Asian Journal of Information Technology 15 (23): 4900-4915, 2016
ISSN: 1682-3915
© Medwell Journals, 2016

Ontology-Based Saas Catalogue for Cloud Services Publication and Discovery

Yasmine M. Afity, Ibrahim F. Moawad, Nagwa L. Badr and M. F. Tolba
Faculty of Computer and Information Sciences, Ain Shams University, 11566 Cairo, Egypt

Abstract: The number of software providers offering their applications as a Software-as-a-Service (SaaS) to
exploit the benefits of cloud computing is increasing. New challenges to the cloud services discovery are
unposed due to the SaaS services unique characteristics such as various and dynamic service offerings and
the lack of standard description language. In this study, we propose OntSaaS, an ontology-based system for
SaaS publication and discovery. Ont SaaS standardizes the advertisement process, serves as a semantic-based
catalogue for the service offerings and provides competent search capabilities for the user. The main building
blocks of the proposed system are the unified Saa3 ontology and a semantic business-oriented matchmaking
technique that maps requests and offers of cloud SaaS services. The proposed request-service matchmaking
algorithm merges semantic-based services metadata with ontology-based hierarchical matching. Prototypical
implementation and evaluation of the system proved its performance enhancement in respect of the service
utility and success rate. Results showed that the concept recommendation approach employed decreased the
service registration process time. Moreover, the proposed matchmaking algorithm similarity results revealed
the actual relevance of the offered services to the user requests. Finally, the proposed ontology-based
expansion approach for the user request improved the user opportunity to find appropriate services to his
requirements in case of discovery partial match.

Key words: Cloud SaaS, service ontology, service discovery, concept recommendation, semantic annotation,
matchmaking algorithm

INTRODUCTION

The SaaS model has gained widespread adoption in
recent years. Therefore, deployment of substantial ¢loud
services 1s greatly expected (Limam and Boutaba, 2010,
Yu, 2015). Consequently it 1s unportant to assist users to
find their desired service (Kang and Sim, 2016). SaaS
Service discovery 1s the process of searching for services,
with functional and non-functional characteristics that
satisfy user requirements. At present, there 1s no standard
protocol or search mechanism for discovering cloud
services.

To discover cloud services, users have to perform the
search based on their own knowledge and key words.
However, manual search using traditional search engines
is a tedious and time consuming process that hinders
efficient use of cloud services (Nabeeh ef ai., 2015).
Moreover, cloud providers usually publish their cloud
services on their portals using different formats using
their own terms, in unstructured plain text. As a result,
sometimes it 1s difficult for the user to discover the
desired service information (Noor ef af., 2013; Reshmy
and Srivatsa, 2005) and to decide which service can fulfill
his requirements (Garg et al, 2013; Chen et al, 2011,

Zhao et al., 2012; Tserpes et al, 2012). Additionally,
service plans and offers may be updated any time without
any prior notifications which requires continuous
follow-up from the user side.

As aresult, some specific online directories for cloud
services search emerged such as: Cloudbook Cloudbook.
http:/Awrww.cloudbook net/directories/ product-services
/cloud-computing -directory),Cloud Taxonomy (Open
Crowd Project. http://cloudtaxonomy. opencrowd.
com/taxonomy/) and CloudSurfing CloudSurfing. http://
www. cloudsurfing.com/). However, these directories
suffer from the limitation of search capabilities. For
efficient services discovery on the cloud it is necessary to
provide sufficient and clear information on service
features and characteristics m addition to quality
information in a standardized form. A cloud service
catalogue with a common data model 1s vital for the
evolution of an open cloud marketplace. Hence, several
service registries have emerged to link providers and
However, SaaS service offerings have
different characteristics than services they were designed

COISUINETS.

to handle. Moreover, they suffer from hmited search
capabilities.

Corresponding Author: Yasmine M. Afify, Faculty of Computer and Information Sciences, Ain Shams Umversity, 11566 Cairo,

Egypt

4900

Asian J. Inform. Technol., 15 (23): 4900-4915, 2016

To supplement the existing efforts, this research
exploits the business perspective of the SaaS services in
order to eliminate the lack of standardization problem
which is considered the most significant challenge facing
cloud services discovery. Besides it matches specific
service functionalities required by the user to features
supported by published Saa$ services.

In the research (Afify ef al, 2013, 2014a, b), we
presented a semantic based system for SaaS services
publication, discovery and selection. We introduced a
unified SaaS ontology used for storage and retrieval
of real SaaS offers. Based on this ontology, we introduced
a hybrid matchmaking algorithm for SaaS services. In this
study, we propose radical changes to the discovery
process. Specifically, there are three contributions m
this study. Firstly it mtroduces
business-oriented services discovery approach in order
to increase the efficiency of the discovery process.
Secondly it proposes an ontology-based expansion
approach in case of discovery partial matching. Thirdly it
presents a hybrid algorithm for matchmaking the user
request to service advertisements.

a user-controlled

Literature review

Cloud service publication: Universal Description,
Discovery and Integration (UDDI) is a registry-based
approach for services publishing and querymng based on
Web Service Description Language (WSDL) documents.
UDDT has the following limitations services are organized
with respect to pre-defined categories not with respect to
what they actually provide its syntactic service discovery
capability 1s rather limited and the lack of support for
non-functional properties.

An ontology-based catalog which describes the
cloud computing resources offered by heterogeneous
cloud providers was proposed in (Bemstein and V1), 2010).
However it only focuses on infrastructure resource
capabilities and features such as CPU, storage and
compliance.

Unified business service and cloud ontology with
service querying were proposed in (Tahamtan et al., 2012)
which helps users to find cloud services according to
functional and non-functional requirements. Limitations
of thus research are the exact matching between user
query and Business Functions (BF) and the query
representation language which greatly limits its use to
experienced users only.

A semantic registry of cloud services was proposed
by Mindruta and Fortis (2013). The researchers focus was
ontological support related to the semantic discovery of
cloud services and their associated artifacts. Their focus
was on laaS and PaaS service models. An extensible

Everything-as-a-Service (Xaal) registration entry was
proposed by Spillner and Schill. They proposed an
extensible description language for services, a registration
model, a system for registration and subsequent service
discovery operations. However, no details were given on
the request-service matchmalking algorithm.

Other service registries were wmtroduced like:
Membrane SOA registry, service-finder and depot.
However, they are dedicated to the services described
using WSDT, files. Examples of proprietary registries are:
IBM WebSphere service registty (IBM WebSphere
Service Registry. http://www-01.1bm.com/software/mte
gration/wsrr/.) and Oracle service registry (Oracle Service
Registry http://www . oracle. technetworlk/
middleware/registry/overview/index html). In conclusion,
the following set of limitations can be highlighted:

com/

¢ There is no domain specific standard for describing
SaaS services

» Existing works mostly deal with resource and
technical issues in cloud domain

+ Business aspect of cloud services has not been
appropriately utilized in existing

By considering these limitations, the proposed
system is considered vital. For the cloud consumer it
offers lnm detailed information about the functionalities
supported by SaaS services from different providers. For
the cloud provider it increases his service reachability.

Cloud service discovery: System architecture for
automated Saa3 services discovery and selection was
presented by Sukkar. The system recommends service
options to users based on functional and non-functional
properties of the SaaS services. However, the service
characteristics were not
recommendation process.

Dastjerdi et al. (2010) presented a flexible approach
for ontology-based discovery of cloud virtual units to
provide QoS aware deployment of appliances on cloud
service providers. However, the architecture applies on
Infrastructure-as-a-Service (TaaS) services only.

A clustering and recommendation methods for
Semantic Web Services (SWS) in evolution were
presented by Lei et al. (2014). Researchers used clustering
to group according to topic,
functionality and description. Moreover, they presented
a recommendation method for composite services that
utilizes matrix decomposition. However it is specific to

considered 1n the

semantic services

SWS, thus special characteristics of cloud services were
not considered in the recommendation process. Some

agent-based discovery systems were proposed.

4901

Asian J. Inform. Technol., 15 (23): 4900-4915, 2016

Ontology-based agent generation framework for
information retrieval on cloud environment was presented
by Chang et @l (2011). It assists users to automatically
generate mobile agents for discovering services. On the
other hand, the researchers of Sim (2012) proposed a
cloud-focused semantic search engine for cloud service
discovery, called cloudle. Cloud ontology 1s consulted to
verify sumilarities between service specifications and user
requirements. However, the services business perspective
has not been considered in the reasoning.

Chen proposed adding semantics to
description for improved cloud service discovery. WSDL
constructs are mapped to domain ontology concepts and
stored in the UDDI to be used for querying. However,
their approach 1s specific to WSDL-described services
which 15 not the case for most of the SaaS services.
Moreover it is limited to exact matching of query-service
ontology concepts.

A framework for a semantic service search engine that
retrieves services based on domain-specific Quality of
Service (QoS) criteria in the digital ecosystem
environment was presented by Dong et al. (201 1a, b). The
ultmate goal of this search engine 1s to allow service
users to retrieve and evaluate services published by the
service providers. The researchers also presented a
framework for a service concept recommendation system
m Dong et al. (2011¢), in which they used concept
recommendation to correctly represent service requests in
a semantic service matchmaker as well as a semantic
similarity model for service ontology environment. The
authors extended their research i Dong et al. (2013)
where they presented a systematic framework for online
service advertising information search. However it is
based on service advertising information only, without
taking into account its feature details.

Noor et al. (2013) developed a cloud services crawler
engine. The collected cloud services can be continuously
updated for effective cloud services discovery. However,
no details were given on the discovery or matchmaking
mechamsm.

Lin et al. (2013) investigated a QoS-aware service
discovery method over a service-registering enabled P2P
network. A peer node registers its information to its
neighbors, then at service discovery phase, the
QoS-aware service discovery is supported in a
probabilistic flooding way according to the network
traffic. However 1t 1s limited to discovery of web service
resources. A semantically-enhanced platform that assists
in the process of discovering the cloud services that best
match user needs was proposed in Garcia et al. (2014).
However, the semantic-based matching process of user
query relied on the service descriptions only without

service

taking into account any information about their
functionalities.

Modica and Tomarchio (2015) a semantic discovery
framework was presented that assists providers and
consumers of cloud services to operate in a cloud market.
A semantic model is proposed that addresses the
business aspects of the supply-demand matchmaking.
Although many cloud service features have been
considered, they were not related to service offer
functionalities. To summarize, a set of limitations can be
highlighted as follows:

* Most of existing systems neglect the special feature
requirements for cloud users

» HBxisting systems do not help users refine their
queries if there 1s no feasible result

To overcome these limitations, the proposed system
provides semantic-based business-oriented discovery of
SaaS services which relies heavily on matchmaking
services functional metadata. Moreover, it suggests
ontology-based expansion alternatives to the user when
his query cammot be accurately matched to SaaS
advertisements.

METERIALS AND METHODS

The proposed system architecture: OntSaaS 13 a
Software-as-a-Service (SaaS) service publication and
discovery system that employs semantic approaches to
guarantee umform representation for services and to
assist the user m finding required service. As presented
inFig. 1, OntSaaS consists of four subsystems in addition
to the umfied SaaS ontology and the word net (Miller,
1995).

The service publication subsystem 1s responsible for
accepting new service registrations from the cloud
providers. During the registration process, the system
recommends concept BFs to the cloud provider to
describe the service functionalities. These concepts are
retrieved from the SaaS services domain ontology. Some
ontology concepts are mcluded as metadata in the new
service publication to be used later in the service
discovery process. Comprehensive details on the
registration template and methodology in our research
(Afify et al, 2014b). The service discovery subsystem 1s
responsible for searching for services that match the user
request. In order to solve the vagueness and
heterogeneity problems, the concept recommendation
approach (Dong et al., 2011b, ¢; Dong et al., 2013) 1s
employed in order to find the best service that fulfills
his requirements. In particular the proposed discovery

4902

Asian J. Inform. Technol., 15 (23): 4900-4915, 2016

OntSaas System
Service Publication Subsystem
| R g e ey e (e e e e G e e ol s ey = e V) e 3!
I 8 : I Service Registration : I Service Clustering |
- |
Cloud Saas service | | | B | | - |
Providers data/ updates I g ' I =R, ' I Hytied I
(it} | Preprocessing | | Services |
I = : | $: I Matchmaking :
| -E | Semantic 5'| l‘ |
| E : | Expansion : | = |
|13 |]]
Wordhet I a | I Cnnceptd | I Creation :
o bl il L ese— e |
Serv |ceDlsc0vervSuhsystem —
s pEe e e e e e et e ieies e
Heudshac | : I Semantic Query : | Functional Matching :
new/refined request | | | 5
| : | Frgbsst : | Concept : Unified
o I g I | I Recommender | | | i
Us_rf Matching services | g ! | Query | | ¥ W Ontology
€ | @ | Preprocessing le |
e :‘ BI : | Concept-based :
= uery Matchin
i | Ll
= Eo g l
| | || Semantic Query | | | LR |
I | I Expansion | I Concept |
e | | | | Expansion |
_—— e —————— e —— N . T -
¥
Service Selection Subsystem
Ranked services Userinterface K€—| ‘Qo5hased | [Characteristics
Ranking hased Filtering
el Administration Subsystem je
Administrator

Fig. 1. OntSaaS system architecture

system utilizes some Information Retrieval (TR) methods
to improve its efficiency such as the query expansion and
the relevance feedback methods (Salton and MecGill,
1986).

The service selection subsystem is responsible for
non-functional filtering and ranking of the discovered
services based on their characteristics and QoS values.
More details of the selection workflow can be found in the
research (Afify et «l., 2014a). The administration
subsystem is responsible for managing the whole system
worlkflow. For example it manages the SaaS service
template, enriches the services domain ontology, sets the
similarity weights, etc.

The SaaS cntology 1s one of the core building blocks
of OntSaaS. Tt integrates knowledge about SaaS services
domain, characteristics and QoS metrics in addition to real
offers. It represents a structured schema for storing both
functional service capabilities and non-functional service
quality guarantees. Taking into consideration the
shortcomings of developing a new ontology from scratch,

we have carefully analyzed the existing ontologies
(Borm et al., 2008, Youseff et al., 2008, Fortis et af., 2012,
Joshi et al, 2014, Moscato et al, 2011, Hofer and
Karagiamis, 2011; Hepp, 2006). It is worth to note that
most of the existing ontologies serve as taxonomies and
focus on technical and infrastructural issues.

We developed services domamn ontology of
=700 concepts obtained from four SaaS application
domams: Customer Relationship Management (CRM),
Enterprise Resource Planming (ERP), Document
Management (DM) and Collaboration. We used
established mdustry classification standards as guiding
reference: United Nations Standard Products and Services
Code® (UNSPSCE)The United Nations Standard
Products and Services Code® (UNSPSC®). http://
www.unspsc.org/.) and North American Industry
Classification System (NAICS) (The North American
Industry Classification System (NAICS). http//www.
census.gov/eos/www/naics/).

The SaaS ontology 1s represented in the knowledge
representation Web Ontology Language (OWL).

4903

Asian J. Inform. Technol., 15 (23): 4900-4915, 2016

Business functions from the SaaS services domain are
represented as concepts, (e.g., Project Management and
Payroll). Object properties are used for several purposes:
describe the service functionalities (supports Business
Function property), connect a service to its provider (is
ProvidedBy property), describe the service characteristics
(has License Type property) and specify the cluster to
which the service belongs to (belongsToCluster
property). Data properties are used to describe
guaranteed QoS values.

The WordNet lexical database (Miller, 1995) is used
for semantic expansion of both the service description
and the user query. The WordNet superficially resembles
a thesaurus i which nouns, verbs and adverbs are
grouped mto sets of cognitive synonyms (synsets).

OntSaaS discovery subsystem: The SaaS discovery
subsystem 1s responsible for identifying the similarity
between the published service capabilities and the
functionalities required by the users. Common users
usually prefer to submit keyword-based queries in order
to describe their requirements. Despite its adequacy to
users it may be insufficient to specify the service
functionalities. This problem is known as language
ambiguity. In more details, the words used by cloud
providers in service descriptions are syntactically
different than user queries but semantically equvalent
which leads to low performance of syntactic matching
approaches. The proposed discovery approach amms
to reach a balance between enabling appealing
keyword-based queries for users and exploiting the
advantages of semantic matching. Our ain was aclhieved
by constructing concept-based service requests from the
user query after enriching it (semantic expansion using
WordNet). Afterward, the service request is matched to
service advertisements via
proposed matchmaking algorithm. The proposed

business-oriented discovery approach involves minimum

semantically-annotated

user mtervention m order to find the SaaS services that
match his requirements.

It 1s worth noting that the proposed discovery
approach addresses a major deficiency 1 existing work on
cloud service discovery presented in which cannot help
users refine their requirements when there 1s no feasible
solution. Uniquely, we exploit the semantically-rich
ontology to expand the user query by broadening its
coverage which increases the user chance to find his
required service. ITn more details, if the user query does
not return relevant services, a partial matching case, the
user engages in another round of interaction in order to
expand his original query. In addition to the user interface,

the discovery subsystem consists of two main modules:
the semantic query processor and the functional
matching.

Semantic query processor module: This module is
composed of two components: the query preprocessing
and the query expansion. The query
preprocessing component preprocesses the submitted
user query. Semantic Query Expansion (QE) using
thesaurus is an example of global methods used in TR
systems to increase the recall. Tn owr system, QE is

semantic

employed in order to avoid the case where the user's
vocabulary is different from the SaaS ontology
vocabulary. The semantic query expansion component
consults the WordNet to retrieve synonyms of the query
tokens.

Functional matching module: This module is composed
of three components: the concept recommender, the
concept-based query matching and the semantic concept
expansion. The concept component
matches the expanded user query to the service CS5Vs
which results in two cases. The first case is that no

recomunender

matching BFs are found. The user 1s asked to enter a
refined keyword-based query. This case takes place in
two conditions. First, when all query tokens are
considered stop words and are removed by the query
preprocessing component. Second, when the user does
not have enough knowledge to make an imtial query
which is close to ontology concepts.

In the second case, matching BFs are found. Either
the matching BFs
intervention from the user (automatic) or user-controlled

are directly used without any

discovery 1s started which is identified as concept-based
query-construction process. The detailed worlcflow of the
proposed user-controlled discovery approach 1s shown in
the activity diagram in Fig. 2.

In this process, the mechanism of the Relevance
Feedback (RF) (Salton and McGill, 1986) is adapted to
enhance the system performance. In particular, the
matching BF concepts are considered the mmtial result set.
The user selects some of the returned concepts. The
constructed request consists of the selected BF concepts.

The concept-based query matching component
calculates the similarity between the constructed request
vector and the service CSVs. We have two cases. Best
cluster (3) are identified when a similarity between the
CSV and the request vector is above a specified
threshold, currently 0.5. The first case 1s that best cluster
(s) are found. We consider clusters with a similarity less
than the threshold irrelevant to the user. In this case, the

4904

Asian J. Inform. Technol., 15 (23): 4900-4915, 2016

User Interface

'

<Enter Keyword-hased

Pre-processing
fquery S USEF qUery

>7

Semantic Query Processor

Expand using Retrieve matching business functions
WordMet from cluster signature vectars

Functional Matching

matching business functions
nd?

Calculate similarity between constructed
\\ request and cluster signature vectors

Best clusters found 7

/= Retrieve superclass concepts of

Enter refined ™ [MO
request
Cancept-hased [VEZ] |
" guery construction
[YES]
Select Request-Sewice
senice matchmaking
Select semantic query
/\)uuansion technigue [MO]
| | Generalization expansion |
[Cluster based expansion |

constructed request
/- Retrieve functionality-related

H

'\ concepts of constructed request

]

Fig. 2: OntSaaS user-controlled discovery approach: activity diagram

concept-based query matching component compares the
constructed request with the service advertisements
from the best clusters using the proposed hybrid SaaS
request-service matchmaking algorithm. Matching
services with a siumilarity value above threshold, currently
0.5 are displayed to the user and then passed to the
selection subsystem.

In the second case, no best cluster (s) are found
which means that the selected BFs are highly scattered
among service clusters. This case 13 identified as partial
matching process. This means that the similarity of the
matching cluster to the user request is below the
threshold but above zero. Apparently, we need a
refinement for thus result. Since these concepts were
obtained through an interaction between the user and the
system it is assumed that there is some degree of overlap
between the returned service concepts and requested

service. Therefore, we propose exploiting the

semantically-rich ontology environment through the
semantic concept expansion component. This 1s achieved
by broadening the request coverage in order to increase
the chance of returning relevant services to the user.

The user request expansion uses one of two schemes:
generalization expansion and cluster-based expansion. In
generalization expansion the semantic concept expansion
component generalizes the selected BF concepts to their
super class concepts which broadens the retrieval scope
of the user request. The super class concepts are
displayed to the user. The user chooses some to
construct his new request. The concept-based query
matching component re-calculates the similarity of the
new request vector and the service CSVs. On the other
hand, in cluster-based expansion, the semantic concept
expansion component retrieves functionally-related BF
concepts from the cluster with the maximum similarity.
User chooses some to construct his new request. The

4905

Asian J. Inform. Technol., 15 (23): 4900-4915, 2016

% SaaS-24-03-2003 (http:/ /v semanticweb,org/ontologies/SaaS-24-03-2013, o) - [EAlmpl

ion\Cloud service

Fle Edt “iew Ressoner Tools Refactor Whndow Help

\Ontology Project Ontologiestontologies\current.owl]

‘ﬂ [|@ 24032013 (e

Holoy A2 B0l

+ & |

(_C-\asses]VOhJect Properties i'DaTa Properties [/Ind\wdua\s iO\/_‘!L\;IZ_“ DL Guery \VOrﬁon |

|’ Class hierarchy r Class hierarchy (infered) ‘

ol

3

"An itegrated Accounting, Inventory Management & Business Management ERP software solution complete with Contact Management and eCammerce —
integration. Our software is perfiect for small and mid-size companies. Sample inventory features include: Lot (Bateh) Tracking, Backorder fuffilment, =
Inter-Campanyiiarehouse Transfers, EDI Integrafion and eComemerce integration.”

3

=

- Acrobat.com i
0 AcumaticaERP
0 AstoriaSoftware

D BlueLinkElite SubClassOf supportsBusinessFunction some Bill_Of Materials s

>

<]

BlueLinkElit Shonw, ¥ thiz¥] fgjints] named subisuperclssses
- 1 BlueLinkElite
~0Boxnet
OCapsule BlueLinkElte SubClassOf Saas_Senice
CubeTree BlueLinkElite
#DocLanding L BlueLinkElte SubClassOf suppartsBusinessFuUNction some Payment_Management
YEgnyte Y BlueLinkElte SubClassOf supportsBusinessFunction seme Biling_Invoicing_Management
D EpicorExpress BlueLinkElte SubClassOf isProvidedBy some BlueLinkAssociatesLimited
‘0 GetDropBox L OBluel inkElte SubClassOf supnortsBusinessFunction some Inventory Management
~OHyperoffice e
~OIBM LetusLive e
Cincipi isProvidedBy some BlueLinkassociatesLimited
KnowledgeTrae i ; ;
OLive0ps supportsBusinessFunction some Accounting
) Microsoft_Dynamics_CRM supportsBusinessFunction some Bill_OF Materials
NetSuite supportsBusinessFunction some Billing_Inveicing_Management
e supportsBusinessFunction some Financial_Management
-0 0racle_CRM_on_Demand =
0 0rderHameny supportsBusinessFunction some Inventory_Management
{'PlexOnline supportsBusinessFunction some Payment Management
::'::;:;;e'“'“ ‘suppertsBusinessFunction some Product Life Cycle Management
) TheaTsignals ||| ®supportsBusinessFunction some Production
inTouchCRM || | ®supportsBusinessFunction some Reporting_Dashboards

3

4]

Fig. 3: Saa3 Ontology: Modeling of real service offers

concept-based query matching component re-calculates
the similarity of new request vector and the service CSVs.
Figure 3 presents the pseudo-code of the OntSaaS service
discovery Algorithm 1.

Algorithim 1:
Algorithm: OntSaa$ Service Discovery
Tnput: User query (), Discovery approach userControlled
Output: Set of discovered services DS
BEGIN
Tokenize Q on delimiters to generate set of querytokens
Remove stop words to create set of relevantTokens
Generate expanded query EQ by finding WordNet synonyms of
relevantT okens
Set stems stems of EQ using Stemmer algorithm
found =match (EQ, CSV, foundClusters)

IF NOT found THEN
READ new query Q fiom user
GOTO1
ELSE
BF = getBF (foundClusters)
IF NOT userControlled THEN
constructedRequest = BF
ELSE

DISPLAY BF to the user to start concept-based query constriction
process

READ selected business functions constructedRequest
END IF
Tdentify best clusters with similarity above threshold 0.5
bestClustersFound = sim (constructedRequest, CSV, bestClusters)
IF bestClustersFound THEN
FOR each service s in getServices(bestChisters) DO
simValue = SaaS Request Service Matchmaking (constructed
Request, s)
IF simValue > 0.5 THEN
DS=DsS Us
END IF
END FOR
ELSE
READ expansion scheme expansion from user to start partial match
process
CASE expansion OF
G: FOR each bt in constructedRequest DO
partialBF = partialBF sup erClass(bf)

END FOR
C: partialBF = get BF (clusterWithMaxSimilarity (constructed
Request,CSV))
END CASE

DISPLAY partialBF to the user
READ selected business functions constructedRequest
GOTO 18
END IF
ENDIF
Return set of discovered services DS
END

4906

Asian J. Inform. Technol., 15 (23): 4900-4915, 2016

Ohject property hierarchy:

v-mmtopObjectProperty
~-ElbelongsToCluster

-~ mmhasCloudOpenness

—EMhasExternalSecurity

- mmhasFeoermalAgreement

- EmhasintendedUserGroup

—mmhaslLicenseType

~-mmhasPaymentSystem

-~ EmhasStandardization

~-ElisProvidedBy

~EagupportsBusinessFunction

Data property hierarchey:

v-mmtopDataProperty =]
----- mmhasAdaptability

----- EshasAnnualSubscription
----- mmhasAvailabkility

----- mmhasBrandvalue

----- mmhasEaseOfUse

----- m=hasHelp

----- mshasintegration

----- mhasNumberofClients

----- shasOfflineSupport

----- mmhasReliability

----- smhasResponseTime —
----- mmhasScalability

----- EmhasSecurity

----- mmhasServiceUpdateCost

Fig. 4: SaaS Ontology: a) Object properties view and and b) Data properties view

Algorithm 2:

Saa8 Request-Service Matchmaking

Input: Constructed Request R and service S
Output: Overall similarity: sim(R, 8)
BEGIN

Calculate the features sirnilarity

(?20bi), Mubjs|)
lobjg |

simg(R,3) =

IF sim«R, §)< THEN
Calculate the hierarchical similarity simgu (R, S)

sum =0
FOR each concept ci in R where 1<=1<=nDO
max8im = -1

FOR each concept ¢j in $ where 1<=j <=m DO
TF ci is a child of ¢j THEN
SiMmu(c;, ¢) =1
ELSETF ci is a parent of ¢j THEN
Rimgmici, ¢j) =1-0.5
ELSEIF ci is a descendent of ¢j THEN
Simeulci, ¢j) = 0.75
ELSEIF ci is an ascendant of ¢j THEN
Simeulci, ¢j) = 0.5
ELSETF ci and cj are siblings THEN
Sirma(el, ¢j) = simLIN(ci, ¢j
ELSE
Simgu(ci, ¢j) = 0
END IF
Tt Simge(ci, ¢y =>MaxSim
maxSim = Simu(ci, ¢j)
END IF
END FOR
sUm = sum + maxsim
END FOR
8im,m(R, 8 Y=sum/n
Calculate
sim (R, 8) = a. sumgR, 8)+b. Sum,u(R, 8)
ELSE
sim(R, $)=1
END IF

Request-service matchmaking algorithm: In this section,
we propose a hybrid SaaS request-service matchmaking

algorithm which is used by the concept-based query
matching component to compare the constructed request
with the service advertisements from the best clusters.
The proposed request-service matchmaking algorithm is
an enhanced version of our SaaS services matclhmaking
algorithm (Afify et al, 2013, 2014a, b). The objective of
the proposed request-service matchmaking algorithm 1s to
find services that fulfill all or part of the required
functionality requested by the wuser. It utilizes
ontology-based matching which makes use of concept
hierarchical structure. The ontological hierarchical
structure considers both the distance and content
similarity models (Cross et al., 2013; Dong et al., 201 1a).
Figure 4 presents the pseudo-code of the proposed SaaS
request-service matchmaking algorithm.

First, the feature similarity 13 calculated which
accounts for the mutual BFs between the user request and
the service. Second, the hierarchical similarity 1s
calculated which takes into consideration any ontological
relationship among the request and the service unique
BFs. The request-service hierarchucal similarity 1s
calculated by computing the average maximum
inter-similarity between the unique concepts. First, each
concept from the request R is compared with all concepts
of the service S and the maximum similarity value 1s taken
and then repeats for all R concepts. Second, the average
of the n comparisons is calculated where n represents the
number of unique BFs in the user request R. To compare
two concepts we have six cases. Table 1 presents the
concept-concept h ierarchical similarity cases with
detailed justification. The overall similarity between
user request and a service is calculated by taking
weighted average of features and hierarchical similarity
measures using BEq. 1:

4907

Asian J. Inform. Technol., 15 (23): 4900-4915, 2016

Table 1: Request-service concepts hierarchical similarity value derivation

Case Similarity value Hierarchical similarity calculation justification
Request concept is parent 1 Since SaaS domain ontology concepts are linked with is-a relations, then the requested
child of service concept 1-0, 5oRdepth function is supported by the service. The similarity is maximal
Request concept is The service supports one sub-type/category of the requested function. Our rationale parent.
of service concept is to use the request concept depth to account forthe closeness between parent-child concepts.
Concepts at upper levels are more abstract while concepts at lower levels
are more specific. Consequentty, parent-child concepts at lower levels of ontology are more
related than at upper levels
Request concept is 0, 75kveleR) The service is a broad type of the requested function. The rationale is that the number
descendent of service concept of levels between the two concepts account for the closeness between them
Request concept is (, SlevelleR<5) The service is a specialization of the requested function. It supports only a minor part

ascendant of service concept

Request concept and service
is concept are siblings

simy ny{Cr.Cs)

of the requested function. rationale is that the number of levels between the two concepts
account for the closeness between them. This case results in similarity values lower
than that of case #3

Two concepts share the same parent. Then distance similarity is irrelevant. In this case,
the content-based similarity adopted to account for the amount of shared information

between the two concepts. We use LIN similarity measure

Two concepts meet at root node 0

Two concepts do not subsume each other in any way

sim(R,S) = ausimg (R, 8) + bsimgy (R, S) (1)

where, a and b are weights that reflect significance of each
similarity measure. These weights are assigned equal
value of 0.5.

RESULTS AND DISCUSSION

Case studies and experimental evaluation: To
demonstrate the effectiveness of the proposed system, we
unplemented a prototype with real and synthetic cloud
data. Expeniments were conducted on an Intel Core 13 2.13
GHz processor, 5.0 GB RAM running under Windows 7
Ultimate. The system was built using Java, Jena APT and
WordNet API incorporated in Eclipse IDE.

We built a data set of 500 SaaS service offers.
Specifically, 40 services are live services and the
remaining are pseudo services generated by adapting the
real services with some changes. Real cloud SaaS offers
were collected from the cloud provider portals. In the
following subsections, we present the SaaS ontology
implementation, study and the

case scenarios

experimental evaluation

Saa$ ontology implementation: This section describes
the implementation of the SaaS ontology. The SaaS
ontology was mmplemented using Protege 4.1 ontology
editor (Horridge ef al., 2004). Modeling of real service
offers is demonstrated by example in Fig. 3. The blue link
elite service description is stored in the annotations
section. The service provider blue link associates limited
is presented using the object property is provided by. The
service features are mapped into BFs using the object
property supports business function. As shown in Fig. 5,
the blue link elite service supports accounting, payment

management and inventory management among others.
The unified SaaS ontology object properties are shown in
Fig. 4a. Some of the data properties are shown in Fig. 4b.
More details on the developed ontology are provided in
owur previous work (Afify et al., 2014a).

Case study scenarios: We present three service
discovery scenarios. The objective of the first discovery
scenario is to compare the proposed concept-based query
construction discovery process agamst the service
discovery using standard Cosme Siunilarity measure with
TF/ADF weighting model (Salton and MeGill, 1986). The
objective of the second discovery scenario is to compare
the automated vs. user-controlled discovery approaches.
The objective of the third discovery scenario 15 to
evaluate the effectiveness of the partial matching case
processing.

In general, in order to search for a service with
specific functionalities, the user enters a keyword-based
query with the required features. We present three case
study scenarios for the discovery process. The first
scenario describes a successful discovery that uses the
concept-based query construction approach against
Cosine-based discovery while the
compares the automated vs. user-controlled discovery
processes. Finally, the third scenario presents a partial
matching case that uses the generalization expansion
approach.

second scenario

User-controlled vs Cosine-based discovery scenario:
The objective of this scenario 13 to demonstrate the
efficiency of the proposed user-controlled discovery
approach agamst the Cosine-based discovery
approach. In general, to discover SaaS services, the
user enters his key word-based query using his own
terminology.

4908

Asian J. Inform. Technol., 15 (23): 4900-4915, 2016

| £>| Search Saas Services

Search Saas Services

Enter Your Query:

=)o =

document versions

| need a service that supports controlling access and processing

User-Controlled Discovery

Matching Business Functions:

Selected Business Functions:

Document_Sharing
Documentation
Document_Level_Permissions
Access_Rights

Online_Access

iDocument_Management
Versioning
Access_Controls

Submit New Request

Relevant Services:

Saas Senice

Similarity

KnowledgeTree

[1.0

DoclLanding [0.7708333333333333
Metdocuments |0.7466727682999958
SpringCM |0.7466727682999958

AstoriaSoftware

|0.3733363841499979

Fig. 5. SaaS Services user-controlled discovery (concept-based query construction)

In the Cosine-based approach, the semantic similarity
between the user query and the service CSVs was
calculated using the Cosine similarity. Services that
belong to the cluster with the best similarity were
retrieved. To rank the discovered services, the semantic
similarity between the user query and these service
descriptions was calculated using Cosine similarity. For
example, using the search query “T need a service that
supports user access and document versions”, the
relevant services 1dentified by the system were
NetDocuments with a similarity of 0.22, DocLanding with
a similarity of 0.18, KnowledgeTree with a similarity of
0.12, AstoriaSoftware with a similanty of 0.07 and
Spring CM with a siumilarity of 0.05. Notably, the resulting
service similarities to the user query are generally low
which misleads the user to consider these services are
urelevant to lum. The reason 1s that Cosme-based
discovery matches user query to service description

only which may not contain complete or accurate
details about service f[unctionalities.

On the other hand, in this study, the matching
is business-oriented it
matchmaking of the Figure 5
demonstrates the use of the user-controlled discovery of
the same query. The system matches the query key terms
to the service CSVs and displays the matching BF
concepts m the matching busmess functions list. The

relies on ontology-based

service features.

concept recommendation process provides an excellent
chance for the user to improve his query by selecting the
concepts that exactly match his required functionalities
(e.g., document-management, versioning and access-
controls). The selected BFs are moved to the selected
business functions list. Finally, the user presses the
submit new request button. The new request is matched
against the service CSVs. Finally, the relevant services are
ranked based on their similarity to the user request.

4909

Asian J. Inform. Technol., 15 (23): 4900-4915, 2016

As shown in Fig. 5, the best service that fulfills the
user request 1s the knowledge tree service with a similarity
of 1. This result means that the knowledge tree service
supports all the BFs requested by the user. While the
other services support some/none of the requested BFs.
The similarity values returned by the request-service
matchmaking algorithm represent the combination of
features and hierarchical similarities. These results reveal
the actual relevance of the services to the user query as
opposed to the Cosine-based approach.

Automated vs. User-controlled discovery scenario: The
objective of this scenario is to compare between the
automated and user-controlled discovery approaches.
Using the following search query “T need a service that
handles translating and searching in documents™. In case
of automated discovery, the system returned the
following BFs: Document-management, translation,
document-sharing, documentation, search, search-OCR,
search-full-text, document-level-permissions, search
metadata.

All matching BFs were used i the discovery process.
Relevant services returned by the system were net
documents with a similarity of 0.42 and knowldege tree
with a similarity of 0.33. Matching a large number of BFs
which may not be functionally-related, resulted in missing
some relevant services.

The user selected the following BFs document
sharing, search and translation. Relevant services
returned by the system were astoria software with a
similarity of 0.59, net documents with a similarity of 0.59,
spring CM with a similarity of 0.51, knowldege tree with a
similarity of 0.39 and doc landing with a similarity of 0.31.
The system retrieved the services that best match user
functionality requirements, against a recall value of 0.4
using automated discovery approach.

In another scenario, the user selected the following
BFs document-management, search and translation.
Relevant services returned were astoria software with a
similarity of 0.67, knowldege tree with a similarity of 0.48
and net documents with a similarity of 0.33. The recall
value 1s 0.66 for this scenario.

In summary, the automated discovery approach takes
less tine but suffers from low recall values. On the other
hand, the wser-controlled concept-based query
construction discovery approach takes more time (taken
by the user to select the BFs) but achieves higher recall
values with average improvement 100%. Both achieve
high precision values.

Enhancing discovery recall
Partial matching scenario: The objective of the partial
matching scenario is to demonstrate the case in which no

best clusters were found after matching the constructed
request to the service C3Vs. Using the following search
query “T need a service that supports recruiting
employees, payroll reports and accounts”. The concept
recommender component returned the following BFs:
Accounts-Payable-Recievable, Inventory-Reports,
Audit-Reporting, Payroll-Management, Recruitment,
Reporting-Dashboards, Reporting, Financial-Operational
Reporting and Accounting. The user selected Accounts
Payable-Recievable, Payroll-Management and
Recruitment to construct a new request. No relevant
services were 1dentified by the system.

In order to support the user to find suitable services,
the semantic concept expansion component provides two
expansion approaches. This scenario demonstrates the
use of the generalization expansion approach. Super class
concepts of the concept-based constructed request are
displayed to the user which are Accounts, Payroll and
Human-Resource respectively. The new request is
matched to the service CSVs. Finally, the relevant services
returned by the system were PlexOnline with a similarity
of 0.29, NetSuite with a similarity of 0.25, Blue Link Elite
with a similarity of 0.22, AcumaticaERP with a similarity of
0.19, EpicorExpress with a similarity of 0.17 and Order
Harmony with a similarity of 0.13.

Experimental evaluation

Experiment 1: The objective of this experiment 1s
threefold: to calculate the time taken by the registration
system to semantically annotate the service description,
to study the effect of the semantic expansion of the
service description using WordNet on the annotation
process and to compute the precision and recall of the
semantic amnotations by the concept recommender
component.

To achieve the first objective, we computed the
processing time taken by the concept recommender
component to semantically annotate the service
description which has been expanded using WordNet. As
shown in Fig. 6, the time taken by the semantic ammotation
of service description during the service registration is
negligible.

In order to achieve the second objective, we have
analyzed the semantic annotation process in two cases,
with and without using Word Net. We compare the
number of matching BFs returned in the two cases.
Results in Fig. 7 show that the semantic expansion of the
service description generally increases the number of
retrieved BFs. However, this increase shows a
discrepancy and is not proportional to the number of
expanded description terms. Tt is greatly dependent on the
terms used by the cloud provider in describing his service
and how close they are to the concepts in the services
domain ontology.

4910

Asian J. Inform. Technol., 15 (23): 4900-4915, 2016

Table 2: Precision and recall of semantic annotations

Precision

Recall

Using original
service description

Using expanded
Original description terms

Change in
service description precision (%0)

Using original
service description

Using expanded
service description

Change in
recall (20)

50

101
152
203
257

0.86
0.7

0.81
0.83
0.76

—_ = = =

-14 0.92 1 8.6
-30 0.88 1
-19 1
-17 0.95 1 52
-24 0.9 1 11

13.6
0.93 -7

50
40 |
30
20 |
10

90 125 139 218 302

Semantic annotation time
(ms)

Number of service description terms
Fig. 6; Semantic ammotation time of service descriptions

30

5 W original desc BF 39
24
20 15
15
10
5
0
50 1

40 Expanded Service BF 37
27
23 24 I
01 152 203 257

15 33
24
Service Descritpion Terms

Matching Business Functions

Fig. 7: Service description semantic annotation process

In order to achieve the third objective, we computed
the precision and recall of the semantic anmotations
returned by the concept recommender component during
the service registration in two cases, with and without
using WordNet. The precision 15 calculated using Eq. 2,
while the recall is calculated using Eq. 3. Table 2 shows
of the

the precision and recall values semantic

annotations of services with different number of
description terms.
Number of correct returned
Precision — businessfunctions 2)
Number of returned
busin ess functions

Number of correct returned

Recall = bu sin ess functions (3)

Number of expected

bu sin ess functions

It 15 apparent that the semantic expansion of the
service description has a negative effect on the precision
of the semantic annotation process by an average
deterioration of 20%. On the other hand it has a generally
positive effect on the recall of semantic annotation
process.

Experiment 2: The objective of this experiment 1s to
evaluate the performance of the automated concept-based
query construction approach m respect of three
evaluation metrics: time, service utility and success rate.
We compare the proposed discovery approach to the
standard Cosine-based discovery employed in a
number of service discovery proposals (Garcia et af.,
2014; Ding et al., 2010, Platzer and Dustdar, 2005;
Paliwal et al., 2012, Hao et al., 2010) in order to compare
the service query to service descriptions.

First, the objective is to evaluate the time taken to
discover relevant services for a user query. We used
different clustering threshold values from 0.1-0.9 for user
queries that consists of 5-10 key terms. In case of the
automated discovery approach, the processing time i1s
composed of time taken by the concept recommender
component to find matching BFs for user query and the
time taken by the concept-based query matching
component to match the new request to the service C3Vs.
From Fig. 8, we can conclude that there is no overhead
introduced by the proposed automated discovery
approach m respect of the processing time.

Second, the objective is to compare between the
Cosine-based discovery approach and the proposed
automated concept-based query construction approach
inrespect of evaluation metrics service utility and success
rate. The service utility is the similarity between the user
query and service description which 1s calculated by the
SaaS request-service matchmaking algorithm m the
proposed discovery process where its value range is
0-1. The success rate is calculated by the number of

4911

Asian J. Inform. Technol., 15 (23): 4900-4915, 2016

W =
o o

Time (ms)
(]
o

== Cosine
Automated Concept based

-t
o o

4 13 18 23 26
Service Clusters

Fig. 8: Service discovery process time of cosine vs
automated concept-based query construction

(osine

—+— Proposed Concept
based Discovery

OO O —JOooO—

Average Service Utility

10 15 20 26 30

ORI IO ~I00WO—

Average Success Rate

0 15 20 25 30

Service Query Terms

Fig. 9: Service discovery process: a) service utility; b)
success rate

successes/the number of attempts. It 1s assumed that an
attempt fails if the service utility is less than specified
threshold 0.3 where its value range is 0-1.

For our experiments, 5 queries were created for
each of the four application domains included in the SaaS

ontology. For each domain, we varied the number of
service query terms inrange from 10-30 sing step of 5. The
average values of the service utilities and success rates
were reported over the four executions. The results are
shown in Fig. @ As shown in Fig. 9, the number of service
query terms has the same effect on the average service
utility and success rate of both approaches. This behavior
18 expected since mereasing the number of service query
terms usually increases the probability of matching
between query terms and the service description.
Consequently, the service utility and success rate
show that the proposed
concept-based discovery outstandingly outperforms the

increases. The results
Cosine-based discovery approach along all number of
service query terms. This performance enhancement is
due to the umque process of transforming the user
keyword-based query into business functions and then
matching them to the services functional metadata using
the request-service matchmaking algorithm.

The experimental results show that the user
controlled discovery outperforms the standard Cosine
based discovery in respect of the service utility (similarity
relevance) and success rate with comparable execution
time. These results are due to the wnique ontology-based
matchmaking of the semantically-constructed enriched
user query and

semantically-annotated service

advertisements. The ontology-based matchmaking
enabled the identification of semantic relationships
between different concepts in the user query and service
advertisements as opposed to merely exact matching of
the concepts m the Cosme-based discovery. This
performance enhancement in the similarity relevance
contributes positively to the user acceptance of the
discovered services. Moreover, displaying the smmilarity
values justifies the rationalization of the results which
improves the credibility of the discovery system.

CONCLUSION

The mcompatibility and lack of standardization of
the cloud services publication represent the key factors
that hinder the broad adoption of cloud computing.
Motivated by these findings, m this study, we proposed
OntSaas, a semantic-based cloud service publication and
discovery system for SaaS services.

The OntSaaS service publication process supports
standardized representation for SaaS services offered by
different cloud providers in a single semantic-based
service catalogue.
functionality and quality information. Utilizing semantic

The catalogue integrates service

annotation and concept recommendation, a guided

4912

Asian J. Inform. Technol., 15 (23): 4900-4915, 2016

registration process was proposed to assist the cloud
provider to map the service features to service domain
ontology concepts.

The OntSaaS service discovery process provides
efficient user-controlled discovery capabilities for service
users. Semantically-ammotated service advertisements are
matched to the semantically-constructed service requests
by users. Query expansion and relevance feedback
approaches are adopted in order to improve the efficiency
of the discovery process. Prototypical evaluation of the
system proved its performance enhancement in respect of
the service utility and success rate. Results showed that
the concept recommendation approach employed

decreased the service registraion process time.
Moreover, the proposed matchmaking algorithm similarity
results revealed the actual relevance of the offered
services to the user requests. Finally, the proposed
ontology-based expansion approach for the user request
mnproved the user opportumity to find appropriate
services to his requirements in case of discovery partial

match.
REFERENCES

Afify, Y. M., LF. Moawad, N.L. Badr and M.F. Tolba, 2013.
A semantic-based Software-as-a-Service (saas)
discovery and selection system. Proceedings of the
2013 8th International Conference on Computer
Engineering and Systems (ICCES), November 26-28,
2013, IEEE, New York, USA., ISBN: 978-1-4799-0080-0,
pp: 57-63.

Afify, Y M., ILF. Moawad, N.I.. Badr and M.F. Tolba,
2014a. Concept Recommendation System for Cloud
Services Advertisement. In. Advanced Machine
Learning Technologies and Applications. Aboul,
EH., MF. Tolba and A.T. Azar (Eds.). Springer
International Publishing, New York, USA., TSBN:
978-3-319-13460-4, pp: 57-66.

Afify, YM.,, LF. Moawad, N.L. Badr and M.F. Tolba,
2014b. Cloud Services Discovery and Selection:
Survey and New Semantic-Based System. In:
Bio-Inspiring Cyber Security and Cloud Services:
Trends and Innovations. Hassanien, A E., T.H. Kun,
I. Kacprzyk and A A. Tsmail (Eds.). Springer Berlin
Heidelberg, Berlin, Germany, ISBN: 978-3-662-43615-8,
pp: 449-477.

Bernstein, D. and D. Vi, 2010. Using semantic web
ontology for intercloud directories and exchanges.
Proceedings of the International Conference on
Internet Computing, July 12-15, 2010, Icomp'l0
Publisher, Las Vegas, Nevada, pp: 18-24.

Born, M., A. Filipowska, M. Kaczmarek, I. Markovic and
M. Starzecka et al, 2008. Busmess functions
ontology and its application in semantic business
process modelling. Proceedings of the 19th
Australasian Conference on Information Systems
(ACIS), December 3-5, 2008, AIS Publications,
Christchurch, Australia, pp: 136-145.

Chang, Y.S., C.T. Yang and Y.C. Luo, 2011. An ontology
based agent generation for information retrieval on
cloud environment. I. Univers. Comput. Sci., 17:
1135-1160.

Chen, F., ¥X. Bai and B. L, 2011. Efficient Service
Discovery for Cloud Computing Environments. In:
Advanced Research on Computer Science and
Information Engineering. Gang, S. and H. Xiong
(Eds.). Springer Berlin Heidelberg, Berlin, Germany,
ISBN: 978-3-642-21410-3, pp: 443-448.

Cross, V., X. Yu and X. Hu, 2013. Unifying ontological
similarity measures. A theoretical and empirical
mvestigation. Int. J. Approximate Reasomng, 54:
861-875.

Dastjerdi, A., S. Tabatabaei and R. Buyya, 2010. An
effecive architecture for automated appliance
management system applying ontology-based cloud
discovery. Proceedins of the 10th TEEE/ACM
International Conference on Cluster, Cloud and Grid
Computing, May 17-20, 2010, Melbourne, Australia,
pp: 104-112.

Ding, D., L. Liuand H. Schmeck, 2010. Service discovery
in self-organizing service-oriented environments.
Proceedings of the 2010 IEEE Comrference on
Asia-Pacific Services Computing Conference
(APSCC), December 6-10, 2010, TEEE, New York,
USA., ISBN: 978-1-4244-9396-8, pp: 717-724.

Dong, H., FK. Hussain and E. Chang, 201la. A
context-aware semantic similarity model for ontology
environments. Concurrency — Comput. Pract.
Experience, 23: 505-524.

Dong, H., F K. Hussamm and E. Chang, 2011b. A service
concept recommendation system for enhancing the
dependability of semantic service matchmakers m the
service ecosystem environment. J. Network Comput.
Appl, 34: 619-631.

Dong, H., F K. Hussain and E. Chang, 2011c. A service
search engine for the industrial digital ecosystems.
IEEE. Trans. Ind. Electron., 58 2183-2196.

Dong, H., F K. Hussain and E. Chang, 2013. UCOSAIS: A
Framework for User-Centered Onlne Service
Advertising Information Search. Tn: Web Information
Systemns Engineering (WISE) 2013, Xuemin, L., M.
Yanmis, 3. Divesh and H. Guangyan (Eds.). Springer
Berlin Heidelberg, Berlin, Germany, ISBN:
978-3-642-41229-5, pp: 267-276.

4913

Asian J. Inform. Technol., 15 (23): 4900-4915, 2016

Fortis, T.F., V.I. Munteanu and V. Negru, 2012. Towards Modica, G. and O. Tomarchio, 2015. Matching the

an ontology for cloud services. Proceedings of the
2012 6th International Conference on Complex
Intelligent and Software Intensive Systems (CISIS),
July 4-6, 2012, TEEE, New York, USA., ISBN:
978-1-4673-1233-2, pp: 787-792.

Garcia, M.AR., RV. Garcia, F.G. Sanchez and I.J.S.
Zapater, 2014, Ontology-based annotation and
retrieval of services in the cloud. Knowl. Based Syst.,
56:15-25,

Garg, S.K., S. Versteeg and R. Buyya, 2013. A framework
for ranking of cloud computing services. Future
Generation Comput. Syst., 29: 1012-1023.

Hao, Y., Y. Zhang and J. Cao, 2010. Web services
discovery and rank: An information retrieval
approach. Future Generation Comput. Syst, 26
1053-1062.

Hepp, M., 2006. Products and services ontologies: A
methodology for deriving OWL ontologies from
industrial categorization standards. Int. J. Semant.
Web Inf. Syst. (ITSWIS.), 2: 72-99.

Hofer, CN. and G. Karagianms, 2011. Cloud computing
services: Taxonomy and comparison. J. Internet Serv.
Appl, 2: 81-94.

Horridge, M., H. Knublauch, A. Rector, R. Stevens
and C. Wroe, 2004. A Practical Guide to Building
OWL Ontologies Using the Protege-OWT, Plugin and
CO-0ODE Tools. 1st Edn., University of Manchester,
Manchester, England, Pages: 118.

Joshy, KP., Y. Yeshaand T. Fimn, 2014. Automating cloud
services life cycle through semantic technologies.
IEEE. Trans. Serv. Comput., 7. 109-122.

Kang, J. and K M. Sim, 2016. Ontology-enhanced
agent-based cloud service discovery. Int. J. Cloud
Comput., 5: 144-171.

Lei, Y., Z. Wang, L. Meng and X. Qu, 2014. Clustering
and recommendation for semantic web service in time
series. Trans. Internet Inf. Syst., 8 2743-7362.

Limam, N. and R. Boutaba, 2010. Assessing software
service quality and trustwortliness at selection time.
Trans. Software Engin., 36: 559-574.

Lin, W., W. Dou, Z. Xuand I. Chen, 2013. A QoS-aware
service discovery method for elastic cloud computing
i an unstructured peer-to-peer network.
Concurrency Comput. Pract. Exp., 25: 1843-1860.

Miller, G.A., 1995, WordNet: A lexical database for
English. Commun. ACM, 38: 39-41.

Mindruta, C. and T.F. Fortis, 2013. A semantic registry for
cloud services. Proceedings of the 2013 27th
International Conference on Advanced Information
Networking and Applications Workshops (WATNA),
March 25-28, 2013, IEEE, New York, USA., ISBN:
978-1-4673-6239-9, pp: 1247-1252,

business perspectives of providers and customers in
future cloud markets. Cluster Comput., 18: 457-475.

Moscato, F., R. Aversa, B. Martino, T.F. Fortis and
V. Munteanu, 2011. An analysis of mosaic ontology
for cloud resources annotation. Proceedings of the
2011 Federated Conference on Computer Science and
Information Systems (FedCSIS), September 18-21,
2011, IEEE, New York, USA , ISBN: 978-1-4577-0041-5,
PR: 973-980.

Nabeeh, N.A., HA. Ghareeb and AM. Riad, 2015.
Integrating software agents and web services in
service oriented architecture based cloud services
discovery framework. I. Convergence Inf. Technol.,
10: 67-79.

Noor, T.H., Q.Z. Sheng, A. Alfazi, A H. Nguand I. Law,
2013. CSCE: A crawler engine for cloud services
discovery on the world wide web. Proceedings of the
2013 TEEE 20th International Conference on Web
Services (ICWS), Tune 28-July 3, 2013, TEEE, New
York, USA., ISBN: 978-0-7695-5025-1, pp: 443-450.

Paliwal, A.V., B. Shafiq, J. Vaidya, H. Xiong and N. Adam,
2012. Semantics-based automated service discovery.
Serv. Computing IEEE. Trans., 5: 260-275.

Platzer, C. and S. Dustdar, 2005. A vector space search
engine for web services. Proceedings of the 3rd
European Conference on Web Services (ECOWS'05),
November14-16, 2005, IEEE, New York, USA., ISBN:
0-7695-2484-2, pp: 1-9.

Reshmy, K.R. and SK. Sovatsa, 2005 Automatic
ontology generation for semantic search system
using data mining techniques. Asia J. Inform.
Technol., 4 1187-1194.

Salton, G. and M.T. McGill, 1986. Introduction to Modern
Information Retrieval. McGraw-Hill Companies,
Pennsylvania, TTSA.,.

Sim, K.M., 2012, Agent-based cloud computing. TEEE
Trans. Services Comput., 5: 564-577.

Tahamtan, A., S.A. Beheshti, A. Anjomshoaa and
A M. Tjoa, 2012. A cloud repository and discovery
framework based on a unified business and cloud
service ontology. Proceedings of the 2012 IEEE 8th
Conference on World Congress on Services, Tune
24-29, 2012, TEEE, New York, TSA., ISBN:
978-1-4673-3053-4, pp: 203-210.

Tserpes, K., F. Aisopos, D. Kyriazis and T. Varvarigou,
2012, A recommender mechamsm for service
selection mn service-oriented enviromments. Future
Generation Comput. Syst., 28 1285-1294.

Youseff, I.., M. Butrico and D. DaSilva, 2008. Toward a
unified ontology of cloud computing. Proceedings of
the 2008 Conference on Grid Computing
Environments Workshop, November 12-16, 2008,
IEEE, New York, USA., ISBN: 978-1-4244-2860-1, pp:
1-10.

4914

Asian J. Inform. Technol., 15 (23): 4900-4915, 2016

Yu, Q., 2015, Cloud Rec: A framework for personalized Zhao, L., Y. Ren, M. Li and K. Sakurai, 2012. Flexible

service recommendation in the cloud. Knowl. Inf, service selection with user-specific QoS support in
Syst., 43: 417-443. service-oriented architecture. J. Network Comput.
Appl., 35: 962-973.

4915

	4900-4915_Page_01
	4900-4915_Page_02
	4900-4915_Page_03
	4900-4915_Page_04
	4900-4915_Page_05
	4900-4915_Page_06
	4900-4915_Page_07
	4900-4915_Page_08
	4900-4915_Page_09
	4900-4915_Page_10
	4900-4915_Page_11
	4900-4915_Page_12
	4900-4915_Page_13
	4900-4915_Page_14
	4900-4915_Page_15
	4900-4915_Page_16

