Asian Journal of Information Technology 15 (24): 5181-5186, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

Evaluations of Cache Coherence Protocols in Terms of Power
and Latency in Multiprocessors

'Babak Aghaei and *Negin Zaman-Zadeh
"Department of Computer Engineering, Malekan Branch islamic Azad University, Malekan, Iran
"Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract: The shared memory multiprocessors suffer with significant problem of accessing shared resources
in a shared memory it will result in longer latencies. Consequently, the performance of the system will get
affected. With the object of solving the problem of increased access latency due to large number of processors
with shared memory, Cache is being used. Every processor has its own private cache, now they can update or
access the data comfortably but again it leads to another serious issue 1.e., cache coherency. The magnitude
of the potential performance difference between the various cache coherency approaches mdicates that the
choice of coherence solution is very important in the design of an efficient shared-bus multiprocessor, since
it may limit the number of processors in the system. In this paper we evaluate a typical multiprocessor system
in terms of power and latency with different cache coherence protocols where GEMS5 simulator 18 used. The
traffic 1s generated with five injection rates (0.1, 0.2, 0.3, 0.4 and 0.5). Power and latency analyzing figures are
made up and appeared in experimental result. The result shows MOESI CMP _token has maximum latency and

power consumption.

Key words: Multiprocessor, cache coherency protocols, power, latency, experimental

INTRODUCTION

With increasing core counts, the message-based
on-chip network becomes an integral part of future Chip
Multi Processor (CMP) systems. Future CMPs with
dozens to hundreds of nodes will require a scalable and
efficient on-chip commumication fabric (Agarwal ef al.,
2009). Figure 1 shows how various components of a CMP
system are coupled together.

In multiprocessors system with shared memory,
workload can be divided among these processors
therefore, they work faster than umprocessor (Kumar and
Arora, 2012). These systems allow the easier development
of parallel software and also can increase the system
throughput, reliability and they are economical too. The
shared memory multiprocessors suffer with significant
problem of accessing shared resources in a shared
memory it will result in longer latencies. Consequently, the
performance of the system will get affected. With the
object of solving the problem of increased access latency
due to large number of processors with shared memory,
Cache is being used. Every processor has its own private
cache, now they can update or access the data
comfortably but again it leads to another serious 1ssue 1.e.,
cache coherence problem.

cPU
B

L1 Cache L1 Cache
Controller Controller - - -

[]

Uz{Cache
| Controlial

Fig. 1. Communication in the memory system

Momory
Coniroller

Cache
processes are trying to access the same data for

coherence problem arises when multiple
updating purpose or omne processor 1s trying to
modify the data and rest processors are trying to
read simultaneously. It may lead to mconsistent
state of data at cache of different processors and the
mam memory (Lametti, 2010). In this paper we survey the
cache coherence protocols and evaluate the cache
coherence protocols in terms of power and delay

characteristics.

Corresponding Author: Babak Aghaei, Department of Computer Engineering, Malekan Branch, Islamic Azad University, Malekan,

Iran

5181

Asian J. Inform. Technol., 15 (24): 5181-5186, 2016

Related work: In literature (Lametti, 2010; Stenstrom,
1990, Protic et al, 1998) there are excellent swrvey and
classification of the shared memory and cache coherence
protocols. Archibald and Baer (1986) a multiprocessor
simulation model is presented and described including a
mechanism for simulating explicitly the dynamic reference
behavior of shared data while expressing locality of
references. The results of this model indicate that the
choice of coherence protocol in a shared-bus system is a
significant
requirements vary and since the performance differences
between the protocols can be quite large. Suh in her PhD
thesis (Suh, 2006) implemented a ccherence cache in
an FPGA on the Intel server system and measured the

design decision, since the hardware

mtrinsic delay of coherence traffic and analyzed its
efficiency. The authors in (Agarwal ef al., 1988) claims
that directory-based cache consistency protocols are an
interesting approach for providing shared memory in a
large-scale multiprocessor. They evaluate performance of
directory-based protocols 1 a small-scale multiprocessor
environment using trace driven simulation. Survey in
(Kumar and Arora, 2012) tries to give a comprehensive
overview of hardware and software-based solution to
cache coherence problem in shared memory processor.
The authors think both approaches perform well but their
selection depends on the type of access pattern of shared
data block and also number of processors their want to
connect. They are used SMP cache simulator and are
demonstrated that cache coherence significantly impacts
the performance of the processor. The performance
mcludes latency, bandwidth and protocol overhead.

In this study we survey the cache coherence
protocols and evaluate the power and latency of
protocols i multiprocessor environment on GEMS
simulator. The main contributions of our work are firstly,
the using of ligh level and accurate (Butko et al., 2012)
simulator (GEMS) that gives stochastic and near-to
hardware result with less hardware-based considerations.
Secondly, the evaluation and classification of cache
coherence in CMP in terms of latency and power.

Cache coherency: In many systems, the cache coherence
techniques are entirely implemented at the firmware level.
Two main techniques, called automatic cache coherence
techniques are used (Kumar and Arora, 2012):

* Invalidation in which it 1s assumed that the only valid
copy of a block 1s one of those, usually the last one,
that has changed, invalidating all other copies; in a
write-through system the copy in M is also valid

* Update, in which each modification of a cache block
copy 1s commumnicated (multicast) to all other caches

At first sight, the update technique appears simpler,
while invalidation is potentially affected by a sort of
wnefficient “Ping-Pong” effect. However, m the real
utilization of cache coherent systems: the update
mechanism has a substantially higher overhead, also due
to the fact that only a small fraction of nodes contain the
same block; on the other hand, processor synchromzation
reduces the “Ping-Pong” effect substantially so
invalidation is adopted by the majority of systems. In all
the systems which use the automatic techniques, a proper
protocol must exists in order to perform the required
actions atomically.

In a generic cache coherence protocol each block in
a cache has a state associated with it, along with the tag
and data which indicates the disposition of the block. The
cache policy 1s defined by the cache block state transition
diagram which is a finite state machine specifying how the
disposition of a block changes. while only blocks that are
actually m cache lines have sate information, logically, all
blocks that are not resident m the cache can be viewed as
being in either a special “not present” state or in the
“invalid” state.

In a uniprocessor system, for a write-through, write
no-allocate cache, only two states are required: valid and
invalid. Initially, all the block are invalid; when a
processor read causes a fault, the block is transferred from
the memory into the cache and it’s marked valid. Writes
do not change the state of the block, they only update the
memory and the cache block if it is present in the valid
state. If a block is replaced, it may be marked invalid until
the memory provides the new block, whereupon it
becomes valid.

A write-back cache requires an additional state per
cache line, indicating a “dirty” or modified block. In a
multiprocessor system, a block has a state in each cache,
and these cache states change according to the state
transition diagram. Thus, we can think of a block’s cache
state as being a set of n states, where n is the number of
caches. The cache state 1s mampulated by a set of n
distributed finite state machines, implemented by the units
W of each node that act as cache coherence controllers.
The state machine that governs the state changes is the
same for all blocks and all caches but the current state of
a block in different caches 1s different.

In general, an invalidation-based protocol consists of
the following states (Suh, 2006): Modified, Exclusive,
Shared, Invalid and Owned. The I state mdicates that a
data block m the cache 1s invalid. Multiple processors can
share the same data block in their respective caches in the
S state but only one processor can have the block
exclusively in its own cache mn the E state. The E state
also indicates that the cached block has not been

5182

Asian J. Inform. Technol., 15 (24): 5181-5186, 2016

modified, since it was brought in from the main memory.
A processor can have a modified data block in the M or
the O state. The M state indicates that the processor
owns the modified data block exclusively n its cache,
while the O state specifies that the modified block may be
shared with other processors. In continue, we will discuss
about all mvalidation-based protocols that implemented
in GEMS5 simulator.

The GEMS Simulator: The GEMS3 simulator (Binkert et al.,
2011) 1s a collaborative project based on the M5
simulator (Binkert et al., 2006) and the Ruby component
of GEMS. The M5 simulator is a full-system simulator
designed to model networked systems and Ruby is
the memory system component of GEMS. GEMS
provides detailed models for both in-order and
Out-of-Order (Oo0) CPUs, as well as simple models for
fast functional simulation. Multi-threading is supported
via both CMP-style systems and SMT-enabled CPUs. It
provides two modes: system call emulation mode and
full-system mode. In system call emulation mode binaries
run directly on the simulator and all operating system
functionality 1s emulated. The memory system allows
users to define a varety of cache organizations, eg.,
directory-based or bus-based, and coherence protocols (it
incorporates SLICC (Atta et al, 2012). We choose the
GEMS5 simulator m this study for a variety of reasons:

¢ Tt supports the two most popular ISAs in use today:
ARM and x86, among thers

» It is widely-used m academia and industry, and has a
BSD-style license; as such it 1s important to inform
the community of its accuracy

* It 1s able to boot unmodified versions of several
relevant operating systems, e.g., Google’s Android
08 and Ubuntu Linux, and it can run nteractive
workloads

¢ Tt has incorporated most, if not all, of the advanced
features of the other full-system simulators: system
networking, KVM (Kivity ef af., 2007) mtegration,
checkpointing support, simpoint (Sherwood, 2002)
generation, detailed DRAM models and a
configurable cache system

GEMS5
simulation

simulator provides a flexible, modular
system that makes it possible exploring
multiprocessor architecture features by offering a diverse
set of CPU models, system execution modes, and memory
system models. GEMS3 is an event-driven simulation
framework that has different abstraction levels, balancing
simulation speed and accuracy. Furthermore, GEMS has

an open source license, a good object-oriented

infrastructure and a very active mailing list. The following
cache coherence protocols are supported by GEMS
simulator:

MI example: Example protocol, 1-level cache

MESI _two_level: Single chip, 2-level caches, strictly
inclusive hierarchy

MOESI_CMP_directory: Multiple chips, 2-level caches,
non-inclusive (neither strictly inclusive nor exclusive)

hierarchy
MOESI_CMP_token: 2-level caches

MOESI hammer: single chip, 2-level private caches,
strictly-exclusive hierarchy.

Network test: dummy protocol to operate the network
tester, 1-level cache. In addition an overview of each
architecture and the current supported features can be
found on the official website.

MI example: This 1s a simple cache coherence protocol
that 1s used to illustrate protocol specification using
SLICC. SLICC stands for Specification Language for
Implementing Cache Coherence. Tt is a domain specific
language that is used for specifying cache coherence
protocols. In essence, a cache coherence protocol
behaves like a state machine. SLICC is used for
specifying the behavior of the state machine. Since the
aim 18 to model the hardware as close as possible,
SLICC mnposes constramts on the state machines that
can be specified.

This protocel assumes a 1-level cache hierarchy. The
cache is private to each node. The caches are kept
coherent by a directory controller. Since the hierarchy 1s
only 1-level, there is no inclusion/exclusion requirement.
This protocol does not differentiate between loads and
stores. This protocel cannot implement the semantics of
LL/SC mstructions because external GETS requests that
hit a block within a LL/SC secquence steal exclusive
permissions, thus causing the SC instruction to fail.

Mesi_two_level: This protocol models two-level cache
hierarchy. The 1.1 cache is private to a core while the 1.2
cache is shared among the cores. 1.1 Cache is split into
Instruction and Data cache. Inclusion 1s mamtained
between the L1 and L2 cache. The on-chip cache
coherence is maintained through Directory Coherence
scheme, where the directory information is co-located with
the corresponding cache blocks m the shared L2 cache.
The protocol has four types of controllers, L1 cache

5183

Asian J. Inform. Technol., 15 (24): 5181-5186, 2016

controller, 1.2 cache controller, Directory controller and
DMA controller. L1 cache controller is responsible for
managing L1 Instruction and L1 Data Cache. Number of
mstantiation of L1 cache controller is equal to the number
of cores in the simulated system. 1.2 cache controller is
responsible for managing the shared 1.2 cache and for
maintaining coherence of on-chip data through directory
coherence scheme. The Directory controller act as
interface to the Memory Controller/Off-chip main memory
and also responsible for coherence across multiple
chips/and external coherence request from DMA
controller. DMA controller 1s responsible for satisfymg
coherent DMA requests.

MOESI_CMP_directory: Cache hierarchy In contrast
with the MESI protocol, the MOESI protocol mtroduces
an additional “Owned” state. The MOEST protocol also
includes many coalescing optimizations not available in
the MESI protocol.

MOESI_CMP_token: This protocol also models a 2-level
cache hierarchy. It maintains coherence permission by
explicitly exchanging and counting tokens. A fix number
of token are assigned to each cache block in the
begmning, the number of token remains unchanged. To
write a block, the processor must have all the token for
that block. For reading at least one token is required. The
protocol also has a persistent message support to avoid
starvation.

MOESI_hammer: This 15 an implementation of AMD’s
Hammer protocol which is used in AMD’s Hammer chip
(also known as the Opteron or Athlon 64) (Owern, 2006).
The protocol implements both the origmal a Hyper
Transport protocol, as well as the more recent Probe Filter
protocol.

The protocol also includes a full-bit directory mode. This
protocol implements a 2-level private cache hierarchy. Tt
assigns separate Instruction and Data L1 caches, and a
unified L2 cache to each core. These caches are private to
each core and are controlled with one shared cache
controller. This protocol enforce exclusion between I.1
and L.2 caches.

Table 1: GEMS configuration parameters

Network test: This is a dummy cache coherence protocol
that is used to operate the ruby network tester. This
protocol assumes a 1-level cache hierarchy. The role of
the cache is to simply send messages from the cup to the
appropriate directory (based on the address), in the
appropriate virtual network (based on the message type).
It does not track any state. In fact, no Cache Memory 1s
created unlike other protocols. The directory receives the
messages from the caches but does not send any back.
The goal of this protocol 1s to enable sunulation/testing of
just the interconnection network.

RESULTS AND DISCUSSION

Experimental result: We simulate 16 core CMP
architecture with Tining Simple ALPHA cores 1 GEMS
simulator (Binkert e# al., 2011). Firstly, we invoke a 4%4
GARNET network (Agarwal et al., 2009) on GEMS5 with 2D
Mesh topology (for more detail see Table 1). The type of
all cores are ALPHA 21264. The main purpose is to
evaluate the power and latency of network with different
cache coherent protocols. So, we configure the GEMS and
choose a cache coherency protocol and for every cache
coherence protocol, we set five injection rates (0.1, 0.2,
0.3, 0.4 and 0.5). Since, we can evaluate the cache
coherence protocol with different injection rate. For
evaluation of total power of network, we sum static and
dynamic power of routers. For evaluation of total network
latency, we collect all routers delay. Average latacy of
network with different cache coherence protocols is
depicted in Fig.2. This comparative figure demonstare
MOESL CMP token protocol has maximum average
MESI Two Level and
have

network lateny. Wherease,
MOESI CMP_directory protocols
latency.

minimum

Total consumed power in routers for every cache
coherence protocol with different injection rates is
illustrated in Fig. 3. Tt demonstrate MOEST CMP_token
protocol impose more power consumption than others to
CMP architecture. Instead, MOESI CMP directory
consume power less than others.

Cormponent Configuration

Processor ALPHA 21264 cores, 500-600 MHz, 15MTr/2.2-V, 0.35 CMOS/six metal layers. up to 2.4 billion instructions per second
L1 Caches SplitIand D, 32 KB 4-way set associative, 2 cycle access time, 64-byt line

1.2 Caches 2M private, 15 cycle latency, 64 byte line

Memory Ruby, 512MB, 16-bytet channel width

Network Garnet, 4%4 2D Mesh, 10 virtual network, 1cycle on-chip link latency

Router 4 cycle router pipeline, XY routing, 4 VC per virtual network, Round-Robin queuing.

Packet and simulation cycle Max packet = 1, injection rate: 0.1, 0.2, 0.3, 0.4 and 0.5, fixed packet size, uniform traffic, simulation cycle = 10000
Operating sv stem Linux Ubuntu LTS 14.4, kernel 3.16.7

5184

Asian J. Inform. Technol., 15 (24): 5181-5186, 2016

B Injection Rate=0.1 B injection Rate=0.2 @ Injection Rate=0.3

m Injection Rate=0.4 @ Injection Rate=0.5

Cache Coherence Protocol

Fig. 2: Average network latency

W Injection Rate=0.1 @ Injection Rate=0.2 @ Injection Rate=0.3

B Injection Hate=0.4 @ Injection Rate=0.5

Power

Cache Coherence Protocol

Fig. 3: Total Router Power consumption

CONCLUSION

In this study, we mvestigated the impact of cache
coherence protocols to CMP architectures. For this
purpose we used the GEMS simulator and invoked Garnet
network on it. According result figures,
MOESI CMP token protocol has maximum average
network lateny and power consumption. Wherease,
MESI Two Level and MOESI CMP_directory protocols
have minimum latency and Networl test has minimum
power consumption.

ACKNOWLEDGEMENTS

This research project with title “Evaluation of Cache
Coherence Protocols in terms of Power and Latency in

Multiprocessors” was supported by Islamic Azad
University, Malekan Branch. We thank Tslamic Azad
University, Malekan Branch for financial support.

REFERENCES

Agarwal, A., R. Simoni, J. Hennessy and M. Horowitz,
1988. An evaluation of directory schemes for cache
coherence. Proceedings of the Conference on ACM
SIGARCH Computer Architecture News, May 30-Tune
2, 1988, TEEE, New York, USA., ISBN:0-8186-0861-7,
pp: 280-298.

Agarwal, N, T. Krishna, L..S. Peh and N.K. Tha, 2009.
GARNET: A detailed on-chip network model mside a
full-system simulator. Proceedings of the TEEE
Tnternational Symposium on Performance Analysis of
Systems and Software, April 26-28, 2009, IEEE, New
York, USA., ISBN: 978-1-4244-4184-6, pp: 33-42.

Archibald, . and JL. Baer, 1986. Cache coherence
protocols: Evaluation using a multiprocessor
simulation model. ACM. Trans. Comput. Syst,
(TOCS), 4: 273-298.

Atta, I., P. Tozun, A. Ailamaki and A. Moshovos, 2012.
Slice: Self-assembly of mstruction cache collectives
for oltp workloads. Proceedings of the 2012 45th
Annual TEEE/ACM International Symposium on
Microarchitecture, December 1-5, 2012, IEEE,
Washington, DC, USA., ISBN:978-0-7695-4924-8, pp:
188-198.

Binkert, N., B. Beckmann, G. Black, S.K. Reinhardt and
A. Saidi et al, 2011. The gem5 simulator. ACM.
SIGARCH. Comput. Archit News, 39: 1-7.

Binkert, N.I.., R.G. Dreslinski, L.R. Hsu, K.T. Lim and
A.G. Saidi et al., 2006. The M5 simulator: Modeling
networked systems. IEEE. Micro, 26: 52-60.

Butko, A., R. Garibott, L. Ost and G. Sassatells, 2012.
Accuracy evaluation of gem5 simulator system.
Proceedings of the 7th International Conference on
Reconfigurable Communication-centric Systems-on-
Chip (ReCoSoC), July 9-12, 2012, IEEE, Montpellier,
France, ISBN:978-1-4673-2572-1, pp: 1-7.

Kivity, A., Y. Kamay, D. Laor, U. Lublin and A. Liguori,
2007. Kvm: The Linux virtual machine momnitor. Proc.
Linux Symp., 1: 225-230.

Kumar, M. and P. Arora, 2012. A swvey of cache
coherence protocols in multiprocessors with shared
memory. Proc. Intl. Conf. Adv. Comput. Sci. Electron.
Eng., 2: 148-152.

Lametti, S., 2010. Cache coherence techmiques. Master's
Thesis, School of Computer Science, Umversity of
Pisa, Pisa, Italy.

5185

Asian J. Inform. Technol., 15 (24): 5181-5186, 2016

Protic, I, M. Tomasevic and V. Milutinovic, 1998.
Distributed Shared Memory: Concepts and Systems.
Vol. 21, John Wiley & Sons, Hoboken, New Jersey,
USA.,.

Sherwood, T., E. Perelman, G. Hamerly and B. Calder, 2002.
Automatically characterizing large scale program
behavior. ACM. SIGOPS. Operating Syst. Rev., 36
45-57.

Stenstrom, P., 1990. A swvey of cache coherence

schemes for multiprocessors. Comput., 23: 12-24.

Suh, T., 2006. Integration and evaluation of cache

5186

coherence protocols for multiprocessor socs. PhD
Thesis, School of FElectrical and Computer
Engineering, Georgia Institute of Technology,
Georgia, Georgia Tech.

	5181-5186_Page_1
	5181-5186_Page_2
	5181-5186_Page_3
	5181-5186_Page_4
	5181-5186_Page_5
	5181-5186_Page_6

