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Abstract: Noise will be unavoidable in image acquisition practice and denoising is a necessary step to recover
the 1mage quality. Synthetic Aperture Radar (SAR) unages are inherently exaggerated by speckle noise which
occurs due to coherent nature of the scattering phenomena. Denoising SAR images aim at removing speckle
while preserving image features such as texture, edges and point targets. The mixture of nonlocal grouping and
transformed domain filtering has directed the modern denoising techniques. However, this approach makes a
tough assumption that image patch itself provides an excellent approximation on the true parameter which leads
to bias problem predominantly under serious speckle noise. Another disadvantage 1s that the generally used
patch pre-selection methods cannot efficiently exclude the outliers and damage the edges. Tn this study, the
SAR image 1s ijected with speckle noise and then edge based marker controlled watershed segmentation is
applied to identify the homogeneous regions in SAR image. For each region, the neighborhood pixels are
identified by using Intensity Coherence Vector (ICV) and are denoised independently by using a local mean
filtering. By separating coherent pixels from incoherent pixels, ICV’s provide finer distinctions among blocks;
finally, the blocks are aggregated to form the denoised image. The experimental results show that the proposed
method outperforms other methods such as patch-based filtering, non-local means, wavelets and classical

speckle filters in terms higher signal-to-noise and edge preservation ratios comparatively.
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INTRODUCTION

Synthetic Aperture Radar (SAR) imaging 1s used mn
various applications such as urban planmng, cartography,
land cover mapping and cartography. The SAR imaging
systems are very useful of acquiring information in
different climatic conditions. Naturally, SAR mmages are
disturbed from speckle noise which degrades the
performance of automatic SAR image interpretation and
analysis. Hence, the SAR image analysis system starts
with a preprocessing step to remove the speckle noises
before preceding the major steps like segmentation and
classification (Ren ef al., 2011; Chenetal., 2012, Liet al.,
2012). But at the same time, the despeckling step should
not disturb the other image features such as shapes,
boundaries and textures.

Numerous filtering algorithms have been proposed in
the last several decades for SAR 1mages speckle
denoising (L.ee et al., 1994), most of which are based
on the statistics of pixels and their relationship with
their swroundings (TLee, 1981; Deledalle et al, 2009,
Parrilli et af., 2012). In addition, pixels even in one image
can follow dissimilar statistical scatterings which bring

complications n estimating parameters (Cheng ef al.,
2013). In contrast, Liu et al. (2013) introduced an
alternative way for despeckling which suppresses speckle
without modeling the speckle directly. The despeckling
algorithms can be classified into two categories: the first
category takes I, different looks of SAR images of the
same scene and average them to reduce speckle noise.
However, 1t also reduces ground resolution of the image
in proportion to the number of looks. The second
category of approaches works with single image of a
scene with speckle filtering algorithms both in spatial and
frequency domain (Molina et al., 2012; Igbal et al., 2013).
This study focuses on the first category. The classical
filters (Lee, 1980, 1986; Frost et al., 1982; Kuan et ol
1985; Lee ef al., 1994) can be used to denoise SAR mmages
in spatial domam. These filters work by dividing the SAR
images into sub-windows and for each sub-window the
center pixel 13 replaced based on the umformity of the
pixels available in the sub-window. These approaches can
produce better denoising in static images. In case of SAR
images, they either preserve speckle noise or damage the
weak signals at heterogeneous areas such as edge, point
targets or texture area.
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The gamma-MAP filter (Lopez et al., 1990) and the
refined gamma-MAP filter (Baraldi and Parmiggiani, 1995)
later consider both the speckle model and the reflectivity
probability density functions. The gamma-MAP filter
highly depends on the description of the gamma value.
However, the choices of local window size and orientation
have greater impact on the performance of these spatial
filters. Most of these filters use a local analysis window
with fixed size and shape, although adjustable windows of
these algorithms for local spatial variations are required.
Yu and Acton (2002) proposed a Speckle Reduction
Amsotropic Diffusion (SRAD) filter to despeckle the SAR
images as well as to preserve image edges better.

From the literature, it is noted that, denocising in
transformed domain has been more efficient than in spatial
domain. The advantage is that the noise and the signal
can be easily separated in transformed domain rather than
spatial domain. The wavelet techniques are the most
popular transform techniques used in the field of
denoising which decomposes the images mto four
different components where the high-frequency
components are considered as noisy area and they are
denoised by filtering the wavelet coefficients. This idea
has proved great success to denoise Addiive White
Gaussian Noise (AWGN). Gagnon and JTouan in 1997
presented a comparative study between a wavelet filter
and several classical speckle filters that are widely used in
SAR image denoising. The study shows that the
wavelet-based filter 13 among the best speckle filters,
which performs equally well for low-level speckle noise
and 1t slightly outperforms for higher-level speckle noise.
A robust threshold estimator is still needed in order to
automate the filtering process. Several denoising
algorithms have been proposed n the literature by using
wavelet based filtering for despeckling SAR images
(Foucher et al, 2001; Argenti and Alparone, 2002,
Achim et al., 2003; Sveinsson and Benediktsson, 2003;
Gleich and Datcu, 2007, Ranjani and Thiruvengadam,
2010). These methods smoothened the homogeneous
areas while preserving strong scatterers and edges.
However, they do not work well in the heterogeneous
areas: the edges and textures are still blurred in some
Additionally, they
computational cost. A large number of studies have been
developed to address these problems (Xie et al., 2002;
Pizurica et al., 2003, Zhou and Shui, 2007; Basley et al.,
2008, Hou et al., 2012). However, since the performance of

degrees. often

denoising 1s very sensitive to logarithmic operation that
tends to distort the radiometric properties of the SAR
image, techniques based on Additive Signal-Dependent

suffered from
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Noise (ASDN) model were developed in Bianchi et al.
(2008). Recently, Lu et al. (2013) proposed a new SAR
image despeckling method by using multiscale products
based on directionlets. They multiplied the adjacent scale
subbands to amplify sigmficant features and then applied
the threshold to multiscale products instead of the
directionlet directly. The
experimental results on test SAR mmage showed that the
proposed method reduces speckle effectively while

single-scale coefficients

preserving edge structures. However, these wavelet
based methods also have the following three main
shortcomings: the multilevel transform cannot identify the
edges and contours accurately, the down sampling in
wavelet transform is time-variant (Dai et al., 2004) and
thresholding the wavelet coefficients cannot detect the
edges from noise efficiently.

Some of the existing methods based on Principal
Component  Analysis (PCA) have
performance, as PCA has adequate ability to represent the

shown better

structural features such as texture and boundaries.
Muresan and Parks (2003) proposed an adaptive PCA
denoising approach and Zhang et al. (2010) proposed a
Local Pixel Grouping PCA (LPG-PCA). These are the recent
examples for PCA based denoising schemes. Xu et al.
(2014) presented an SAR image denoising scheme based
on clustering noisy image into disjoint local regions and
denoising each region by using LMMSE filtering in PCA
domain. All these methods have outperformed the
conventional wavelet-based denoising methods. But
still, the PCA based denoising is not much adopted for
SAR images.

Another method of SAR image denoising, Non-Local
Means (NLM) 1s mitiated (Buades ef al., 2005) where the
pixels with homogeneous spatial structure 1s considered
even at “nonlocal” pixels, rather than denoising with local
pixels. For instance, the Probabilistic Patch-Based (PPB)
filter (Deledalle et al., 2009) expresses the SAR denoising
process as a weighted maximum likelihood estimation
problem where the weights are derived in a data-driven
way. A problem of this filter is destruction of thin and
dark details in the regularized images. Zhong et al
(2011) developed a new version of the BNL (Bayesian
Non-Local) filter adapted for speckle removal. The new
filter incorporates the techmique of sigma filter (Lee ef al.,
2009) to instruct the operation of pixel preselection which
1s important for detailed preservation However, the
smoothing of homogeneous areas and preserving of
edges are still not well balanced in these methods. The
BM3D and SAR-BM3D algorithm (Dabov et al., 2007,
Parrilli ez al,, 2012) despeckles SAR images by combining
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the concepts of nonlocal filtering and wavelet-domain
shrinkage which have a better capacity to preserve
relevant details while smoothing homogeneous areas.
Lu et al. (2013) employ a sparse gradient scheme in a
global optimization framework. This method works very
well in preserving major edges while smoothening the
manageable degree of low-amplitude noise. At present,
the BM3D, LMMSE and SAR-BM3D algorithms are well
known for their state-of-the-art denocising performance.
All these methods denoise the SAR 1mages with patches

received after transform domain. However, these
algorithms find difficulty in choosing the optimum
threshold for finding the patches which s

computationally expensive. Since, SAR images assume
signal-dependent noise, a novel denoising approach is
still an open problem. Also, most of the despeckling
algorithms works based on the statistics of pixels and the
relationship with their swroundings. However, the
adaptive coherence of pixels on different statistical
distributions makes the despeckling algorithms hard to set
appropriate parameters. In contrast, an alternative way is
despeckling m this study which
suppresses speckle by avoiding direct modeling of the

mtroduced  for

speckle. Here, the SAR umage 1s mitially segmented by
using marker controlled watershed segmentation
followed by identifying the coherence pixels at each sub
regions to be despeckled. The proposed despeckling
method based on coherence vector filter not only
denoises the image also preserves the structural
characteristics of the image.

This study contributes to speckle filtering techniques
on spatial domain. The major improvements identified
from spatial filtering from the literature are:
¢ The method should try to avoid the fixed window size
The coherence pixels should also be considered and

The edges and textures should be preserved

MATERIALS AND METHODS

As noted m hterature, most of the enhancement
techniques used in past research works not only denoise
the SAR images but also distorts the background
structure such as textures and edges. The filtering method
proposed in this paper works in two steps. Tt starts by
dividing the SAR image mto number of homogeneous
regions and for each region local mean filter is applied to
denoise the SAR mmage. The homogeneous regions are
identified by using an improved marker controlled
watershed segmentation algorithm and the coherent pixels
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are identified with the measure called Intensity Coherence
Vector (ICV). These two steps are described in the
following text.

To overcome the problem of using fixed window size
for the spatial filters, it was introduced to segment the
SAR 1mages mto homogenous regions by using
watershed segmentation. Watershed algorithm has been
accepted as an impressive segmentation method due to its
multi advantages, like including simplicity, quickness and
complete division of the image. The watershed algorithm
can produce better segmentation though the image has
low contrast and weak boundaries. Grau et al (2004)
presented a detailed study of algorithms that make use of
the watershed algorithm for image segmentation. The
major limitation of the Standard Watershed algorithm 1s
over-segmentation and is sensitive to noise. This problem
can be resolved by considering the gradient magnitude
image rather than taking the original grayscale wnage as
input to watershed algorithm. However, the variations in
gradient magnitude image as well as negative impulse
noise observed as a local minimum can result in
unexpected additional watershed segments. Further,
numerous methods have been proposed to improve the
watershed algorithm. Among, the most notable is the
usage of region markers where certain desired local
minima are selected as markers and then reconstruction 1s
applied to fill the other mimima to non-mimmum hills. On
the other hand,
challenging process and in most of the applications,

automatic marker selection is a
human interaction is required to select appropriate
markers. In additton, mcorrect markers selection can
dramatically affect the final result. The prior knowledge of
shapes existed mn the mmage improves the performance of
the watershed segmentation as demonstrated m several
image segmentation approaches. But still, the major
limitation in using prior shape and appearance models is
the need to label training set of images and also the set
should contain all possible shapes. In this stduy, initially
the SAR image 1s smoothened by using simple median
filter and the edge pixels are used as markers for
watershed transformation. Thus, the over-segmentation
and sensitive to noise 1ssues of watershed algorithm have
been solved.

Watershed segmentation: This study presents classical
watershed segmentation algorithm for grayscale images
by using spatial distance. The more detailed explanation
of the algorithm can be referred in Roerdink and Meijster
(2000). For an mput image 1, the lower slope, L(a) 1s
calculated to find the neighbors for the pixel a which 1s
defined as:
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Fig. 1:
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d(a,b)
Where:
N(a) = The set of neighbours of pixel a
d(a, b) = The Euclidean distance between a and b

In case of a = b, the L(a) value will be forced to be
zero. Therefore, the cost for moving from pixel a
to b 1s defined as:

cost{a,b) =
L{a)d(a,b) if I{a) > I(b)
L{a)d(a,b) if I{a) < I(b)
1/2[L{a)+ L{b)]d(a,b) if I{a)=1(b)

If there exists a path p = (a;, ..., a) from g, =a to
a, = b, the topographical distance along p between the two
pixels a and b is expressed as:

1-1
T (a,b) = 3 d{a,,b, Jcost(a,,b,)

1=1

The TP is the mimmum distances among all paths
linking the pixels a and b. Similarly, the catchment basin
of a local minimum (m) is defined as the set of pixels
which have similar topographical distances to m than any
other local mimmimum. At the end, the set of pixels which do
not belong to any catchment basin are referred to as the
watershed pixels. The major limitation here is the
over-segmentation.

Marker controlled watershed segmentation: Meyer and
Beucher (1990) and Vincent and Soille (1991) imtiated the
solutions to over-segmentation problem by applymg
watershed algorithm with predefined local minimum
known as markers. Generally, the edge pixels are used as
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a) Noisy peppers umage; b) Standard watershed segmentation and ¢) Watershed segmentation with edge markers

markers in most of the segmentation algorithms.
Although, this approach 1z widely used mn many
segmentation algorithms, the marker selection requires
cautious user mteraction or prior knowledge of the image
structure. The random marker selection algorithms may
resolve this problem but there is a possibility of accepting
a non-edge pixel as an edge or rejecting an edge pixel as
non-edge one. And moreover, these edge detection
algorithms may not produce comnected edges. The
morphological operations can be used to join the
disconnected edges. But still, the result highly depends
on the selection of wide range of morphological
parameters (Hamarneh and Li, 2009). In the proposed
method, watershed segmentation 1s applied with the
edge image providing the closed and complete
the Thus, the
over-segmentation has been hmited m the proposed
watershed method.

Imitially, the edges of the SAR image are identified
with canny operator (Jain, 1989). The edges are open
mostly they do not produce closed boundaries. Here, we
applied watershed segmentation with the edge image to
make the edges connected and closed. Then, this closed
edge boundary 1s mapped with original grayscale SAR
image, each regions enclosed within the edges are
extracted from the SAR image, hence the SAR mnage 1s
segmented with minimum number of regions. Thus, the
over-segmentation behavior of watershed algorithm is
resolved and the fixed window size based enhancement is
avolded. Moreover, the watershed algorithm 1s sensitive
to noise but the problem 1s ignored here as the proposed
algorithm works with the edge map rather than grayscale
image. Figure 1 illustrates the improvement in watershed
segmentation as it results in minimum number of regions
than the classical watershed algorithm. In the next step,
Intensity Coherence Vector (ICV) is calculated at each
sub-region from watershed algorithm to find the coherent
pixels mnside the sub region and they are denoised with a
simple filtering approach.

boundaries for catchment basins.
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Intensity coherence vector: Intuitively, the pixel’s
mtensity coherence 1s defined as the degree to which
pixels of that intensity are members of large
similarly-colored regions. These sigmficant regions are
referred as coherent regions and it is observed that they
are important in characterizing images. The coherence
measure ICV classifies pixels as either coherent or
incoherent. Coherent pixels are a part of some sizable
contiguous region while incoherent pixels are not. A color
coherence vector represents this classification for each
color m the mmage. ICV’s prevent coherent pixels in one
image from matching incoherent pixels in another. This
allows fine distinctions that cammot be made with
histograms. This property of ICV 1s used here to identify
the local coherence pixels at every sub-region received
from improved watershed segmentation algorithm. The

following text explains the computation of ICV measure.

Computing ICV’s: The first step m computing ICV 1s
similar to the computation of a histogram. Initially, the
image 18 discretized mto ‘ne” number of distinct intensities
to eliminate the small oscillations between neighboring
pixels. The next step 18 to classify the pixels within a given
region as either coherent or incoherent. A coherent pixel
is a part of a large group of pixels of the same color while
an incoherent pixel 1s not. The pixel group 1s determined
by computing connected components. A connected
component C 13 a maximurn set of pixels in such a way that
for any two pixels p, p’eC, there is a path in C
between p and p°. (Formally, a path in C is a sequence of
pixels p=py, pss - Pa = P such that each pixel p,1s1in C
and any two sequential pixels p, p., are adjacent to each
other. Two pixels are considered to be adjacent if one
pixel is among the eight closest neighbours of the other.
In other words, diagonal neighbors are ncluded). Note
that connected components are computed within a given
discretized intensity bucket. This effectively segments the
sub-region based on the discretized space.

Connected components can be computed in a linear
time. When this 1s complete, each pixel will belong to
exactly one connected component. Then, the pixels are
classified as either coherent or incoherent depending on
the size m pixels of its connected component. A pixel 1s
coherent if the size of its connected component exceeds
a fixed value ‘t". Otherwise, the pixel 1s incoherent. For a
given discretized intensity range, some of the pixels with
that intensity will be coherent and some will be
mcoherent. Let the number of coherent pixels of the jth
discretized color ¢ and the number of incoherent pixels f3;
and the total mumber of pixels with that color is ¢ +{3;. For
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each color, the pair (¢, [5) is computed and it is named as
the coherence pair for the intensity. The intensity
coherence vector for the image consists of:

< 0, B0, B

This is a vector of coherence pairs, one for each
discretized intensity value. A numerical example for
computing ICVs can be referred by Pass et al. (1996).

Coherence despeckling: Once the ICVs are identified for
each region, the region 1s marked with the coherence label.
Each label is meant for corresponding coherence pixels.
The pixels belonging to one particular label is extracted
and their intensity values are received from the original
grayscale SAR image to find thewr mean values. The
coherence label region has the mimmum of 30% of pixels
(Pass et al., 1996). Among the entire pixels in region alone
is considered for denoising:

o
—L>03

T

Where:

¢ = The number with the coherence
label *j°

n, = The total number of pixels available in the region

i of pixels

Then the each pixel’s intensity value is replaced with
the calculated mean value which is defined as:

L(x y):EII(:I—’y), where I,(x, v)e ¢

Where:

¢ = The coherence labels of the region ‘1’

Lix,y) = The intensity values from the SAR images has
the corresponding coherence label ¢

This procedure will be repeated for remaming
coherence labels available for the current region. And, the
denoising 1s continued with the next region, till the entire
image 15 denoised. The following algorithm summarizes
the proposed despeckling algorithm:

Step 1: Read as SAR image (If it is a color image than
convert it to grayscale)

Step 2: Find the edge magnitudes of the normalized
SAR image by using ‘canny’ operator

Step 3: Apply the watershed algorithm on edge map
to get closed contours

Step 4: Discretize the image mto ‘ne’ color bins
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Step 5: Map the edge boundaries with the grayscale
image to extract the segmented regions

Step 6: For each segmented region

»  Find the mtensity coherence Vectors and label
them

For each coherence label

Find the local mean value

Replace all the pixels corresponding to this
coherence label with the mean value

»  Update the pixel values in the noisy SAR image
Step 7: Output the denoised SAR image

The performance of the proposed filtering approach
1s compared with other existing denoising approaches and
1s described m the following study.

RESULTS AND DISCUDDION

In this study, both simulated and real SAR images are
used to analyze the performance of the proposed SAR
denoising method. Tnitially, the speckle noise is added to
the original images to degrade them. Thus, the original
umages are treated as the true values and are used as
numerical measures to assess the performance. In this
experiment, five other methods (i.e., Frost filter, PPB,
LMMSE-PCA and BM3D, BNL filter algorithms) are
selected to compare with the proposed method. The
selection of these methods is based on both availability
of the codes and their relevance to this research.

Synthetic images database: A variety of image sources
are considered in this experiment including the benchmark
test image, Lena, Barbara, boats and lake. A synthetically
speckled image is generated by a noise-free image with
speckle noise. The L-look amplitude speckled images of
size 512x512 distwbed by developed speckle noise is
taken for experiments and the performance of algorithms
15 evaluated by PSNR. The proposed algorithm was
implemented in MatlLab® environment, the synthetic
images are the test image freely available within the
MatLab environment.

Real SAR images database: To validate the effectiveness
of proposed algorithm, the real SAR images received from
four different repositories (ALOS-PALSAR, Sentinel-1,
TerraSAR and AwrSAR) has been used. The description of
each dataset 13 given below.

PALSAR was one of three instruments on the
Advanced Land Observing Satellite-1 (ALOS-1), also
known as DAICHI, developed to contribute to the fields
of mapping, precise regional land-coverage observation,
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Table 1: Summary of real SAR image datasets

Dataset Band Type No. of images
ALOS-PALSAR L GeoTiff 25
Sentinel-1 C GeoTiff 25
TerraSAR X GeoTiff 25
AIrSAR LandC GeoTiff 25

disaster monitoring and resource surveying. ALOS-1 was
a mission of the Japan Aerospace Exploration Agency
(JAXA) (https://www.asf alaska.edw/sar-data/palsar/dow
nload-data/).

Sentinel-1 C-band Synthetic Aperture Radar (SAR)
which builds on European Space Agency’s and Canada’s
heritage SAR systems on HERS-1, ERS-2, envisat and
Radarsat can be used for natural hazards and disaster risk
management, especially m flood situations. Sentinel-1
carries an advanced radar instrument to provide an
all-weather, day-and-night supply of wnagery of Earth’s
surface (https://scihub.esa.int/dhus/).

TerraSAR-X is a commercial German synthetic
aperture radar (SAR) Earth observation satellite which
was launched in June 2007. The TerraSAR-X mission is a
Public Private Partnerslup (PPP) between the German
Aerospace Centre (DLR) and BEurope’s leading space
company, EADS Astrium GmbH. TerraSAR-X carries a
steerable X-Band SAR sensor which provides a highly
accurate, high resolution dataset. (http://terrasar-x-archi
ve.mfoterra.de/).

The Airborne Synthetic Aperture Radar (ATRSAR)
was an all-weather 1maging tool able to penetrate through
clouds and collect data at mght. The longer wavelengths
could also penetrate into the forest canopy and in
extremely dry areas through thin sand cover and dry snow
pack. ATRSAR was designed and built by the Jet
Propulsion Laboratory (JPL) which also manages the
AIRSAR project. AIRSAR served as a NASA radar
technology testbed for demonstrating new radar
technology and acquiring data for the development of
radar  processing  techmques and applications.
(http://airsar jpl.nasa.gov). Table 1 summarizes the
datasets used for evaluation.

Performance evaluation: The performance evaluation
of filters is an important and basic issue on SAR
image despeckling. For synthetic speckle images, the
Peak Signal-to-Noise Ratio (PSNR) is used to evaluate
the performance of the different methods. And the
Signal-to-Clutter Ratio (SCR) 1s used to evaluate the
performance of preservation of strong point targets of the
different methods. Also three other different types of
quantitative evaluation indicators are used to evaluate the
performance of the different filters. For consistent
performance, four different noise variation (o = 10, 20,
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40 and 60) is used. Also, the multi-look images are
generated for the synthetic images at four different looks
(L.=1,2,4and 16). Peak Signal-to-Noise Ratio (PSNR):
PSNR (Easley et al., 2008) is decibels (dB) defined as:

PSNR =20 log,, oo
f-f
F
Where:
I/l = The Frobemus norm, the given mnage f 1s of size
NxN
f = The estimated image

(@ ®

Lena (e) )

Barbara

@ ®

Barbara

Boats
Fig. 2: Continue

524

Figure 2 shows the noisy synthetic images and their
corresponding denoised images from various despeckling
methods. Table 2 quantifies the PSNR measure on every
despeckling approach at various speckle level. From the
results, it is shown that the proposed method is able to
achieve the highest PSNR value than the other existing
algonithms. The observation 1s that the proposed method
greatly outperformed LMMSE-PCA and BM3D on most
noise levels justifies the proposed denoising model
for ASDN. We also observed that the performance of
LMMSE-PCA 1s very sensitive to noise level variation in
logarithmic space. As we can see in Table 2, when the

(© @
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Fig. 2: Denoised output from despeckling methods with synthetic images (0 = 10, L = 16): a) Noisy unage; b) ICV Filter;
c) PPB; d) BNL; ) BM3D; f) LMMSE and g) Frost filter results

Table 2: Performance analysis of despeckling methods with PSNR measure

Methods o=10 o=20 o=40 o =060 L=1 L=2 L=4 L=16

Lena

Noisy image 20.7587 17.1390 11.4867 7.9778 7.3898 11.0270 16.7051 19.6932
TCV filter 27.6268 20.0711 16.6610 11.2797 10.8544 16.5539 19.4281 25.0209
PPB 251151 19.5937 16.0637 11.0143 93221 163793 19.1292 24.6742
BNIL 24.8236 19.5841 15.0280 10.5440 8.9056 159870 18.9102 24.0532
BM3D 21.9269 19.3041 14.8819 10.2406 8.8051 15,9825 17.5855 23.4370
LMMSE 21.7412 19.1026 14.5995 9.9526 835160 13.5168 17.0804 23.2238
Frost filter 21.0583 18.7577 13.6381 8.8053 8.0219 11.9655 16.9041 20.572

Barbara

Nuoisy image 25.7887 19.9110 13.2273 73121 71066 11.5388 17.5223 24.7811
ICV filter 27.9905 254334 181268 12.8995 11.4685 16.4078 24.5618 27.2124
PPB 27.8136 252017 17.0191 12.8436 11.3700 15,4094 24.5255 27.0905
BNL 274457 24.9676 154558 9.5269 89545 14.7728 24.3604 27.0290
BMA3D 27.2071 23,9254 14.4024 92818 87224 13.8627 24.0267 26.7748
LMMSE 26.9410 23.4002 14.3659 8.3967 8.6743 13.6512 23.1624 26.7715
Frost filter 26.7044 22.6765 14.1474 8.2322 7.7550 11.8608 18.7620 24.8376
Peppers

Noisy image 23.8752 20.8165 14.7640 7.0622 8.1508 11.2913 14.3378 19.0030
ICV filter 27.5116 22,9032 174026 14.5931 10.2208 14.1369 17.6345 27.3188
PPB 27.01°70 22.6405 17.0358 12.6966 9.3860 13.7977 17.1735 23.3213
BNIL 25.7285 21.9789 16.7817 10.1972 8.8878 13.5895 16.5519 22.9350
BMA3D 25.0391 21.6603 15.8126 9.8881 8.8658 13.2849 16.3338 21.2592
LMMSE 24.1020 21.2404 14.9977 8.4226 8.4436 12,6139 16.1647 21.1986
Frost filter 23,9733 21.0167 14.8755 8.2988 8.3250 11.9074 15.0863 19.5874
Boats

Nuoisy image 251094 19.8406 12.9470 77345 7.1610 15.2122 20.5740 23.7111
TCV filter 26.9761 24.7120 185251 12.9088 13.9471 19.9983 23,1945 26.9547
PPB 26.4919 24.1963 181021 123379 12.0776 19.8407 23.1872 26.6966
BNL 26.4346 24.1221 14.8668 11.2167 11.9435 18.0256 22,6110 25.1754
BM3D 26.1707 21.4688 14.6793 10.9923 11.8259 17.9991 22,4747 24.8799
TL.MMSE 254933 21.2867 13.80:8 9.4299 11.6927 17.8469 20.7467 24.6305
Frost filter 25.1542 20.2983 13.6404 8.2933 10.7575 15.7377 20.7462 24.1430
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Table 3: Performance analysis of despeckling methods with SCR measure

Methods o=10 o=20 o=40 o =60 L=1 L=2 L=4 L=16
Lena

Nuoisy image 34991 31748 2.6596 24265 24195 2.5855 2.9135 31671
TCV filter 3.7693 3.4900 3.1115 2.6014 2.5757 2.8127 31197 3.7660
PPR 3.7658 34512 3.0831 2.5663 2.5548 2.7844 3.0869 36444
BNIL 36302 3.3669 3.0612 2.5573 2.5128 27411 3.0487 3.3506
BMA3D 3.6277 33424 2.9163 24872 2.4853 2.7251 3.0392 3.2992
LMMSE 3.5954 3.3085 2.9012 24693 24438 2.6912 2.9558 32410
Frost Filter 3.5698 31912 2.8066 2.4388 24351 2.6303 2.9488 31736
Barbara

Noisy image 3.4028 2.9515 2.6450 24236 2.4006 2.7118 31700 3.5332
ICV filter 3.7414 3.1390 2.9352 2.6216 2.6784 31310 35102 37622
PPB 3.6931 31387 2.9048 2.6109 2.6145 3.0572 34071 37098
BNL 3.6666 31179 2.8788 2.6024 2.5558 30122 33639 3.6519
BM3D 3.6269 30138 2.7634 2.5898 2.4628 2.9165 33224 36329
LMMSE 3.5536 2.9940 2.7593 2.5682 2.4624 2.8956 32892 35733
Frost filter 3.4825 2.9851 2.7491 24767 24566 2.8408 3.1786 3.5383
Peppers

Nuoisy image 3.5644 3.1566 2.8107 24143 2.5103 2.8761 3.2417 3.4062
TCV filter 3.7616 34841 3.1353 26177 2.8544 3.2243 3.3563 3.7203
PPB 3.6761 3.4503 3.0962 2.6052 2.7748 3.0754 33157 3.6948
BNL 3.6605 3.3998 3.0817 2.5670 2.6843 3.0052 3.2898 3,669
BM3D 3.6507 33836 3.03606 2.5077 2.6705 3.0017 3.2818 3.6672
LMMSE 3.6332 3.1903 3.0175 24720 2.5319 2.9070 32647 3.5986
Frost filter 3.5780 31896 3.0023 2.4390 2.5270 2.8824 32424 3.5468
Boats

Nuoisy image 3.4093 33345 3.0587 2.5204 24589 3.0561 3.3334 3.5967
TCV filter 3.7748 3.3755 3.2002 29498 2.8368 3.2518 3.5859 37837
PPR 3.6751 33628 3.1955 2.8967 2.8198 3.2315 3.5417 3.7092
BNIL 3.6699 335146 3.1824 2.7663 2.7365 31365 34644 36912
BMA3D 3.4928 33422 3.1000 2.6725 2.6942 31364 3.3972 3.6835
LMMSE 34400 337 3.0044 2.6268 2.6384 3.1033 3.3578 3.6693
Frost filter 3.4327 3.3396 3.0699 2.6162 2.5506 3.0619 3.3512 3.6385

noise level 1s low, LMMSE-PCA achieved lower statistics
than the proposed method and the same has been
depicted m Fig. 2. However, with the mncrease of noise
level, LMMSE-PCA tends to achieve comparable results
with our method in terms of PSNR. LMMSE-PCA even
achieved higher PSNR on image Lena when the noise
level is higher, this is reasonable because LMMSE-PCA
was designed for AWGN. In case noise level is lugh, the
speckle noise subject to logarithmic operation which is
very close to the Gaussian white noise. Therefore, the
method can achieve good results. However, when the
noise level is small, speckle noise begins to deviate from
Gaussian distribution and its mean value 1s no more zero.
This discrepancy between the empirical data and the
model assumption may reduce the efficiency of LPG-PCA.
Figure 2 illustrates the sample outputs from the proposed
despeckling and five other existing methods with
synthetic images at noise variance 10 with 16 multiple
looks, images by the proposed method have little artifacts
but plenty of image details.

Signal-to-Clutter Ratio (SCR): Clutter is a term used to
describe any object that may generate unwanted radar
returns and which may interfere with normal radar

Z
I

operations. Clutter echoes are random and have thermal
noise-like characteristics because the individual clutter
components (scatterers) have random phases and
amplitudes. In many cases, the clutter signal level is much
higher than the receiver noise level. Thus, the radar’s
ability to detect targets embedded m Iugh clutter
background depends on the Signal-to-Clutter Ratio (SCR)
rather than the SNR. Here, the edge pixels are considered
as clutters (target pixels). SCR can be used to evaluate the
performance of preserving strong point targets in as SAR
image. SCR is decibels (dB) defined as (Hou et al., 2012):

§{.]
SCRlelogmi21 E" ( J)‘
No

cC
Where:
8.)) = The point target pixel value
The total number of point target pixels
0. = The clutter standard deviation

A large SCR value corresponds to better speckle
suppression. Table 3 depicts the SCR values received
from despeckling methods. Again, the proposed method
outperforms other methods by attaiming the highest SCR
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Table 4: Performance analysis of despeckling methods with 5 measure

Methods o=10 o=20 o=40 o =60 L=1 L=2 L=4 L=16

Lena

Nuoisy image 0.8906 0.7787 0.6685 0.6005 0.6405 0.7162 0.7962 0.9147
TCV filter 0.9595 0.8555 0.7778 0.6683 07048 0.7869 0.9082 0.9799
PPR 0.9569 0.8403 0.7556 0.6658 0.6820 0.7695 0.8998 0.9724
BNIL 0.9479 0.8168 0.7455 0.6475 0.6781 0.7562 0.8877 0.9539
BMA3D 0.9185 0.8058 0.7074 0.6459 0.6741 0.7531 0.88¢1 0.9253
LMMSE 0.9171 0.7882 0.6910 0.6361 0.6741 0.7199 0.8455 0.9214
Frost filter 0.8998 0.7820 0.6785 0.6164 0.6482 0.7176 0.8119 0.9195
Barbara

Noisy image 0.8369 0.7524 0.6673 0.6055 0.6126 0.7662 0.8703 0.9444
ICV filter 0.9709 0.8253 0.7486 0.6614 0.7438 0.8675 0.9410 0.9699
PPB 0.9283 0.8099 0.7291 0.6527 0.7353 0.8376 0.9399 0.959
BNL 0.8699 0.7931 0.7230 0.6517 07222 0.8309 0.9292 0.9566
BM3D 0.853% 0.7913 0.6773 0.6344 0.7069 0.8259 0.9256 0.9561
LMMSE 0.8475 0.7859 0.6754 0.6317 0.6785 0.8135 0.9232 0.9551
Frost filter 0.8472 0.7634 0.6690 0.6182 0.6609 0.8062 0.8731 0.9542
Peppers

Nuoisy image 0.9236 0.8237 0.7038 0.6201 0.6013 0.7092 0.7937 0.8914
TCV filter 0.9653 0.9138 0.8170 0.6973 0.7058 0.7754 0.8750 0.9772
PPB 0.9621 0.9088 0.8111 0.6932 0.7051 0.7492 0.8602 0.9753
BNL 0.9418 0.9085 0.7936 0.6926 0.7027 0.7245 0.8540 0.9373
BM3D 0.9375 0.8679 0.7927 0.6860 0.6919 0.7179 0.8519 0.9229
LMMSE 0.9353 0.8413 0.7294 0.6858 0.6795 0.7135 0.8509 0.9125
Frost filter 0.9347 0.8367 0.7262 0.6741 0.6504 0.7134 0.8460 0.9078
Boats

Nuoisy image 0.9045 0.8232 0.7259 0.6104 0.6075 0.6574 0.7572 0.8881
TCV filter 0.9713 0.8988 0.8223 0.724%9 0.6506 0.7445 0.88¢1 0.9665
PPR 0.9673 0.8813 0.8140 0.7240 0.6486 0.7261 0.8853 0.9152
BNIL 0.9440 0.8569 0.8006 0.7195 0.6412 0.7189 0.8713 0.9371
BMA3D 0.9351 0.8508 0.7551 0.6668 0.6323 0.6964 0.8095 0.9336
LMMSE 0.9334 0.8339 0.7510 0.6508 0.6187 0.6909 0.7997 0.9177
Frost filter 0.9212 0.8234 0.7494 0.6231 0.6168 0.6902 0.7943 0.9176

value than others for all the synthetic images. Two more
measures are used to analyze the edge preservation
quality of the proposed algorithm. The first parameter [ is
used to evaluate the performance of edge preservation. It
1s originally defined as (Sattar ez al., 1997):

8- [S-u(as), B8y
\/T@5-p@as), AS-p@as)) [AS-p@ES),AS-n@As))

where, AS and A8 are the highpass-filtered versions of
the original image S and the denoised image S,
respectively obtained with a window size of 3x3 standard
approximation of the Laplacian operator. The over-line
operator represents the mean value I'(S,, S;)and ¥ s, s, .
B should be
unity for an optimal effect of edge preservation.
Table 4 the of the P measure
calculated for each denoising methods. The greater
value of the proposed method states that this algorithm
the better

The correlation measure close to

shows values

can preserve edges
methods.
Edge-Preserved Index (EPI) is another effective

measure to evaluate the edge preservation for real SAR

than any other
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image which 1s stable for different types of edge mmages
and is only affected by the speckle level. The EPT can be
represented as (Waske et al., 2007):

21 @ -1, 0)
3 1,6 =1, @)

Where:
m
I, () and Ip;(3)

The pixel number of the selected area
The adjacent pixel values of the
despeckled image along horizontal
direction

Similarly, Io,(1) and Io,(1) represent the adjacent pixel
values of the original mmage. The ideal value of EPI 1s
equal to one. The EPT is closer to one which means better
ability of edge preservation. Table 5 presents the EPI
values of each denoising methods. The closer value to
the proposed method states that this
algorithm can preserve the edges better than any
other methods.

The average performance of the proposed
despeckling method on synthetic images 1s analyzed
with the noise variance 10 and 20, number of locks

one for
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Table 5: Performance analysis of despeckling methods with EPT measure

Methods o=10 o =20 o =40 o =60 L=1 L=2 L=4 L=16
Lena
Nuoisy image 0.7561 0.6818 0.6122 0.4833 0.4517 0.5189 0.5908 0.6532
TCV filter 0.8305 0.7479 0.6807 0.5967 0.5021 0.5826 0.6518 0.8332
PPB 0.8072 0.7386 0.6729 0.5769 0.4792 0.5816 0.6514 0.8087
BNL 0.8052 0.7127 0.6590 0.5516 0.4763 0.5728 0.6298 0.7937
BM3D 0.7967 0.7098 0.6589 0.5321 0.4747 0.5662 0.6254 0.7862
LMMSE 0.7900 0.6864 0.6569 0.5222 0.4708 0.5660 0.6159 0.7817
Frost filter 0.7783 0.6833 0.6324 0.5174 0.4661 0.5399 0.6034 0.7146
Barbara
Noisy image 0.7126 0.6050 0.5417 0.4501 0.4741 0.5899 0.6347 0.7241
ICV filter 0.8454 0.7057 0.5952 0.5360 0.5836 0.6241 0.7237 0.8363
PPB 0.8385 0.7014 0.5799 0.5029 0.5822 0.6164 0.7165 0.7724
BNL 0.7801 0.6898 0.5789 0.4957 0.5546 0.6121 0.7125 0.7635
BM3D 0.7498 0.6676 0.5733 0.4874 0.5105 0.6085 0.7040 0.7524
LMMSE 0.7310 0.6560 0.5548 0.4859 0.4982 0.5998 0.6511 0.7426
Frost filter 0.7230 0.6308 0.5447 0.4564 0.4946 0.5949 0.60414 0.7393
Peppers
Nuoisy image 0.7802 0.5871 0.5054 0.4535 0.4549 0.5516 0.6655 0.7584
TCV filter 0.8486 0.7798 0.5824 0.5042 0.5481 0.6592 0.7481 0.8401
PPB 0.8413 0.6856 0.5451 0.4948 0.5001 0.6413 0.7453 0.8220
BNL 0.8401 0.6850 0.5331 0.4828 0.4901 0.6386 0.7348 0.8148
BM3D 0.8265 0.6489 0.5265 0.4542 0.4714 0.5728 0.7345 0.8082
LMMSE 0.8181 0.6334 0.5181 0.4538 0.4624 0.5601 0.7050 0.8008
Frost filter 0.8069 0.6134 0.5164 0.4537 0.4579 0.5533 0.7035 0.7654
Boats
Nuoisy image 0.7574 0.7107 0.5932 0.4817 0.4726 0.5448 0.5938 0.6653
TCV filter 0.8245 0.7458 0.7098 0.5787 0.5354 0.5827 0.6568 0.8188
PPB 0.8137 0.7333 0.7019 0.5264 0.4931 0.5819 0.6460 0.7834
BNL 0.8060 0.7323 0.7004 0.5252 0.4914 0.5719 0.6333 0.7577
BM3D 0.7945 0.7311 0.6902 0.4969 0.4887 0.5678 0.6145 0.7533
LMMSE 0.7821 0.7230 0.6792 0.4944 0.4872 0.5607 0.6078 0.7067
Frost filter 0.7637 0.7202 0.6028 0.4941 0.4855 0.5488 0.5944 0.6906
Table 6: ANOVA statistics for the performance of TCV filter 4.87 T
Performance measure F statistics p-values ES e
4.6 ! -
PSNR 48.8709 2.90e-19 | !
1 i
SCR 51.5377 6.18e-20 4.4 i : —_
B-value 34.8776 2.47e-15 ! ! !
EPI 56.5709 3.78e-21 4 —4 1 !
x T + |
28- 2 E
—_ 4.01 T i
26 I T | T
- ! 3.8 ! I
I e I |
24 4 i i 3.6+ —L i
1 i | 1
& 22+ i ! i 3.4 4 4
% - I I T T T T
A~ 20 - ! 1072 10/4 20/2 20/4
< Noise varience/looks
18 ! . .. .
| Fig. 4: Denoising performance of ICV filter on SCR
16 —- measure
1
1012 10/4 202 20/4

Noise varience/looks

Fig. 3: Denoising performance of ICV filter on PSNR
measure

2 and 4. The ICV filter based denoising 1s applied on
synthetic images for 20 times at different combinations
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The ANOVA test 1s
performed to analyze the significance of noise variance

of noise variance and looks.

and the number of looks, Fig. 3-6 depicts the performance
comparisons.

The summarized ANOVA statistics 13 depicted in
Table 6. The higher F value and the lower p value
represents that the noise variance and the number
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Terra-X SAR

Air SAR

Fig. 7: Denoised output from despeckling methods with real SAR images (I. = 4): a) Noisy image; b) ICV filter; ¢) PPB;
d) BNL; e) BM3D; {) LMMSE and g) Frost filter results

of looks cause significant changes on denoising
performances, for almost all the parameters. Figure 7
llustrates the sample output of proposed and existing
despeckling with real SAR image at the maximum of 4
different looks.

CONCLUSION

In this study, an SAR 1mage despeckling scheme 1s
proposed based on coherence structure based
segmentation with local mean filtering. Tnitially, watershed
algorithm is applied with the edge image to receive the
homogeneous regions from the SAR image for each
region. The coherent pixels identified by using Intensity
Coherence Vector (ICVY) measure are applied with local
mean filtering. And these patches are merged together to
form complete denoised image. Hence, the proposed
approach does not make use of any fixed window size. Tt

530

considers the coherence pixels for denoising through TICV
and edge marker based segmentation as well as it
preserves the boundaries. The proposed denoising
scheme 1s tested on both synthetic and real SAR images
and is compared with several other state-of-the-art
methods.

The results demonstrate that the proposed method is
comparatively better than referenced methods both in
terms of image detail preservation and speckle noise
reduction.
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