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Abstract: Now a days, there 13 a need m the design of multicore processor in order to improve system
performance, and reducing power consumption. Homogenous cores are all exactly the same: equivalent
frequencies, cache sizes, functions, etc. However, each core in a heterogeneous system may have a different
function, frequency, memory model, etc. There is an apparent trade-off between processor complexity and
customization. This study presents a comparison between homogeneous multicore processor and
heterogeneous one. This study examines in detail the performance and power consumption by mcreasing the
number of cores in Intel processor. In this study, four different scheduling algorithms for finding near-optimal
thread to core assignments in a multicore processor is explored with and without wait free data structure is
mtegrated with each scheduling paradigm. The results demonstrate that heterogeneous multicore architecture
can provide significantly higher performance than a homogeneous chip multiprocessor. It does so by matching
the various jobs of a diverse workload to the various cores.
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INTRODUCTION

A multicore processor has multiple cores integrated
on a single chip. A multicorearchitecture where every core
is just an image of the other is called homogeneous
multicore. Heterogeneous 1s a set of cores which may
differ in area, performance, power dissipated etc. The
various design issues in multicore architecture include
resource sharing power consumption, performance, area
of the cache, cache coherence ete. In order to hamess the
resources provided by a multicore architecture application
must show a certain level of parallelism (Balakrishnan,
2005; Kumar et al., 2003).

The increase in need for machines with higher
performance, computational power and increase in
complexity in the design of uniprocessor has been the
ingpiration for increase in interest in design of multicore
architecture (Kumar et af., 2007). In order to satisfy the
high-performance and low-power requirements for
advanced multicore architecture with greater flexibility,
it is necessary to develop parallel processing on chips
by taking advantage of the advances being made n
semiconductor mtegration. Ongoing progress
processor designs has enabled servers to continue
delivering increased performance which in turn helps

n

fuel the powerful applications that support rapid business
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growth. However, increased performance incurs a
corresponding increase in processor power consumption
and heat 1s a consequence of power use.

At first glance, scheduling a multicore processor
might not appear to present a substantially new problem
for operating systems. There is a long history of OS
scheduling for multithreaded microprocessors
traditional multichip multiprocessors. There has even
been recent research into one aspect of scheduling that is
unique to multicores, which 1s that processors often share
L2 caches (Fedorova et al., 2005, 2007).

We propose a new approach to scheduling on both

homogeneous and heterogeneous multicore systems

and

based on static and dynamic scheduling strategies.
Currently, the operating systems do not have any proper
scheduling algorithm to iumprove the performance and
power competence on core platforms efficiently. In this
study two scheduling algorithms for multi core processors
namely deadline monotonic and cache far thread
scheduling are evaluated and finally, scheduling algorithm
that takes the advantages of batching with an
exclusively wait-free data structure is implemented.
The goal of these scheduling algorithms are to maximize
system utility, performance and faimess by assigning
application to cores over a fixed, comparatively short
period of time.
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The primary goals of our scheduling framework are to
improve application throughput and overall system
utilization. A secondary goal of the framework 1s to reduce
the power consumption as the mumnber of core increases
to make good forward progress. The goal of this design is
to enable a system to run more tasks simultaneously and
thereby achieve greater overall system performance. The
following sections are arranged as follows.

Literature review: There are a number of challenges
mvolved mn desigmng a portable and easy-to-use, yet
high performance scheduling interface for multicore
platforms. For example, it will be essential to reduce
shared cache misses since the on-die caches of many-core
processors will be relatively small for at least the next
several years, and memory latencies have grown to
several hundred cycles (Radhamani and Baburaj, 2011).
Similarly, choosing which threads run concurrently on a
processor 1s important since cache contention and bus
traffic can sigmficantly impact application performance. It
can also be important to decide which threads to run on
each core Since, Simultaneous-Multithreaded (SMT)
cores share low-level hardware resources such as TLBs
among all threads.

The two most major heterogeneity-aware scheduling
algorithms were described by Becchi and Crowley (2006)
and Kumar et al. (2004). The continuous monitoring of
performance of each thread on each type of core to
determine the best thread-to-core assignment for the
system is focused by Becchi’s algorithm. Kumar’s
algorithm relied similar approach as well as another
techmque where selected thread-to-core assigmments
were tried by the operating system and then the
best-performing assignment was used there after.

A user-mode scheduler prototype that determines
appropriate cores for threads using signatures was bult
and evaluated by Daniel and Alexandra in. They found
that architectural signatures are good predictors of
sensitivity to clock frequency and that the scheduler can
umprove performance using them. But, a major draw back
of the signature-based scheduling is that it does not take
into account dynamic phase behavior of the application
(Sherwood et al, 2002). While heterogeneity-aware
scheduling algorithms were proposed m the past
(Becchi and Crowley, 2006; Kumar ef al., 2003), they were
targeted at small-scale multicore systems and assumed
long-lived threads. Heterogeneous architectures are
motivated by their potential to achieve a higher
performance per watt than comparable homogeneous
systems (Kumar et al., 2003). Heterogeneity also can be
beneficial m systems with multithreaded cores. Despite
the additional scheduling complexity that simultaneous
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multithreading cores pose due to an explosion in the
possible assignment permutations, effective assighment
policies can be formulated that do derive sigmificant
benefit from heterogeneity (Kumar ef @f., 2004). Building
a performance heterogeneous core is desired because
many simple cores together provide high parallel
performance while complex cores help in providing high
serial performance (Balakrishnan et al, 2005). From
Amdahl’s law it can be concluded that the serial execution
plays an important part in overall performance of the
system (Hennessy and Patterson, 2006).

The ability to dynamically switch between different
cores, and power down unused cores is the key in
asymmetric chip multiprocessing. It was shown that a
representative heterogeneous processor using two core

types achieves as much as a 63% performance
improvement over an equivalent-area homogenous
processor  (Kumar ef al, 2003). Heterogeneous

multiprocessors achieve better coverage of a spectrum
of load levels.

MATERIALS AND METHODS

Proposed scheduling approach: In this study, explanation
of Static Scheduling algorithm (Deadline Monotonic DM)
followed by dynamic algorithm (Cache Fair Thread
Scheduling CFTS) for homogeneous and heterogeneous
multi core system when running different workloads are
compared. The given scheduling primitives support a
wide variety of parallelization necessities. The proposed
approach for scheduling both periodic and aperiodic tasks
in a multi-core system consists of two parts. First, periodic
tasks with hard deadlines are scheduled. Based on the
chosen periodic task schedule, the latest start times for
each task are determmed as 1s the slack information for
each resource. These steps are performed off-line. The
second part, aperiodic task scheduling, is performed for
each incoming aperiodic task is dynamically scheduled
based on its computation time on each resource and the
available slack on each resource.

In deadline monotonic, execution time depends on
computation requirements. Hence, the scheduler has to
find some task and also the suitable core for execution. In
this algorithm core selection is done based on the
computational necessities of the tasks. If some cores are
busy with the already running tasks, then the current task
should wait for some predefined time and hence, it is
considered as a long procedure in high performance
applications. The major drawback of static deadline
monotonic scheduling is as the traffic increases it will not
produce an optimum result. Therefore, to improve the
performance and to manage real time tasks CFTS is
proposed. In CFTS, aglobal queue of ready threads are
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Fig. 1: Task partitioming and scheduling by the multicore
processor

maintained and each core when idle, selects a thread
from the queue thus, mimmizes the effect of data
dependencies and maintains efficient implementation of all
the thread m the In CFTS, scheduling,
parallelization is maintained to manage the tasks and also
to use the resources efficiently. For better CFTS
scheduling, it must have the knowledge about all the
threads currently executing i the core. To maintain
information about the current status of the threads, wait
free data structure 1s used to store the thread. Thus,
parallelizing CFTS with wait free data structures can assist
in handling different type of traffic streams and manages
shared network resources. Therefore, the proposed
CFTS-WF, utilizes the network resources and services of
cloud to provide maximum through put and better band
width management. Figure 1 shows the task partitioning
and scheduling by the multicore processor.

COres.

Description of Static algorithm (deadline monotonic):
Scheduling 15 the process of deciding how to assign
resources between varieties of possible tasks. Also, it 1s
a method by which threads, processes or data flow are
given access to the system resources, e.g., processor
time, communication bandwidth. This 1s usually done to
balance a system effectively or to achieve a target quality
of service. The need for scheduling algorithm arises from
the requirement of most modern multicore systems to
perform multitasking, execute more than one process at a
time. Deadline monctonic is a static priority based
scheduling where the priority of the process 13 concerned
with the time of task or application. The main goal of
deadline monotonic 1s, for real time systems no deadline
to be missed. Each task has a different execution time on
each In essence, each task has been
implemented for each possible resource type by
compiling different software. The main constraint to be
satisfied by this algorithm is tasks should be periodic,
mndependent and have deadline equal The tasks
scheduled to be are described by the relationship:
computation time<deadline<period. Tasks are given

résource.
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priorities based on their deadlines, so that the task with
shortest deadline 1s given highest priority. This method of
priority assignment is optimal for periodic or sporadic
tasks with the following restrictions:

Deadlines of all tasks are equal or less than their
minimum inter arrival time

The Maximum Length Execution Times (MLET) of all
tasks is equal or less than their deadline

Tasks must not be dependent in order to avoid
blocking

No task voluntarily suspends itself

At the critical instant all tasks must be executed
simultaneously

Overheads in switching from one task to another
must be negligible

All tasks have zero release jitter

Tf restriction 7 is elevated then “deadline minus jitter”
monotonic priority assignment 1s optimal. If restriction 1
is elevated allowing deadlines greater than periods. If the
number of computational cycles of a task 1s assumed as ti
on core cij by a constant speed Sij, given in cycles per
second then the execution time of ti) 1s given by:

tij = cij/Sij

In heavy overload conditions (real time applications),
the deadline monotonic algorithm may lead to many tasks
missing their deadlines in multicore systems. Focusing at
this problem, a novel scheduling algorithm which
considers all parameters, and provides priority to real time
task 13 implemented using CFTS.

The description of Cache Fair Thread Scheduling
algorithm: The CFTS algorithm focuses on fair cache
allocation. In some multicore processors cache allocation
is hidden from the operating system. In processors like
Intel duo core, they allow cache lines measurement
allotted to each co-runner, they provide no steps to
implement fair cache sharing. If the O3 schedulers pay no
attention to fair cache allocation of cache, it tends to three
severe problems that can make the OS ineffective. The
first problem occurs, when one thread fails in opposing
for enough cache freedom essential for further progress
and is known as thread starvation. When, the lower
priorty leads the advanced priority thread, the second
problem named priority inversion takes place. When the
onward growth rate 15 extremely reliant on the thread
mix in a co-schedule which leads to the third problem
called madequate CPU accounting which make it
difficult to predict the forward progress, therefore system
performance can be reduced.
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The CFTS mechanism reduces the effects of uneven
CPU cache distribution on threads routine,
mcreases the system performance stability which 1s
suitable for cloud applications. This algorithm calculates
every thread CPT (Cycles Per Instructions ) under balanced
cache sharing and if any deviation occurs CFTS
compensate 1t by regulating the CPU time quantum. On
real hardware, when one task runs, the other tasks have to
wait for the CPU which lead to unfair amount of CPU time
for the existing task. This fairmess imbalance in CFTS is
expressed in terms of per task pz“wait runtime”
(nanosecond unit) which 1s the amount of time the task
should run on the CPU for the better faimess and
balanced condition. Based on this value of “wait
runtime”, the CFTS runs the task with the leading “wait
runtime” the first. This algorithm determines how a
thread performance is affected by unequal cache sharing
and is the challenge in the implementation. The major part
of this algorithm 1s 1t calculates the adjustment to the
thread CPU quantum.

The CFTS allows us to maximize sharing through the
1.2 (last-level) caches while making use of the existing
scheduling policies to achieve good load balancing. In

hence

general, our goal 1s to improve performance by mimmizing
contention for different cores and by maximizing the
performance. Tn this scheme, the programmer identifies
closely-related threads-threads that share data-and the
runtime will do its best to schedule the threads close
together so that they share data through nearby
shared caches.

Cache miss ratio can be avoided by allocating the
threads that belong to the same process in the same core.
In order to avoid overhead, more than one process must
not be allotted to the same core. Maintain load balancing
between the cores.

Description of wait free data structures: A wait free data
structure is a special case of lock free data structure with
the unique characteristic that every thread can complete
their operation within the restricted number of steps, not
considering the behavior of other threads. Each thread 1s
characterized to be succeeding itself (or) a supportive
thread which makes the higher priority threads accessing
the data structure never have to wait for the low priority
threads to complete their operations. Wait free data
structure uses concurrent access to cooperatively
progress the data structure as a whole, which can be an

essential property for real time applications.

Cache Fair Thread Scheduling with Wait Free data
structure (CFTS WF): At present, there are different
types of scheduling algorithms are available viz shortest

job first, round robin, etc. each with its own merits and
demerits. Scheduling algorithms to be of priority based
since tasks of some category need an immediate attention
while others can be listened later. All threads, accessing
the wait free data structure can complete its process
within a restricted number of steps not considering the
behavior of other threads. Therefore, when batching
CFTS scheduling with wait free data structure where all
the threads are given a priority based on the either by the
programmer (via system APT) or the operating system.
There are several scheduling queues are available each
with its own priority. Imtially the scheduler tries to
schedule threads waiting with top priority queue then
subsequently queue with low priority. Thus, no queue left
unattended. Hence, CFTS WF schedules such that
maximum throughput, minimum response time, mimmum
waiting time and utmost CPU consumption can be
obtained.

RESULTS AND DISCUSSION

In this research initially, the time taken to complete
seven different applications is calculated with four types
of schedulers. This time is referred as completion time.
Table 1 describes the different applications chosen for the
simulation. Figure 1 and 2 shows the result of various
schedulers where seven applications are running
simultaneously on a system with variations in the cache
and core sizes. Based on the cache size, number of cores
and the use of threads mn each of these schedulers for
different applications the average completion time are
recorded. The difference in completion time 1s larger for
static  deadline monotonic scheduler which is
considerably smaller with cache fair scheduler. Also, both
the schedulers are combmed with the wait free data
structure and the performance 135 computed. Among, all
the schedulers CFTSWF provides minimum completion
time by concurrent mapping of independent tasks on
different threads by ensuring that processes are available
to execute the tasks on the critical path as soon as such
tasks become executable. The variability is significantly
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Fig. 2: Completion time with core-2 and cache-2 in
different applications
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Table 1: Applications

Name of the Application Expansion Lines of code Memory requirement (MB) Execution time (seconds)
Garnes Gamne playing: 1000 4 10
Tmrec A compiler 1500 4 10
Zip A compression utility 1200 4 10
Coop Combinatorial optimization 2000 4 15
Plros Place and route simulator 3000 8 18
Ood Object-oriented database 2500 8 16
Vlsi FPGA circuit placement and routing 2500 8 16
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smaller. All the schedulers performance 13 tested with different applications

varying core sizes and cache sizes. Figure 2 shows the
result of various schedulers where seven applications are
running simultaneously on a system with the core size 2
for a cache size of 2. From the graph, it is observed that
the application Games, consumed high completion time
with static schedulers than dynamic schedulers which is
due the fair cache allocation of threads in CFTS and
CFTSWY. For other applications no sigmificant changes
observed.

Figure 3 shows the result of various schedulers
where seven applications are running simultaneously on
a system with the core size 4 for a cache size of 2. From
the graph, it 15 observed that the application “plros”
consumed less completion time with static scheduler
DMWF than DM. But with dynamic schedulers, the
completion time 1s significantly reduced which 1s due the
fair cache allocation of threads m CFT'S and CEFTSWE. For
other applications no significant changes observed.

Figure 4 shows the result of various schedulers
where seven applications are runming simultaneously on
a system with the core size 8 for a cache size of 2. From
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the graph, it is observed that the application “plros”
consumed less completion time with static scheduler
DMWF than DM. But with dynamic schedulers, the
completion time 13 significantly reduced which 1s due the
fair cache allocation of threads m CFT'S and CEFTSWEF. For
other applications no significant changes observed.

Figure 5 shows the result of wvarious schedulers
where seven applications are running simultaneously on
a system with the core size 32 for a cache size of 2. From
the graph, it 1s observed that all applications consumed
almost same completion time with static scheduler DMWF
than DM as well as with dynamic schedulers CFTS and
CFTSWF because the number of cores increases
significantly.

Figure 6 shows the result of wvarious schedulers
where seven applications are running simultaneously on
a system with the core size 64 for a cache size of 2. From
the graph, it 1s observed that all applications consumed
almost same completion time with static scheduler DMWF
and dynamic schedulers CFTS and CFTSWF because the
number of cores increases significantly.
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Figure 7 shows the result of various schedulers
where seven applications are running simultaneously on
a system with the core size 2 for a cache size of 4. From
the graph it 13 observed that for all applications the
completion time reduced twice than that of Fig. 2 as the
cache is increased.

Figure 8 shows the result of various schedulers
where seven applications are runming simultaneously on
a system with the core size 4 for a cache size of 4. From
the graph it is observed that it takes less completion time
both static schedulers DM, DMWTF as well as with
dynamic schedulers which 1s due the fair cache allocation
of threads as the cache size increased.

Figure ¢ shows the result of various schedulers
where seven applications are running simultaneously on
a system with the core size 8 for a cache size of 4. From
the graph, 1t 1s observed that it takes less completion time
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both static schedulers DM, DMWTF as well as with
dynamic schedulers CFTS, CFTSWF for all applications

which 1s due the fair cache allocation of threads as the
cache size increased except some applications like
games, imrec and vlsi with DM as the cache
requirement i high.

Figure 10 shows the result of various schedulers
where seven applications are runmng simultaneously on
a system with the core size 32 for a cache size of 4. From
the graph, it is observed that it takes less completion time
both static schedulers DM, DMWEF as well as with
dynamic schedulers CFTS, CFTSWF for all applications
which 1s due the fair cache allocation of threads as the
cache size increased also the number cores increases to
32, hence applications are distributed to many cores.

Figure 11 shows the result of various schedulers
where seven applications are runnming simultaneously, on
a system with the core size 64 for a cache size of 4. From
the graph, it is observed that it takes less completion time
both static schedulers DM, DMWTF as well as with
dynamic schedulers CFTS, CFTSWF for all applications
which is due the fair cache allocation of threads as the
cache size increased also the number cores increases to
64, hence applications are distributed to many cores.

Table 2 describes the average completion time with
different types of schedulers. From the plots and table, it
15 found that for vlsi, the completion time was
comparatively less than the other type of applications. For
zip, the difference was reduced by a factor of five
which ranges from 17-2%. One application ood that
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Cache 2 (average) completion time (sec)

Cache 4 (average) completion time (sec)

Algorith Core 2 Core 4 Core 8 Core 32 Core 64 Core 2 Core 4 Core 8 Core32  Core 64
DM 5.697163 3.644863 2.641438  1.792625 1.631738 3.277863 2.36811 2.054375 1.576663 1.615238
DMWF 3.756367 2.629525 2.069588  1.5837 1.490638 2.204238 1.88635 1.699675 1.466475  1.495488
CFIS 1.621463 1.837113 1.94430 1.969813 1. 769644 1.473738 1.77955 1.895813 1.967576  2.00390
CFTSWF 1.130538 1.31475 1.411963 1.4779 1.493875 0.949738 1.250438 1.375857 1.46535 1.49445
experienced only small performance variability with the 5 6

. . . . 25
deadline monotomc scheduler, experienced a slightly P
higher variability with the CFTS-WF; this was due to % N
variations of thread in the model. Also, the cache-fair 2 2

. . . 2
thread schedulel." w1th wait free data structures mnproved £ 1 dm dmwf ofis s
performance variability by at least a factor of three for the 01 T T T T T 1
11 applications. Tn particular, plros has 1 Pt e 2™

all applications. In particular, plros has longer average No. of cores

completion times with the CFTS as their cache
requirements are high. But, for the same application the
completion time 1s significantly reduced with CFTS-WF.
Also, applications with low cache requirements such as
zip and vlsi get shorter completion times with the
CFTS-WF. Such effect on absolute performance is
expected. The goal of the CFTS-WF 1s to reduce the
effects of imbalanced cache sharing on performance.
However, all applications experience improved
performance stability and predictability with CFTS with
walit free data structures. Also, it 1s observed that as the
cache size increases the completion time of the various
applications have been reduced considerably. From Fig.
2 and 3, it 15 clear that as the number of core increases
there 1s a negligible increase n the completion time which
is due to the time spent in the selection of the cores. The
results indicate that for some applications, having a small
fraction of the cache 1s sufficient to achieve performance
close to the performance achieved with the entire cache.

Completion time performance with heterogeneous
multicore systems: Although, most current multicore
processors are homogeneous, microarchitects are now
proposing heterogeneous core implementations including
systems in which heterogeneity is introduced at runtime.
Therefore, mn this research by randomly varying core
voltage and frequency of each core, experiments are
conducted to test the different performance
characteristics. Thus, it will be preferable for each
core to have a different frequency rather than derate
the entire chip to the lowest-common meximum frequency,
particularly as core counts continue to increase.
Performance characteristics such as completion time and
power consumption 1s analysed by varying cache sizes
with the above static (DM, DMWF) schedulers and
dynamic schedulers (CFTS, CFTSWF). Figure 12 shows
the completion time vs number of cores for the cache size
2mb. The sinulations show a significant reduction in
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Fig. 12: Completion time vs. Number of cores (cache size
2MB)
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Fig. 13: Completion time vs. number of cores (cache size
4 MB)

completion time going from two to four multicores but an
insignificant reduction from four to eight multicores in
both static and dynamic methods. Exceeding eight
multicores causes a steep decline in completion time for
static schedulers. After eight multicores, a unmiform
reduction 1s registered as more cores are added for
dynamic scheduler is due to the fair allocation of threads.
Also cores with the lowest frequency are mapped with to
the large task set where as the highest frequency core are
mapped with small task set. The experiment ends when
each thread has run at least once, that is until the longest
thread finishes. While, the longest thread is not finished,
the other threads restart their executions as soon as they
are finished.

Figure 13 shows the completion time vs number of
cores for the cache size 4MB. As the above plot, the
simulations show a sigmficant reduction m completion
time going from two to four multicores but an msignificant
reduction from four to eight multicores in both static and
dynamic methods. Exceeding eight multicores causes a
steep decline in completion time for static schedulers.
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After eight multicores, a uniform reduction is registered as
more cores are added for dynamic scheduler is due to the
fair allocation of threads. Most graphs
monotonically decreasing completion times as the cache
size is increased as expected. However, there are a few
exceptions. For instance, CFTS shows increasing
completion time as the cache size 1s increased and core
numbers from 2-4 due to some application could extubit
streaming behavior consisting of high 1.2 cache access
frequency and no reuse frequency, leading to a high miss
frequency.

The experimental results demonstrate that the
completion time of the generated schedule is reduced by
our approach due to the decrease of the 1.2 cache miss
rate for both scheme (CFTS and CFTSWF), because the
number of mnter-thread cache interferences on a shared L2
cache is reduced Therefore, the proposed algorithms are
likely to generate successful schedules with stricter timing
constraints for the task model studied, compared to the
static scheduling approaches that are not aware of the
inter thread interference using WCET and scheduling on
multicore platforms. In general, the completion time of the
dynamic algorithms 1s better than the static algorithms.

show

Power performance with heterogeneous multicore
systems: Heterogeneous multi-core processors are
attractive for power efficient computing because of their
ability to meet varied resource requirements of diverse
applications in a workload However, one of the
challenges of using a heterogeneous multi-core processor
15 to schedule different programs in a workload to
matching cores that can deliver the most efficient power
consumption. The dynamic power consumption of a core
1s a time varying function of the core speed s(t), voltage
v(t), and the task allocated to it. Hence, dynamic power
consumption 1s calculated by:

PEDTE — Camvg w Pore actve +Cldlg* peoe wdle (2)
Pcnrs amvezcddxvzxf (3)
Where:
Cyy = The switched circuit capacitance
V = The supply voltage
f = The clock frequency

Using the equations 2 and 3 multi-core processors
can provide high power consumption since they can allow
the clock frequency and supply voltage to be reduced
together to dramatically reduce power dissipation during
periods when full rate computation s not needed. From
the following Fig. 14, it is observed that when a number of
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Fig. 14: Power consumption vs. Number of cores (cache
size 2 MB)
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Fig. 15: Power consumption vs. Number of cores (cache
size 4 MB)

core are less (2 and 4), the hardware 1s fully utilized.
When, the number of core increases there 1s a possibility
of cache miss, the processor waits, consumes power and
performs no useful work. Therefore, with multithreading
in CFTS and CFTSWF the processor launch a second
thread that runs while the first 1s waiting and a third when
the second thread waits, etc. then the hardware stays fully
utilized all the time. In this way, multicore processar can
improve performance with out impacting power
consumption

As the cache size increased, the performance are
significant and 1s shown mn Fig. 15. It is due to the fact
that the possibility of cache miss is notably reduced and
hence power consumption 1s below 40 watts for dynamic
power consumption than the static as there is a steep
increase in power is noticed as the number of core
inereases and reaches the maximum of 80 Watts which 1s
double the amount of dynamic scheduling.

CONCLUSION

In the above study, experiments are conducted based
on homogeneous and heterogeneous multicore processor
architectures and the advantage of which 1s that the
design allows the operating system to assign workloads
to any of the processing umits at any time. However,
although design architectures in this category can deliver
faster compute performance compared to a traditional
single core processor, eventually performance gains
become limited by power consumption. Performance of
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of
multiple cores with the same instruction set but different

heterogeneous multicore processors  consisting
performance characteristics (e.g., clock speed, core
voltage) are of great concemn since, they are able to
deliver higher performance per watt and area for programs
with diverse architectural requirements than comparable
homogeneous ones. And hence, with the same static
schedulers (DM, DMWF) and dynamic schedulers (CFTS,
CFTSWF), performance is analysed For the threads
runming on these cores, their properties and resource
demands may and often will be different. And hence
performance improvement 1s realized when the scheduler
map threads to cores in a way that will maximize the
utilization of resources on each other With CFTSWF
measuring threads efficiencies mn utilizing fast cores 1s
highly significant. We have shown that as the thread on
all core types are the same and proved that the speedup
factor of a thread is monotonically decreasing in CFTSWF
and hence the completion time. Furthermore, an efficient
power consumption analysis with the above scheduler in
the heterogeneous environment is provided. The results
show that high power consumption 1s achieved with
heterogeneous processors, since they can allow the
clock frequency and supply voltage to be reduced
together to dramatically reduce power dissipation during
periods when full rate computation is not needed. In our
current scheduling framework, we target single many-core
processors. We expect to extend our framework to
multiple many-core processors in the future.
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