is as
follows: “AND’ represents conjunction, e.g.//book
[[#/author = Jack] AND [/editor = Jack]] finds the books of
author JTack who is also the editor of the same book. The
‘OR’ represents disjunction (inclusive OR), e.g..//book
[[#author = Tack] OR [/editor = Jack]] finds the books
either whose author is Jack or editor is Jack. “NOT’
represents negation, e.g..//book [[//author = Jack] NOT
[/editor = Tack]] finds the books of author Jack who 1s not
that book’s editor.

When a logical boolean predicate is used between
two mtra queries, such a query format is called ter
query. The context of this query is: *“AND’ represents and
exists, e.g., {//book [/fauthor = Jack]} AND {//boock
[feditor = Jack]} finds the books of author JTack who 1s
also, the editor of any book. The ‘OR’ represents
exclusive OR, e.g., {//book [/fauthor = Jack]} OR {//book
[feditor = Jack]} finds the books either whose author 1s
Tack or editor is JTack but not both. “NOT’ represents not
exits, e.g., {//book [/fauthor = Tack]} NOT {//book [/editor
= Jack]} finds the books of author Jack who is not the
editor of any book.

MATERIALS AND METHODS

Existing systems: TwigStack is a holistic twig join
algorithm that ensures that no large mtermediate results
are produced (Bruno et al., 2002). When the query has
only ancestor-descendant relationships between the
elements, Twig Stack 13 /O and CPU optimal for
ancestor-descendant relationship but it is suboptimal
when the query has parent-child relationship among the
elements. It supports only plain twigs. The GT wig Merge
(liang et al., 2004), a basic framework for holistic
processing of AND/OR-twigs researches correctly when
AND/OR twig queries contain parent-child query nodes.
However, the optimality in terms of worst-case I/O and
CPU cost is no longer guaranteed Twig Stack List
(Lu et al., 2004) 13 another holistic twig join algorithm
which i T/O optimal for queries with only

757

Book Book

Title Author Editor Year Title Authors Year Editor

N ATAY

XML P. Cho A.Cater 2004 SGML Author Author 2004 C.S. Press
overview I

Jil Jack

Fig. 1: Representation of XML tree

A
/
B\
H CD F6 M H D
,G\/L\I.J B RPN
MN 1] P 0/\ \

G
Ve
F L
Fig. 2: Data structure for XMI, tree representation

ancestor-descendant relationships below branching
nodes. The optimality cannot be proved for the case
where parent-child relationships appear only mn edges
below non-branching nodes. TwigStack List—~ is an
algorithm to match NOT-twig queries holistically
(Yu et al., 2006). In a NOT-twig, this algorithm can
guarantee the I/O optimality only when all the positive
edges below branching nodes are ancestor-descendant
relationships. BT wig Merge (Che et al., 2012) 13 a novel
Holistic Twig Join algorithm which completely supports
Boolean twigs. It performs optimal matching for B-twigs
with AD and PC edges.

Tree representation of XML and twig: As the XML and
the twig are hierarchical, they are represented using a tree
data structure. Figure 1 shows the tree for the XML
document referred m Fig. 1.

Each node in the tree corresponds to an XML
element. The root node corresponds to the root element,
the mtermediate nodes to sub elements, the leaf node to
values. Each edge corresponds to an element-sub element
or element-value relationship. Each non-leaf node in the
XML tree can have multiple, variable number of children.
Hence, instead of a linked list implementation of the tree,
a more optimized tree representation (Fig. 2) s used. In
this representation, each non-leaf node has two pointers:
a pointer to the first cluld and a pointer to the next sibling.
The optimized XMI. tree representation of the tree used in
Fig. 1 1s demonstrated in Fig. 3. Because, each node has
at most only two children, the new tree is a binary
representation of the previous tree.

Asian J. Inform. Technol., 15 (4): 756-764, 2016

(@ Doc ©
/ @
Book Book Doc Doc Doc
/ I Book I I
Title — Auther —Editor— Year Title —Anthors— Editor— Year Book I
O
| / / Year Bock Book
XML P.Cho A.Cater 2004 SGML Author Author 2004 C.S. Press I I I II
Overview
Title 2004 Authors Anthors
Jill Jack
Fig. 3: Optimized representation of XML tree Fig. 4: Representation of XML plain query trees
Sample XML document: ®)
< xml version = “1.0"> () /Doc ©
<doc> |
<book> /Book /Book Do
<title>XML </title> T~ I [
<author=P. Cho </author> And NEditor Or {Book
<editor=A. Cater </editor= e — e |
<year>2004</y ear> IYear {Title HAuthors ITitle Not
<book> | I | I
<book> _ _ £2004 TXML FXML #Authors
<title=SGML overview=/<title=
<authors>
<authors>Jill </author> Fig. 5: Representation of XMI. Boolean query trees
<author>Jack </author>
<authors=> . . .
<yewr2004<iyear> Normalization: The following defimtion mcorporates
<b00ki6d‘t°r>c's' Press </editor> DNF (Disjunctive Normal Form) from Boolean logic into
Idoc> the context of a B-twig and forms the concept of

normalized B-twigs: A normalized B-twig is a query tree

Sample plain and Boolean cuery trees are shown in that has only four types of nodes: QNodes, NQNodes,

Fig. 4 and 5, respectively. A query tree can have four ONO_d‘?S and ANodes that satisfy the followmg
types of nodes: Q Node/query nodes, A node/AND conditions:

nodes, © Node/OR nodes and N Node/NOT nodes. .
¢ Each OR predicate branch can be mapped to a DNF

s FEach NQNode, i.e., the combined form of NOT node
with subsequent QNode child must be a leaf
» Each explicit ANode must appear within an OR

XML tree labeling: The aim of data tree labeling schemes
is to determine the relationship (i.e., Parent-child or

ancestor-descendant) between two nodes of a tree from predicate branch

their labels alone. Each node in the XMI. tree is given a

unique identity called label or region code. In this study, The normalization procedure consists of repeated
the triplet region encoding scheme (Bruno ef al., 2002) application of the following three consecutive steps of
which 1s obtained through pre-order traversal of the transformation:

document tree is used. Each label consists of three parts:
start position end position, level. The encoded version of
the XML tree shown in Fig. 1 and 6.

The relative positional information obtained is as
follows: let x and x° be two nodes labeled (S, E, L)
and (5°, E’, L"), respectively. Then:

» NOT-pushdown
* AND-pushdown
¢ Simplification

Each transformation step is implemented via a set of
transformation rules listed below:

* ‘x’ 18 adescendant of x if and only if *3">S and E~E’". + A[NOT[BAND C]] = A [[NOT B] OR [NOT C]
Thus, the edge between x and x° represents an s+ A[NOT[BORC]]=A [[NOT B] AND [NOT C]]

ancestor-descendant edge + A[NOTBI[C]I=A[NOTBORBI[NOT C]]

* %’ 15 a chuld of x if and only if 3°>5 and E=E’ » A[[BORC]ANDD]=A[[BANDD]OR [C AND
and L” = L+1. Thus, the edge between x and x’ D]]
represents a parent-child edge + A[NOTNOTB]=A[B]

758

Asian J. Inform. Technol., 15 (4): 756-764, 2016

Doc
1,35,1)
Book Book
,152) (16,34,2)
Title Author Editor Year e Author Year Editor
(3,33 (683 .11,3) (12,14,3) (17,193 (20,27,3) (28,30,3) (31,33,3)
I | | I | I |
XML PCho A Cater 2004 SGML 2004 C.S.Press
7,7,4 10,10,4) (13,13,4) overview (29,29,4) (32,32, 4)
44,4 77,4 | Y} () (18, 18.4)
Author Author
21,23,4) (24,26, 4)
/ \
Jill Jack
(22,22,5) (25,25,5)
Fig. 6: Encoded XML, tree representation
end for

Holistic boolean twig pattern matching: The main
algorithm “BTwigmerge™ of the second phase called the
computing phase of the Boolean twig pattern matching
process. The BT wig merge uses the labels to compute the
answers to the twig. All the functions are as described in
(Bruno et al., 2002, Che et al., 2012).

BTwigMerge holistic Boolean twig pattern matching
algorithm; algorithm BT wigMerge (root):

While not end (root) do

q = GetQNode (root)

if ¢ = null then

continue

if not is Root (q) then

clean Stack (SQ parent (), Cq)

clean Stack (Sq, Cq);

if is Root (q) or (not empty (3QParent (q))) then

if not is out Leaf (q) then

push (Sq, Cq is Root (q)?-1

top (SQParent ()

else

output Path Solutions (Cq)

Cg-advance ()

end while

merge Path Solutions ()

GetQNode is an essential subroutine which is called
by the main algorithm BT wig Merge to decide the next
QNode for processing. The GetQNode guarantees that,
the stream head element associated to the returned
QNode is part of the final output.

Pseudocode for GetQNode function; function GetQNode
(q):

if is Leaf{q) then

return q

for each qi Qchildren(q) do

q0 = GetQNode(qi)

if g0 = gi and is out Node(q() then
refurn q0

759

q max =Get Max Qchild(q)

while Cg~end <Cgmax-start do

Cg-advance()

end while

q min = argmingi {Cqi->start}, qi £ Qchildren (q)
while Cq-start < Cqmin-start do

it has Extension(q) and is CutNode(q) then
return q

else

Cq-advance()

end while

if has Extension{qrmnin) and is OutNode(gmin) then
return g min

else

Cgmin-advance()

it end(q) then

return null

else

return GetQNode(q)

Another key subroutine has extension helps n
ensuring that only relevant contributing nodes are taken
for processing with respect to edge-type (AD or PC) for
leaves and for non-leaf nodes, performs testing of further
extensions.

Pseudocode for has extension function; function has

extension(q):
For each qi € children(q) do
it Onode(qi) then
return OnodeTest (Cq, qi)
else if NQNode(qi) then
return NedgeTest(Cqg, qi)
else
if is Leaf(qi) then
return edgeTest(Cq, gi)
else
return (edgeTest(Cq, qi) and has Extension(qi))
end for

This has extension function in turn calls three other
supporting functions, Onode test, n EdgeTest and

Asian J. Inform. Technol., 15 (4): 756-764, 2016

edgeTest respectively. Onode test function evaluates the
OR predicates using OR-blocks mechanism where in a
logical formula P(n) recorded in the root structure
of the OR-block provides the needed information.

Pseudocode for Onode test function; function Onode test

(e, m):
For each ni in P(n) do
if is Leaf (ni) and is Qnode (ni)
replace ni by edgeTest (e, ni)
else if is Leaf (ni) and is NQNode (ni)
replace ni by nEdge Test(e, ni)
else
replace ni by (edgeTest (e, ni) and
has Extention (ni))
break
end for
evaluate P(n) and return the result

Function n-EdgeTest which is designed for dealing
with NQNodes relies on repeated calls to function
edgeTest.

Pseudocode for nEdgeTest function

Function nEdgeTest (e, q):
while not end (Cq) do
if edgeTest (e, q) =true then
return false
else if Cq~end <e.end then
Cg-advance ()
else
break
end while
return false

Function edgeTest checks the region coverage
relationship (AD or PC) between two candidate elements.
The while loop brings an important optimization-fast
skipping non contributing elements in stream.

Pseudocode for Edge test function

Function Edge test (e, q):
While not end(Cq) do
if e.start <Cq-start and e.end >Cqg-end then
if q.axis = *// then
return true
else if e.level = Cq~level-1 then
return true
if Cq—end <e.end then
Cqg-advance()
else
break
end while
return false

The largest threshold value, mtroduced in
(Tiang et al., 2004) is computed by a special supporting
fumetion called OR block max. This algorithm traverses the
structure of an OR block and computes the maximum
threshold value to help effectively skip disqualified
elements in the parent stream.

760

Pseudocode for OR block max function

Function OR block max(n):
q0=0
if is NQNode(n) then
return 0
else if is QNode(n) and is Leaf{n) then
retum n
else
if is QNode(n) then
q0=n
for each ni € children(n) do
qi = ORBlockMax(ni)
end for
if is ONode(n) then
return argmingi {ei.start} for gi
initialized at line 10
else
return argmaxqi {ei.start} for qi initialized at line 10 and line 1

Complexity analaysis: Given a twig query Q, the
parameters used are:

[Tnput| stands for the total size of all the input streams
relevant to query Q
|Output| stands for the total count of the data
elements included mn all output twig instances
produced for query

The /O cost of BTwighMerge consists of three parts:
the 1/O cost for accessing all the relevant mput stream
elements and the /O cost for dealing with the intermediate
path solutions plus the T/O cost for outputting the final
twig solutions. Since, in BTwigMerge, the stream cursors
are always advanced and never backtracked, the first part
of the T/O cost is the total size of all relevant input
streams. For the second part, since BTwigMerge is
optimal with both AD and PC edges, i.e., it never
produces useless intermediate path solutions, the 1/0 cost
of this part is two times (for first output and then input) of
the total final output size, i.e., 2* |Output]. And, the third
part (for outputting the final results) of course 15 |Output].
The total I/O cost for BTwigherge 1s the sum of the
above three parts = [InputH3* |Output].

The CPU cost analysis for BtwigMerge is analogous.
The CPU cost also consists of three parts. The first part
is the time spent on computing the path solutions, the
second part 1s the time spent on dealing with the obtained
intermediate path solutions (output, mput and merging)
and the third part is on outputting the final twig solutions.
The main structure of BTwigherge 1s a loop that repeats
no more than [Input| times which is the total number of
elements 1n all the input streams because noncontributing
elements are skipped at line 10, 17 and 22 of GetQNode or
by the optimization rendered by the primitive function
edgeTest. So, the first part of the CPU cost is linear to the
input size. The second part depends on how many

Asian J. Inform. Technol., 15 (4): 756-764, 2016

intermediate path solutions are produced and how many
of them are going to be merged to form the final output
twig solutions. As, BTwigMerge does not produce any
unused intermediate path solutions (it actually does not
push any noncontributing elements onto any stack), the
second part of the cost is linear to and solely decided by
the output size |[Output|. And, the third part of course 1s
also linear to the output size. Added together for the
overall CPU cost of BTwighMerge, exactly the same result
as that derived for the I/O cost 1s obtamed (cost
equations omitted).

The above cost analysis results shows that
BTwigMerge has both optimal [/O cost and optimal CPU
cost for twigs with both AD and PC edges.

RESULTS AND DISCUSSION

In this study, the answers to various Boolean twigs
are shown. The platform of the experiments contains an
Intel 15 Core at 2.27 GHz runming Windows XP system
with 4 GB memory and a 75 GB hard disk. Java SE 1is the
software platform on which these algorithms are
inplemented and tested. JDK 1.6 18 used to access the
XML data elements in the data sets and SAX 1s the
adopted XML parser for this study. Eclipse IDE has been
used to develop and build the application.

To avoid potential bias of using a single data set,
three XML data sets downloaded from the University of
Washington XML repository are used for this study. The
first data set consisting of 66729 data nodes and maximum
depth of 6 contains the course details of a university. The
second data set consisting of 150001 data nodes and
maximum depth of 3 contains the order details of an online
shopping site. The third data set consisting of 476646
data nodes and maximum depth of 8 contains various

performed beforehand to obtain the region code label for
each data element and the input streams needed by all
algorithms.

The first data set used is the cowse data set.
Figure 7 shows the result of a Boolean intra query with
NOT predicate. Tt displays the instructors of the courses
with La803 as section where a building has not yet been
allocated for that particular section. 636 solution paths are
computed as output.

Figure 8 shows the result of a Boolean inter query
with NOT predicate. It displays the mstructors of the
courses with La803 as section where a building has not
yet been allocated for any section of that course. The
1130 solution paths are computed as output.

Figure 9 shows the result of a Boolean intra query
with AND predicate. Tt displays the end times of the
courses with La801 as section and 12:30 pm as start time
for that particular section. The 333 solution paths are
computed as output. Figure 10 shows the result of a
Boolean inter query with AND predicate. It displays the
end times of the courses with LaB0l as section and
12:30 pm as start time for any section of that course. 1484
solution paths are computed as output.

The second data set used is the order data set.
Figure 11 shows the result of a Boolean intra query with
OR predicate. Tt displays the order keys of either urgent
priority orders or pending status orders or both. The 3319
solution paths are computed as output.

Figure 12 shows the result of a Boolean inter query
with OR predicate. Tt displays the order keys of either
urgent priority orders or pending status orders but not
both. 3255 solution paths are computed as output.

The third data set used is the NASA data set.
Figure 13 shows the result of a Boolean query with a
combination of AND-OR-NOT predicates. It displays the

astronomical data of NASA. Preprocessing 1s titles which are either published by author with JTackson
B =
Inputthe query llcourse_listing[[f/section=La803] AND [NOTWbldgllinstructor Generate Results

U909 UFgod J)(UFa7o,Uaa0u]
(F0202,70287,2) (70239,70241 4)
(70202,70287,2) (70261,70263,4)
(70202,70287,2) (T0283,702854)
(71298,71405,2) (71335,71337 4)
(71298,71405,2) (T1357,71359.4)
(71298,71405,2) (71379,71381,4)
(71298,71405,2) (71401,71403 4)
(71406,71491,2) (T1443,714454)
(71406,71491,2) (T1465,71467 4)
(71406,71491.2) (71487,71489.4)

Number of final solution paths ; 636

'Y
-

e

<7

T

Fig. 7. Twig results of Boolean intra query with NOT predicate

Asian J. Inform. Technol., 15 (4): 756-764, 2016

=

3] E TRy

Input the query {ficourse_listing[lsection=Lag03}instructor} MOT {icourse_listing[/bldal}

i Generate Results |

L TO2UTD, TUZ 198 21 TUZ T30, 102 T3L5]
(162055, 162194,2) (162160, 162162 4)
(162055,162194,2) (162190, 162192 4)
(162515, 162624,2) (162560, 162562 4)
(162515, 162624,2) (162590 1625592 4)
(162515,162624,2) (162620162622 4)
(162625,162794,2) (162670162672 4)
(162625,162794,2) (162700162702 4)
(162625,162794,2) (162730162732 4)
(162625162794 2) (162760 162762 4)
(162625162794 2) (162790, 162792 4)

Mumber of final solution paths : 1130

Lo
A |
= |

B

e

Fig. 8: Twig results of Boolean inter query with NOT predicate

[£]

-

Input the query

ficourse_listingl[fsection=Lag01] AND [#start=12:30pm]liend

r

| Generate Results I

LT TO TR T00 £F [TREVEL, TREVES,]

{141899,142188,2) (142052,142054,5)
(141899 142188,2) (142082,142084.5)
{141899,142188,2) (142112,142114,5)
{141899,142188,2) (142142,142144 5)
{141899,142188,2) (142172,142174.5)
{161145,161314,2) (161178,161180,5)
{161145,161314,2) (161208,161210,5)
(161145, 161314,2) (161238,161240,5)
{161145,161314,2) (161268,161270,5)
{161145,161314,2) (161298,161300,5)

AJ

Mumber of final solution paths ; 333

¥

Fig. 9: Twig results of Boolean intra query with AND predicate

Input the query

o

gicourse_listinglisection=La801}end} AND Hicourse_listinglistart=12:30pm[}

] Generate Results F

U TUZIT, TUZ%0% 2 [TUZ500, TUZ390,07

(162355,162464,2) (162413,162420,5)
(162355,162464.2) (162448 162450,5)
(162515,162624,2) (162548,162550,5)
(162515,162624,2) (162578,162580,5)
(162515,162624,2) (162608,162610,5)
(162625,162794.2) (162658,162660,5)
(162625,162794,2) (162688,162690,5)
(162625,162794,2) (162718,162720,5)
(162625,162794,2) (162748,162750,5)
(162625,162794,2) (162778,162750,5)

Mumber of final solution paths ; 1484

"i

Fig. 10: Twig results of Boolean inter query with AND predicate

762

Asian J. Inform. Technol., 15 (4): 756-764, 2016

Inputthe query JORDER[[/PRIORITY=URGENT] OR [/STATUS=F JVKEY ‘ Generate Results i

s v ooor 2y v v >0 T
(433755,433783,2) (433756,433758,3)
(433813,433841,2) (433514,433816,3)
(434161,434189,2) (434162,434164,3)
(434190,434218,2) (434191,434193,3)
(434393,434421 2) (434394 434396,3)
(434500,424537 2) (434510,434512,3)
(434654, 434682 2) (43455 434657 3)
(434712,434740,2) (434713 434715,3)
(434799,434827 2) (4345300,434802,3)
(434828 424856,2) (434320 4345831,3)
(434973,435001,2) (434974,434976,3)

Mumber of final solution paths © 3319

El

Fig. 11: Twig results of Boolean inter query with OR predicate

& =Reey X

Inputthe query {/ORDER[/PRICRITY=URGENT JKEY} OR {IORDER[/STATUS=F JKEY} l Generate Results |

oo r>%uo oo o oo T
(410081,410119,2) (410092,410094,3)
(412063,412001,2) (412064,412066,3)
(415848,416576,2) (415540 416851,3)
(421227 ,421256,2) (421228,421230,3)
(423083,423111,2) (423084,423086,3)
(423257 423285,2) (423258 423260,3)
(427839,427867,2) (427540,4275842,3)
(429840,429868,2) (429541,429543 3)
(430507,430535,2) (420508,430510,3)
(433610,433638,2) (433611,433613,3)
(434973,435001,2) (434974,434976,3)

Mumber of final solution paths : 3255

El

Fig. 12: Twig results of Boolean inter query with OR predicate

Input the query /dataset][ilastName=Jackson] OR [[NOT[/date/month=Jan]] AMND [//datefyear=1385]))title Generate Results i

[TVTEITZES, TETFFUT E | T, TETIZFE, UT

(1255224,1255469 2) (1255303, 12553056
1255470,1255743,2) (1255471,1255473,3
1255470,1255743,2) (1255486,1255488 6
1255470,1255743,2) (1255574,1255576,6
1255744,1256127,2) (1255745,1255747,3

) '
)
)
)
)
1265744 1256127,2) (1255760,1255762,6)
)
)
)
)
)

r

1255744 1256127 2) (1255889,1255891,6
1255744 1256127 2} (1255966,1255968,6
1266128,1256324,2) (1256129,1256131,3
1266128,1256324,2) (1256144,1256145 6
1256128,1256324,2) (1256246,1256248 6 D

(
(
(
(
(
(
(
(
(
(

Mumber of final solution paths : 3077 [v

Fig. 13: Twig results of Boolean query with AND-OR-NOT predicates

763

Asian J. Inform. Technol., 15 (4): 756-764, 2016

as last name or published in the year 1995 except the
month of January. The 3077 solution paths are computed
as output.

CONCLUSION

Holistic twig joins are critical operations for XML
queries. The three basic logical predicates and OR and
NOT are natural expression mechanisms that people
would desire to apply to general XMI, queries.
BTwigMerge, a Boolean holistic twig join algorithm
provides an mtegral solution for efficient and uniform
processing of AND-OR-NOT queries in a single
algorithmic framework. In this study, two Boolean query
formats, mtra-query and mter-query, extend the use of
B-twigs by giving a different context to the query. The
approach supports Boolean twigs or B-twigs, i.e., twigs
which support any arbitrary combination of
AND/OR/NOT Boolean predicates. In order to reduce the
mtrinsic complexity i arbitrary B-twigs, B-twig
normalization that successfully sorts out the arbitrary
combination of the logical predicates in B-twigs has been
suggested. A valid procedure to automatically transform
mput B-twigs mto normalized forms has been designed.
The normalized B-twigs are then sent to BT-wighMerge
that embodies the Boolean holistic twig join strategy.
Thus, the proposed approach has been presented and the
results have been recorded.

764

REFERENCES

Bruno, N., D. Srivastava and N. Koudas, 2002. Holistic
twig joms: Optimal XML pattern matching.
Proceedings of the International Conference on
Management of Data, June 3-6, 2002, Madison,
Wisconsin, pp: 310-321.

Che, D., TW. Ling and W.C. Hou, 2012. Holistic
boolean-twig pattern matching for efficient XMI.
query processing. IEEE Trans. Knowledge Data Eng.,
24: 2008-2024.

Tieng, H., H. Lu and W. Wang, 2004. Efficient processing
of twig queries with OR-predicates. Proceedings of
the 2004 ACM SIGMOD International Conference on
Management of Data, Tune 13-18, 2004, Paris, France,
pp: 59-70.

Lu,J., T. Chen and T.W. Ling, 2004. Efficient processing
of XML twig patterns with parent child edges: A
look-ahead approach. Proceedings of the 13th ACM
International Conference on Information and
Knowledge Management, November 8-13, 2004,
Washington, DC., USA., pp: 533-342.

Yu, T., TW. Ling and IT. Tu, 2006. TwigStackList: A
holistic twig join algorithm for twig query with
not-predicates on XML data. Proceedings of the 11th
International conference on Database Systems for
Advanced Applications, April 12-15, 2006,
Springer-Verlag, London, pp: 249-263.

	756-764_Page_1
	756-764_Page_2
	756-764_Page_3
	756-764_Page_4
	756-764_Page_5
	756-764_Page_6
	756-764_Page_7
	756-764_Page_8
	756-764_Page_9

