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Improved Exact Parallel Algorithm for Planted (1, d) Motif Search
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Abstract: Motif search in computational biology 1s a most challenging problem. This plays a crucial role n
gene finding and understanding the gene regulation relationship. In this study, a new efficient algorithm 1s
proposed for the (1, d) motif search problem to find all string of length | which present in each of the input string
with d mismatches. The method 1s based on 2 key aspects. First, a group of 3 l-mers of close proximity 1s
processed efficaciously to generate the common d-neighborhood and second the data structure bit vector is
used which simplifies the process of making the union and intersection of the common d-neighborhood. The
proposed approach can be considered to be a hybrid one, as it integrates the existing algorithm with the novel
ideas of common d-neighborhood generation to achieve better running time. Moreover, a parallel version of
proposed method is also presented which runs on 4 SMP cluster systems with each of 2.4 GHz Intel Pentium-TV
having 16 GB ram running under Red Hat Linux. The experimental result shows that the proposed algorithm is
linearly scalable with the number of processors.
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INTRODUCTION

Pattern reorganization in biological sequences is a
major problem as it led to numerous solutions in the
biological domain. For example, motifs are such patterns
found in biological sequences that have applications in
genetic probe design, PCR primer design, discovering
potential drug targets, finding unbiased consensus of a
protemn family, antisense drug design, creating diagnostic
probes. In literature, several variants of this motif search
problem have been suggested. Among those the Planted
(1, d) Motif Search (PMS) problem is considered here.
PMS is defined as follows: inputs to the PMS are n
biological sequences of length m each, 2 positive
integer’s 1 and d. The objective is to extract strings M of
length 1 such that any such string M is present in all n
sequences with at most d mismatches. Formally, the
problem can be defined as follows.

Detinition 1: Given a set of n sequences s:={s}" overan
alphabet X = {A, T, C, G} with |s,| =m and integers | , d
with O<d <l<m, the PMS resolves the task of identifying
the (1, d) Motif x with |x| =1 such that x, is a substring of
s;of length 1 and x differs from x in at most d places
fori=1, .. n

In the PMS problem, standard values of n and m
considered are 20 and 600. Different combinations of 1 and
d give rise to different occurrences of PMS. The

occurrences where the d value is large in comparison to
the 1 value, are called weak occurrences and are difficult to
resolve. For example, occurrences (13, 4), (15, 5), (17, 6),
(18, 6),(19, 7, (21, 8), (23, 9), etc. are well-known weak
occurrences. Owing to its umportance, development of the
efficient algorithm for PMS is now one operational interest
in bioinformatics. There are 2 categories of PMS
algorithms, namely, approximation and exact algorithms on
the basis of heuristic search and exhaustive enumeration
search respectively. Generally, PMS approximation,
algorithms tend to be faster and more popular than exact
algorithms but they are not guaranteed to give the correct
motif always. Mostly approximation algorithms exploit
heuristics search such as expectation optimization, local
search, Gibbs sampling, etc., examples of approximation
algorithm are Gibbs (Lawrence et al, 1993), MEME,
random projection (Rocke and Tompa, 1998), Consensus
(Herts and Stormo 1999), Winnower (Pevzner, and Sze,
2000), Projection (Buhler and Tompa, 2002), Multiprofiler
{(Keich and Pevzner, 2002), Pattern Branching (Price ef al.,
2003) and Vine (Huang ef al., 2011). Among these Gibbs
and MEME 1s the simple approach which uses certain
groups of start sites initially to avoid local optimum and
Vine (Huang et al., 2011) is the recent heuristic polynomial
time algorithm which is based on winnower (Pevzner and
Sze, 2000).

In this study more attention is on the exact
algorithms. Exact algorithms are always guaranteed to find
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all existing motifs in spite of the worst case exponential
running time by virtue of its NP-hard nature (Evans and
Smith, 2003). The exact algorithms are classified mto
sample driven and pattern driven approaches. To obtain
the desire motif the sample driven approach explore
the d-neighborhoods of all possible (m-1+1) n 1-mers and
the pattern driven approach enumerates all Z' possible
patterns. The sample driven part 1s often constramed by
space complexity. On the contrary, the pattern driven
approach objective is to reduce the candidate motif
through numerous approach. Roughly there are four
approaches present m literature to solve the exact
algorithms. The first approach builds a graph by
considering its vertices as the length 1 substring of the
mput sequences and its edges as
between two vertices if they are owned by different mput
sequence with Hamming distance within 2d. Then, it
transforms the problem of motif search into a problem of
finding a clique of size n where n represents the number
of mput sequences. Examples are DPCFG (Yang and
Rajapakse, 2004), Rec motif (Sun et al., 2010a, b), List and
Tree motif (Sun et al., 2011).

The second approach utilises the suffix tree
mtroduced by Sagot (1998). For all the given sequences
he builds a generalized suffix tree and then uses the suffix
tree to “spell” all the motifs. Examples are Speller (Sagot,
1998), Weeder (Pavesi et al., 2001), MITRA (Eskin and
Pevzner 2002), CENSUS (Evans and Smith, 2003),
RISOTTO (Pisanti et al., 2006). RISOTTO is the fastest
among the family of suffix tree algorithm but with the
increase in the motif length, its performance degrades
significantly. The third approach initially computes the
candidate motif from some input strings and then
searches for its feasibility in the rest of the strings.
Examples are voting (Chin and Leung, 2005), PMS1-PMS3
(Rajasekaran et al., 2005), algorithm of (Sze and Zhao,
2007), PMS1 and PMSP (Davila et al, 2006), PMS4
(Rajasekaran and Dinh, 2011), PMS5 (Dmh ef af, 2011),
PMS6 (Bandyopadhyay et af., 2014), Pair motf (Yu et al.,
2012). The fourth approach builds upon the search tree
method which choose a candidate l-mer from the first
input string and then modifies its character one by one.
Since the mismatch between the candidate and the motif
is at most d, the search tree of depth d is traversed to
arrive at the motif. Examples include PMS prune,
Pampa (Davila et al., 2007 a, b), ¢ PMS prunel and qPMS7
(Dinh et af., 2012). Some algorithm utilizes an efficient
combination of sample driven and pattern  driven
approach such as the algorithm of (Sze ef al., 2004),
PMS8 (Nicolae and Rajasekaran, 2014) and gPMS9
(Nicolae and Rajasekaran, 2015). Many of the above
mentioned efficient exact algonthms (PMSS (Dinh ef al.,

the commector

2011), PMS6 (Bandyopadhyay et al., 2014), gqPMS7
(Dinh et al., 2012)) compute common d-neighborhood
of a group of three l-mers coming from three input
sequences and match with the remaining to certify or
reject it as a motif. For the pre-processing they use the
Integer Linear Programming (ILP) whose number of
instances increases with the increase in the number of
iteration and also a lookup table 13 required to be
populated  repeatedly and to be searched for
determining the common neighbors. This pre-processing
leads to a plentiful memory requirement for storing
the lookup tables and the outcomes of all possible
integer linear programs. To efficiently solve the PMS
problem, a combination of pattern-driven and sample
driven approach is proposed here. The PMS6
(Bandyopadhyay et al., 2014) is regarded as the basis of
owr approach. The motivation of the proposed approach
by the observation is as follows:

¢  Elimination of pre-processing steps

»  The volume of candidate motif common to two l-mers
or three l-mers are greatly rely upon the distances
between the l-mers. So the selection of multiple
l-mers should be done meticulously from the input
sequence to restrict the total candidate volume

* A novel approach of common d-neighborhood
generation three l-mer i1s proposed to filter out
surplus candidate verification

»  Use of bit vector to efficiently handle the process of
union and intersection of the candidate motif

In accordance with the above techniques we
implement the parallel version of this approach which
exhibits that the proposed one exceed the PMS35
(Dinh et al., 2011) and PMS 6 (Bandyopadhyay et al.,
2014) in a several ways and also is a competent with
recent fastest algorithm as PMS & (Nicolae and
Rajasekaran, 2014) and gPMS 9 (Nicolae and Rajasekaran,
2015).

MATERIALS AND METHODS

We use same notations and definitions as in
(Bandyopadhyay et al, 2014) as follows. A string of
length | 15 an l-mer. The l-mer x of any string s, symbolized
as x €3 18 a length | substring of s. The hamming distance
of 2 l-mers x and y, dy (%, y) 18 the number of mismatch
between them. The 2 l-mers x and y agreeing dy (x, y)<2d
are the matter of consideration because the 2 instances of
the same motif cannot differ by more than 2d. For a given
sting s and l-merx, the C(x,s) symbolizes the set
of yes satisfymg dy (x, y)<2d. Given a set of strings
S = {81, ..., 8,5, the M, ;,(8) stand for the (1, d) motif of S.
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The proposed algorithm is based upon a combination
of sample driven and pattern driven approaches. Initially
in sample driven part, we select a triplet of l-mers from
string s;, 8, Sy.p, for k = 1 to n/2 | satisfying some
filtering condition Then in pattern driven part we
compute the common d-neighborhoods of the triplet by
sampling characters position wise. Our method 1s mainly
composed of three steps:

¢ Selecting triplets for each l-mer x of s, select an l-mer
v from C (%, s,) and an 1-mer z from C (x, s,,.,) and
form a triplet of 1-mers as (x, y, z)

* Finding common d-neighborhood we take one
candidate common neighbor of the triplet (x, y, z) and
then apply a recursive procedure on it to find the set
of all common d-neighborhoods

*  Making union and intersection we apply a series of
mtersection and union operations on generated
common d-neighborhoods to obtamn the motif
Ml, d (S). To address the union and intersection
operation comfortably we use the bit vector at an
expense of some additional space

The problem can be considered to have independent
(m- H1) number of sub problems, one for each I-mer of the
sequence s,. For every subproblem, the input 1s the l-mers
of sequence s, and the mput sequences s,-s,. This shows
the problem is embarrassingly parallel without any nter
process commumication besides the iput to all
processors. We extubit two levels of parallelism, the outer
level parallelism using MPI and inner level parallelism
using threads. In the outer level we considered the
processor with rank O as the scheduler with rest as
workers. The scheduler broadcast the required input to all
workers including itself and solve the sub problems
simultaneously with other workers to avoid one processor
only to be busy with scheduling. At the end, the
scheduler receives the motifs from all workers and makes
the union with its own motifs. The scheduler finally
produces the result. The execution time for each
very to the
neighborhoods of various triplets and hence, some
processor ends up starving while the others are busy. In
the inner level, multiple threads serve simultanecusly on
different l-mers x of s,. The threads cooperate to find
common neighborhood corresponds to every 1-mer of s,.
Based on the above 3 steps the proposed parallel
approach is depicted in Algorithm 1.

processor  1s sensitive volume of

Algorithm 1: Parallel planted (1, d) motif search
Tnput: § = {3, 8, ..., 8., 1, d
Output: the (1, d) motif set M, 4(S)

M. (85)=0
for each X5, do parallel using process
Par Begin
M=
for k =1[n-1/2] to do parallel using thread
for each v © C(x, sy) and z £ C(x, sy4) do
if (k =1) then
M =MUfind_common (X, ¥, 2)
else
M= Mllfind common (X, ¥, z)
end for
end for // Motif of different thread
M, g =M, I M
Par end
end for
M, a(S) - Umy 4 /Motif of different process
Output M, «(S)

Line 1 assigns an empty set to the (|, d) motif M, yin
the beginning. Line 2-13 find the (1, d) Motif corresponds
to every l-mer of string s, in parallel using MPI. Line 4-11
find the common neighbor of the selected triplets using
the procedure find common in parallel using thread. T.ine
9 intersects the common neighbors of the selected triplets
of multiple thread to find the (1, d) motif corresponds to a
single l-mer of s,. Line 12 makes the umon of (1, d) motif of
different l-mer of s,. Fmally, line 13 merges the (1, d) motif
of different processes mto the (1, d) motif of the given
1nput sequences.

Step 1 (selecting triplets): We select the triplet in a
decisive way. We do not form the triplet just by
considering every l-mer of different sequences but rather
we apply one filtering rule. The filtering rule says that if
two l-mers x and y have a common d-neighbor 7 such
that d(x,z)<d and dy; (y,z)<d then d;(x,y) <d+d = 2d. The
filtering rule employs the criterion that the distance of
2 occurrences of the same motif must not be more than 2d.
So we only consider the l-mers x' of s, which 1s at hamming
distance <2d from l-mer x of s, (or formally x' € C (x, 5,)).

Step 2 (finding common d-neighborhood): For every
triplet of l-mers we find the common d-neighborhoods
using the algorithm find-common. Given a triplet of 1-mers
X,-X; an l-mer ¢ is common d-neighbor of the triplet iff:

3
maxd,(x,.q)<d
i=1

The triplet of l-mers x,, x,, x; can be represented as a
3x] character matrix where the columns type cen be
defined as follows. Type P, are the columns where x, [1] =
%, [I] =%, [1]. Type P, are the columns where x, [I] # x, [I]
=x; [I]. Type P, are the columns where x, [T] # x; [T] =x;[I].
Type P, are the columns where x; [T]# x; [T] =x,[i]. Type P,
are the columns where x, [T]# x,[i]# %, [I]. We perform a
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preprocessing to generate a candidate common l-mer ¢ as
follows. q [1] =x,[1] for1€ Type Pyori € type P,, q [1] = x;
[1] forie TypeP,, q [1] = %, [1] for 1 € Type P,, q [1] = x,[1]
for 1 € Type P,. We input the candidate motif q and the
distance D as ‘d’ mitially to the recursive procedure
find-common. The algorithm successively decreases D by
one, 111l D becomes <0 (Algorithm 2).

Algorithm 2 (Find-common (x,-x,):
Tnput: 3 -mers x;-x;
Output: All common neighborhoods
do Preprocessing to produce candidate Matit q
find_common (X, X3, Xs, g, D)

it @:?xddﬂ (@) >d+D) then return l-mer g

I then return

mizc dd, ,.q) > d+ D)

it (D < 0) then retum
for eachi {1, 2, 3} and dy(q, x)>d do
P ={k| k] * x{k]}
for each set pos such that posc P and|pos| =d+1
for all j & pos do
Quew—
for we? and o = qfj]
Quuwi] = 0
retum (find _common(xy, X, Xz, Quw, D-1)
end for
end for
end for
end for

Line 1 report the l-mer g as a common neighbor when
the recursive procedure satisfies the inequality as:

3
maxd,.(x,q)<d
1=1

Line 2 and 3 show the invalid attempt of the
candidate l-mer. Line 4 to line 10 tries to construct a new
candidate 1-mer ¢, to reduce its distance from | -mer x; for
1€ {1, 2, 3} when the candidate l-mer q 1s not a seolution
but there is a possibility of getting the common 1-mer. To
create the new l-mer (., consider all position k where
q [k] # x; [k] for 1€{1, 2, 3} such that dy (3, x)>d and
successively generate sub cases of d+1 positions to alter
the positions of q by character ¢ where eeX and @ # g [j].
Taking advantage of this recursive algorithm we find all
solution to a given nstance in a reasonable time.

Step 3 (making union and intersection): We use bit
vector approach for its simple way of making the union
and intersection operation and its amenability to
parallelization. We allocate three bit vectors of size 4' bits
each. The basic operation on bit vector is divided
into 3 phases. In line 7 and 9 of algorithm] for every
common d-neighbor of the trplet we set the
corresponding bit in the bit vector M. The mdex in

accordance to a l-mer can be derived by substituting the
characters {A, G, C, T} by 2 bits {00, 01, 10, 11}. For
instance of a 5 l-mer ACTTG, the index 1s the mteger value
of 0010111101. In line 9, we do the mtersection of common
l-mers to find common d-neighbor correspond to a
particular I-mer x of sequence 5. In line 12 and 14, we do
the union operation to generate motif of multiple thread
and multiple processes, respectively. The umon and
intersection are simple bitwise union and intersection
operation and can be easily parallelizable. The bit vector
has ligh memory requirement with the increase in the size
of l-mers. As a solution for igher l-mer sizes for 1217, we
use a cumulative approach where we mnitially find the set
of motifs of (I-1, d) instance with their distances from
every sequences. Then successively we find the solution
for the motif mstance (1, d) n © (n) tune. For simphfication
let M is a (1-1, d) Motif instance with (p,, pss ..r Do)
and (d,, d, ..., d,) as the location of d-neighbors and their
distances from the (n-1) sequences, respectively. We can
state that the string M|C where CeX and ‘|’ 1s an append
operation is a (1, d) motif or has a d-neighbor in every
sequence s, if it satisfies one of the following conditions:
residue at position p, + 1 15 C or s, [p+ 1] = C, or the new
distances d.<d. For each motif M we append the CeX and
check whether plA, p|G, p/C, p|T is a motif or not by
applying the above conditions. Thus to find (1, d) motif for
higher 1, 1.e., 1217 we first find (16, d) motifs and then
successively apply the above logic to find any motif of
higher sizes.

Implementation of proposed algorithm: We have
employed a Client-Server (C/S) architecture in our LAN
system to implement this algorithm, i.e. one server and
multiple clients. The server coordinates and distributes
the PMS tasks to the clients and takes the responsibility
of theiwr synchromzation as showed in Fig. 1. The clients
receive the task from the server and execute it in a parallel
manner. We use the SSh key approach to avoid the
password requirement during the interaction among
master system and clients (slave) system for the execution
of the program. The easy and fast communication
between systems can be established through this.

Server designing: The server has the following functions
according to its design.

Task distribution: In the consideration of simultaneous
work of clients, the server divides the task mto
smaller subtasks depending upon the number of files or
sequences present and distributes the task to the clients
for the uniform computation. Clients return the produced
results at the end.
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KfMy-rank =0
Input sequence from file
¢ Y
MPI_Send MFI_Recv
Send sequences S, to S, and distribute Receive sequence S, to S, and
(M-H1)/p number of 1-mers to each (m-1+1) mumber of l-mers from
slave process magter process
L 4 v
Compute the motif m,, in each thread Compute the molif M, in each thread
by intersecting the common d-neighbor by intersecting the common
of every triplet formed nd d-neighbor or every treplet fromed
to a paricular lmer of S correspond to a particular l-mer of
. : h S, using step 9 of algorithm 1
using step 9 of algorithm 1

v

A4

Compute the candidate motif M,, by doing Compute the candidate motif M,, by doing
the union of M, generated by the union of M, ; generated by
multiple threads vsing step 12 of multiple threads using step 12 of
algorithim 1 algorithm 1
MPI Recv
. iy . MPL Send
Receive candidate planted motif M,, Send candidate plant i motif M,,
from each of the slave process to the master process
Y
Combine all M,, by doing union
operation, i.e.,, M= M, now has the <
motif (s} of interest
h 4
Stop

Fig. 1: Flow chart of all message passing among master and slaves

Database sharing: All the bioinformatics information is
stored in the main database on the server. The
synchronization of the client is monitored by the server
which 1s just to have the one to one correspondence
between the modules. The “Start’ message 1s sent by the
server after the distribution of the tasks so that they can
begin to work together. After the completion of work, the
client will send an ‘end’ message and result to the server
to say the completion of the task.

Planted (1, d) Motif: The server begins to calculate the
planted (1, d) motif after receiving the ‘end’ messages from
all the clients. The server is configured with Redhat
enterprise version-5 OS.

Client designing: Clients complete the task of receiving
DNA sequences into their database and computing the
planted (1, d) motif from the subsets of sequences under
the control of the server. For this, we have another
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database on the clients which act as a secondary
database. In the client side, the download of mformation
starts from the server after receiving tasks from it and
it stores those on the secondary storage by which
the time delay due to successive accessing the
primary storage can be solved After completion of
the current task, the output 1s submitted to the
server by clients with one ‘End’ message to the server.
Clients are configured with Redhat enterprise

version-3 OS.
RESULTS AND DISCUSSION

Experimental result and performance analysis: The
algorithm that we proposed is mnplemented m the C
language using the MPI library, Pthread library. The
experiment is done in an environment where there are four
node clusters with each of 2.4 GHz Intel Pentium-I'V
processor having 16 GB RAM rumming under Red Hat
Lmux. One Giga-bit Ethernet switch we have used to
connect the nodes. Owr parallel algorithm has been
examined with all four nodes and the starting and ending
execution time has been evaluated with the wall clock
time. The running time here 15 the sum of its execution
time, its communication delay and time to get input data
from a file. The algorithm allocates the sequence pairs
based on the number of Symmetric Multiprocessor (SMP)

nodes available. Due to our LAN connection the distance
between server and client is very short, the distance of
transferring data or result between the server and the
clients can be neglected as.

Our computational  experiment shows the
effectiveness of the proposed algorithim. We use fixed
number mutation for generating random datasets of n
sequences of length m each so that each character of 2
appears with uniform probability. Then, in the same way,
we generate the 1 length motif by mutating in just d places
and plant n all n sequences randomly. We use the
number of sequences n as 20 and the length of sequence
m as 600. To show that our proposed algorithm runs
faster, the execution time for challenging values of | and
d are compared against some of the well-known fastest
exact algorithms in Tablel. In Tablel, the symbol '-' means
either the algorithm take a longer time to execute or takes
more memory (Table 1).

The first set of experiments is intended to observe
how lengths of the planted motif affect the performance of
our parallel algorithm with respect to some of the existing
PMS algorithms. Figure 2 shows the speed up of the
proposed algorithm with respect to some of the recent
algorithms. It 1s found m all cases that correct planted
motifs are found using the proposed parallel algorithm
successfully. The next set of experiments investigates
how the processing time is influenced by varying
Hamming distance for the distinctive length of motifs.
Table 2 shows the behaviour of the proposed algorithm
and its parallel version for various values of (1, d) on a

Table 1: Time comparison of different algorithms on challenging instances

Instance algorithms/(l, d) motif (13,4 (15,5) (17, 6) (19,7 21,8 23,9
Proposed algorithm 7 sec 28 sec 1.33m 10.47 m 41.5m 1.56h
qPMS9 6 sec 34 sec 2.7m 134 m 454 m 226 h
PMS8 7 sec 48 sec 52m 26.6m l.eth 5.48h
qPMS7 29 sec 21m 103 m 54.6m 4.87h 27.09h
PMS6 22 sec 75 sec 6.72m 2275 m 225h 19.19h
PMSS 39 sec 130 sec 11.35m 40.38 m 496 h 4099 h
PMSprune 53 sec om 69 m 2.10h - -

Table 2: Time comparison of proposed algorithm for different (1, d) instances

Processing time for parallel algorithm
Processing time for prposed

Length of the motif (1) Hamming distance (d) algorithmm on single CPU Two CPU Four CPU
15 5 28 sec 25 sec 19 sec
4 14 sec 11 sec 4.5 sec
3 4 sec 3 2.7 sec
17 [ 1.33m 56 sec 43 sec
5 69 sec 43 sec 34 sec
4 34 sec 22 sec 15 sec
19 7 1047 m 754 m 4.56 m
3] 745m 4.47 m 3.25m
5 3.52m 2.32m 1.39 m
21 7 3445 m 2242m 17.43 m
8 41.5m 3433 m 21.45m
9 5432 m 4744 m 27.32m
23 8 1.04h 0.54h 0.35h
9 1.56h 1.0dh 0.56h
10 2.34h 1.45h 0.55h
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multiple number of node cluster. Tn the parallel version of
the proposed algorithm, the work to be carried out is
distributed urformly.

Owr parallel algorithm is executed by creating
2 numbers of processes on a 2 node cluster and 4
nmumbers of processes on 4 node cluster. This distributes
one process to each node. Curves mn Fig. 3 indicates that
the processing time has linear growth as the number of
processors increase. The next experiment investigates
how the processing time 1s affected by varying Hamming
distance for the length of the motif 15,17, 19, 21, 23 as
showed in Fig. 4-8, respectively. With the increasing

207 4 pms 6/proposed algorithm
—m—qPMS 7/proposed algorithm
159 _a PMS B/proposed algorithm
g od ™ PMS 9/proposed algorithm 2
3 10-
@
5
0

(15',5) (17:6) (19',7) (21:3) (23:9)

Size of planted motif for different value of 1,d

(13:4)

Fig. 2: Speedup of the proposed algorithm over the well
known existing algorithms as a function of (1, d)
motifs for different values of 1 and d

—e—Proposed algorithm on one CPU
-B-Proposed algorithm on two CPU
—i—Proposed algorithm on four CPU

1s5.3)
Matif instances for different values of (1,d)

azey  a%n 2Ly 2Ly

Fig. 3: Running time comparison of proposed algorithm
on different number of processor(s) (1P, 2P,4P) as
a function of (1, d)

309 —+—Proposed algerithm on one CPU
—B-Proposed algorithm on two CPTJ
= 2 —A—Proposed algorithm on four CPU
H)
[*]
E 101
v}

(15,3) (15,4) (15,5)
Motif instances for different values of d for fix 1

Fig. 4: Running time of our proposed algorithm on one,
two and four CPU (1P, 2P, 4P) forl =15asa
function of hamming distance of motifs

100 —*Proposed algorithm on cne CPU
-B-Proposed algotithm on two CPU

-&-Proposed algorithm on four CPU

0 T 1 1
(17.4) (17.5) (176
Motif instances for different values of d for fix 1

Time (sec)

Fig. 5: Ruming time of our proposed algorithm on one,
two and four CPU (1P, 2P, 4P) for 1 = 17 as a
function of Hamming distance of motifs

209  —e-Proposed algotithm on one CPU
-&-Proposed algorithm on two CPU
—&-Proposed algorithm on four CPU

\ F___’___—__—:,_—é
(19.5) {19,6) (19,7

Motif instances for different values of d for fix 1

Time {min)
=

Fig. 6: Ruming time of our proposed algorithm on one,
two and four CPU (1P, 2P, 4P) for 1 = 19 as a

function of Hamming distance of motifs

=4-Proposed algorithm on one CPU
-B-Proposed algorithm on two CPU

"’ .//
20 /

0 L L} 1
21,7 {21,8) 21,9
Motif instances for different values of d for fix 1

Time (min)

Fig. 7: Running time of our proposed algorithm on one,
two and four CPU (1P, 2P, 4P) for 1 = 21 as a

function of Hamming distance of motifs

3 = ~*Proposed algorithm on one CPU
-&-Proposed algorithm on two CPU
=2 -&-Proposed algorithm on four CPU
<=
[
é ! -/.//’.
—— .
0

(23,8) 239 (23,10)
Motif instances for different values of d for fix 1

Fig. 8: Running time of our proposed algorithm on one,
two and four CPU (1P, 2P, 4P) for 1 = 23 as a
function of hamming distance of motifs
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Hamming distance the curve indicates that the processing
time has linear growth as the number of processors
Increases.

CONCLUSION

We present one efficient, simple, parallel bit vector
approach for determining planted (1, d) motif. We 1nitially
mtroduced a fundamental way of getting the motif and
then we do some modification which enhances the
performance of the algorithm with less memory
requirement. Although the bit vector has high memory
requirement we minimize the use of memory by
introducing the cumulative approach to higher sized
l-mers. Use of bit vector sunplifies the umon and
mtersection of common neighborhoods. Here we elimmate
the solving of any TLP instances and use of any lookup
tables which minimise the memory consumption. The
proposed parallel algorithm distributes the tasks of
finding planted (1, d) motif from a set of sequences evenly
among all the process in the cluster. Our experimental
result justifies our clamm that our proposed parallelization
method on SMP cluster improves the running time over
existing exact sequential and parallel algorithms. The
experimental result on biological data demonstrates that
our proposed algorithm competes in comparison to other
exact algorithm.
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