Asian Journal of Information Technology 15 (23): 4800-4805, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

Test Case Generation for Pairwiset+Testing

V. Chandra Prakash and Kadiyala Priyanka
Faculty of Computer Science and Engineering, KL University, Guntur Andhra Pradesh, India

Abstract: Software system faults can be completely detected only through exhaustive testing. But, it cannot
be performed on many of the real-life systems because it may be too expensive as it may consume an enormous
amount of time. The t-way combinatorial testing enables testing to be performed at low cost and less time. The
value of t starts from 2 and takes 3, 4, 5 and so on. As the value of t increases, the size of the test suite increases
and thus it takes more time for testing the system. In pairwise testing (t = 2), every pair of parameter values in
the input domain 1s covered by at least one test case. It 18 highly effective in detecting up to 70% of faults
triggered by a system. In 3-way testing, every triple of parameter values in mput domain 1s covered by at least
one test case. It can detect up to 90% of faults triggered by a system but the size of test suite 1s relatively larger.
Therefore, pairwise testing is widely used in industry. When a test suite is generated for pairwise testing, it may
contain a lot of gaps. The gaps have to be filled with some arbitrary values in order to proceed for testing. Tn
this paper, we present an approach called pairwise+ testing in which the gaps n the test suite are filled m such
a way that many of the triples that are useful for a 3-way testing are accommodated in the test suite. Thus the
test suite generated for pairwise testing is enriched to cover a part of 3-way testing. Depending on the amount
of coverage, the percentage of failures triggered by pairwiset testing can be estimated to be anywhere within

the range of 70 and 90%.

Key words: Combinatorial testing, pairwise testing, pairwiset testing, test case generation, 3-way testing

INTRODUCTION

Innovations and new functionalities lead to
tremendous growth n software applications over the past
few years. Testing plays a vital role for these applications
during software development process. By detecting faults
in the system, it prevents disastrous consequences such
as loss of data, fortunes and even lives. In order to detect
faults, the functionality of the system 1s to be tested
against the input domain. For this purpose, exhaustive
testing 1s required. But, it i3 an expensive, time and
resource consuming operation even if the system to
be tested has fewer input parameters and wvalues.
Therefore, it is mandatory to reduce the size of a test suite
n a systematic way. To address this issue, the focus 1s
emphasized on sampling techniques that are based on
interaction testing which is also called as t-way testing,.

Combinatorial testing: Combinatorial testing is one of
the software testing methods. It 15 also called as t-way
testing. Tt detects the faults based on interaction between
input parameters which in tum covers interaction between
system components. It provides a systematic way to
select combmations of system puts for testing. It

requires every combination of any t input parameter
values to be covered by at least one test case. Given
these combinations as input to the system, the expected
output should be any one of the functional behaviors of
the system. If the actual output is in contrast with it, the
system contains a bug. Combinatorial testing is
proved to be an effective testing techmque to test the
hardware or software which detects faults in the system.
It has been used to test input domain, configurations, web
forms, protocols, graphical user interfaces, software
product lines, etc.

Combinatorial testing can be broadly applied at two
levels (Kuhn et al, 2013). Level 1 is combinations of
configuration values and level 2 is combinations of input
values. They can be applied on both levels at the same
time or separately. The number of possible combinations
of values for a system with n parameters, each having d
values is d". Kuhn and Kacker (2011) wrote a handbook
on combinatorial testing which discusses the topic in
detail.

T-way testing: T-way testing is one of the strategies in
combinatorial testing (Lei et al., 2007). It requires that
every combination of any t parameter values to be

Corresponding Author: V. Chandra Prakash, Faculty of Computer Science and Engineering, KL University, Guntur,

Andhra Pradesh, India

4800

Asian J. Inform. Technol., 15 (23): 4800-4805, 2016

Fig. 1: Algorithm pairwise+ testing

Table 1: A pairwise test suite for 4 2-valued parameters

Test case No. A B C D

1 Al B1 Cl D1
2 Al B2 C2 D2
3 A2 B1 C2 D2
4 A2 B2 Cl D1
5 - - Cl D2
6 2 D1

covered by at least one test. T is the strength of coverage
and usually takes values as 2-4 and so on. T-way testing
reduces the size of the test suite compared to exhaustive
testing. For example, a system with 20 parameters each
having 10 values requires 1020 tests for exhaustive testing
but only 180 tests for t-way testing (where t = 2 | 1.e.,
pairwise testing) (Cohen ef al., 2003).

Pairwise testing: In t-way testing, if the value of t 13 2, 1t
is called pairwise testing. It is also known as 2-way
testing or all-pairs testing. Tt is widely used in industry. It
requires that, every pair of parameter values m the input
domain is covered by at least one test case. To illustrate
pairwise testing, consider the following example system
with 4 2-valued parameters i.e.:

¢ Parameter A has two values Al and A2
+ Parameter B has two values Bl and B2
¢ Parameter C has two values C1 and C2
s Parameter D has two values D1 and D2

Equation 1 shows all the 24 possible pairs for the
given input parameters:

[T= A set of triples = 3-way combinations of values involving parameters P,, P, ...,and P,
Algorithm Pairwise+(TestSuite t,) {

1. Generate test suite t, for pairwise testing using any strategy;

2. if (the test suite t, doesn’t contain a don't care) exit;

3. Generate /7 containing a set of triples;

4. Remove all the triples from /7 that are already covered in t_;

5. for each triple in /7

6. { foreach test casein t,

7. { if (the test case contains a don’t care)

8. { if (the triple can be accommodated in the test case)
9, { Accommodate the triple in test case;

10. Remove the accommodated triple from I7;

11. } // endifatline 8.

12. } // endifatline 7.

13 } // end forat line 6.

14. } // endforatline 5.

15. retumt,;

(ALBINALB2)XA2,BIA2,B2)(ALCINALC2)
(A2,C1)(A2,C2)(A1,DIYALD2)(A2,DI)A2,D2)
(B1,C1NBLC2XB2, C1)(B2,C2)BL, DIXBL D2)
(B2, D1)(B2,D2)(C1, DIYC1,D2)(C2,D1)C2,D2)

Possible pairs for 4 2-valued parameters: To give each
pair as input to the system is a difficult task when there
are many parameters and values. Therefore, there are
many approaches like AETG, IPO, ACTS, etc. to build an
optimal test suite. The test suite for the above example
using TPO strategy Lei and Tai (1998) is shown in Table 1.
In the test suite, each row represents a test case and each
column represents an input parameter. It can be verified
that all the possible pairs given in Fig.
accommodated (covered) shown in Table 1.

1 are

The 3-way testing: Faults can also be caused by
interaction of more than two parameters (Kuhn and Reilly,
2002; Kuhn et al., 2004). In order to effectively detect
those faults, it 15 necessary to use higher strength
coverage testing. Higher strength coverage takes the
value of tas 3, 4, 5 and so on. In t-way testing, if the value
of t 18 3, it 1s called 3-way testing. In thus type of testing,
every triple of parameter values in input domain is
covered by at least one test case. 3-way testing can detect
up to 90% of faults triggered by a system but the size of
test suite 1s relatively larger than that of pairwise testing.
To illustrate 3-way testing, let us consider the system
mentioned m section 1.3 1e., a system with 4 2-valued
parameters. Similar to pairs in pairwise testing, we
generate triples. The possible triples for the considered
example are as shown in Eq. 2.

4801

Asian J. Inform. Technol., 15 (23): 4800-4805, 2016

Table 2: The 3-way test suite for 4 2-valued parameters

Test case No. A B C D

1 Al Bl 1 D1
2 Al Bl 2 D2
3 Al B2 C1 D2
4 Al B2 c2 D1
5 A2 Bl C1 D2
6 A2 Bl 2 D1
7 A2 B2 1 D1
8 A2 B2 c2 D2

{{A1,BLCI){A1,BLC2)(ALB2,C1)
(A1,B2,C2)(A2,BLCI)A2,BLC2)
(A2.B2,C1(A2.B2,.C2){ALBLDI)
(A1,BLD2)ALB2,DIYALB2,D2)
(A2, BLDI)NA2,BLD2){A2,B2,Dl)
(A2.B2.D2)BLCLDINBLCLD2)
(B1,C2.D1)(BLC2,D2)B2,C1, D)
(B2.CLD2)(B2,C2,D1NB2.C2.D2)

Possible triples for 4 2-valued parameters: There are 24
possible triples. Table 2 shows a 3-way test suite in which
all the triples are covered.

Don’t cares: In Table 2, test case 5 contains don’t care
represented with ‘- in column A (parameter A). It does
not have any value. Similarly, we can find don’t care in B
column of test case 5 and A, B columns of test case 6.
Without filling these don’t cares, the test suite cannot be
used for testing the System Under Test (SUT). Therefore,
they have to be filled with any valid value of the
corresponding parameter. One of the approaches used to
fill a don’t care 1s to fill it with a randomly selected value
of corresponding column. For example, n test case 5 of
Table 1, the first don’t care occurs m parameter A. It can
be filled with A2, a valid value randomly chosen from the
set of values of parameter A.

Problem: In pair wise testing, when generating test cases
we may find a lot of gaps (don’t cares). They have to be
filled by any random values to proceed for testing. To
llustrate this, consider a system with 4 parameters A, B,
C and D where

. A has two values Al and A2

+ B has four values Bl, B2, B3 and B4
¢+ (C has one value C1

. D has four values D1, D2, D3 and D4

The test suite for such a system 1s as follows: The above
test suite contains 25% of don’t cares. The approach
described to fill don’t cares in section 1.5 is totally
acceptable for pairwise testing. But, after filling the don’t
cares also, the test suite can detect only up to 70% of

faults triggered by a system. Can we increase the
percentage of fault detection of a test suite? If yes, does
the size of the test suite increase? How to enrich the test
suite?

Literature review: Combinatorial testing is one of the
most interesting research topics. Tt is being enhanced
from vear to year over the past 20 year. Imtiating from the
proposal of different testing approaches (AETG, IPO,
IPOG, IPO-s etc) and applymng them to different
applications (Traffic collision avoidance system, Personal
identity verification etc.), many worlks have been studied.
Few of them are mentioned in this study.

Mandl (1985) introduced Orthogonal Array Testing
Strategy (OATS). It considers the system to be
orthogonal when factors influencing the system are
independent of each other. Tt uses “Orthogonal Latin
Squares” to generate optimal test suite which covers all
possible pairwise interactions.

Cohen et al. (1996, 1997) proposed an Automatic
Efficient Test Generator (AETG) system. It uses a
greedy algorithm to build the test suite which
repetitively adds one test at a time until all the
combinations of input domain are covered. They also
explained that the number of test cases grow
loganithmically as the number of parameters of a system
nerease.

Lei and Tai (1998) propoesed an In-Parameter-Order
(TPO) strategy which also uses a greedy algorithm to build
a pairwise test suite. Tt starts from the combinations of
first two input parameters and then covers the
combinations of first three parameters and proceeds this
way until combinations of all parameters are covered. This
strategy achieves lower order complexity than AETG
strategy.

Kuhn and Okum (2006) mvestigated on
pseudo-exhaustive testing for software systems by
considering the real-world examples Traffic Collision
Avoidance System (TCAS) and Personal Identity
Verification (PTV) smart card.

Lei et al. (2007, 2008) of National Institute of
Standards and Technology (NIST, a US organization)
proposed an approach called [POG (G 1s short for
Generalization). As TPO considers only pairwise
testing, IPOG considers t-way testing where t 1s the
strength of coverage. They also introduced a tool
called fire eye a t-way testing tool.

Calvagna and Gargantini (2009) proposed TPO-s
approach which is a parameter-based heuristic algorithm
for the construction of pairwise covering test suites. The
construction of test suite 13 based on symmetries of
COVering arrays.

Kuhn et al. (2009) have investigated on random vs
combinatorial methods for discrete event simulation of a

4802

Asian J. Inform. Technol., 15 (23): 4800-4805, 2016

grid computer networlk. Tn their study they explained that
random generation of inputs in detecting deadlocks leads
to exhaustive testing because deadlock may occur
mvolving any number of parameter interactions and this
is not known in advance. Therefore they proved that
combinatorial methods provide better way for deadlock
detection in different network configuration systems.

In 2010, Raghu N. Kacker mvestigated on advanced
combinatorial test methods for system reliability. They
calculated the number of failures detected for different
systems like Medical devices, Browser, Server, NASA and
Network Security when testing using t-way testing where
t takes the values ranging from 2-6. The study revealed
that on an average, 2-way detected 70% of faults triggered
and 3-way detected 90% of faults triggered. The 4-way to
6-way detected higher values reaching up to 100% of
faults triggered.

Kuln and Kacker (2011) proposed combinatorial
(t-way) methods for detecting complex faults in
Regression testing. They introduced a new strategy
which automatically generates tests suite covers complex
combination of values or analyze existing test suites.

Kuhn and et ad. (201 1) applied combinatorial methods
for event sequence testing. They say that the order of
occurrence of n distinct events 1s also important. They
tested t-events in every possible t-way order.

Yu et al. (2013) introduced the ACTS tool. ACTS 1s
used to construct t-way combinatorial test suites
where the value of t ranges from 1-6. It 15 a freely available
tool which can be downloaded and installed on any
systerm.

Duan et al. (2015) proposed an approach which
mnproves the IPOG’s vertical growth based on a graph
coloring scheme. They considered the vertical growth
problem as a “Minimum Vertex Coloring”. By applying a
greedy coloring algorithm for wvertical growth they
determined the order i which missing tuples are
covered.

MATERIALS AND METHODS

The pairwise+ testing approach: Pair wise testing 1s more
widely used than 3-way testing because the number of
test cases for 3-way testing 1s relatively larger. For
example, consider a system with 4 6-valued parameters.
When we use ACTS tool, the number of test cases
generated for pairwise testing is 49 where as the number
of test cases generated for 3-way testing is 408. As 3-way
testing needs many test cases, it 1s expensive and time
consuming. Therefore, pairwise testing is mostly

preferred. But, 3-way testing can detect up to 90% of
faults triggered by a system where as pairwise testing can
detect up to 70% of faults triggered by a system. In such
a situation, to gain benefits of both pairwise and 3-way
testing, we propose a new type of combinatorial testing
called “Pairwiset testing” which can detect 70-90% of
faults triggered by the system without increasing the
number of test cases generated for pairwise testing. In
addition, the cost and time required for testing are same as
pairwise testing. Our approach fills don’t cares n an
efficient way. Tt generates the test suite with minimal don’t
cares.

We consider the triples for the system with the same
input domain that are used for pairwise testing. The test
suite for pairwise testing naturally covers some of the
triples. Our algorithm tries to accommodate as many
uncovered triples as possible in the test suite. The don’t
cares are filled with values such that more number of
uncovered triples are accommodated. Figure 1 1s the
algorithm for the pairwise+ testing.

RESULTS AND DISCUSSION

Consider the example system in section 1.6. Tn
Table 3, test case 9 contains don’t care in column A and
column C1e., (-, Bl, -, D2). Don’t care in columns A can
be filled by the value Al whereas don’t care in column C
can be filled by the C1. Therefore the test case (Al, Bl,
C1, D2) covers the triples (A1, Bl, D2)and (B1, C1, D2).
Repeat the same procedure for the test cases 10-16
and fill don’t cares with valid values such that they
contain uncovered triples. This decreases the number of
don’t cares in the test suite and sometimes the
resulting test suite may not contain any don’t cares at all.
For our example, the number of triples that can be
generated is 56. Table 4 iz the test suite after
accommodation of the triples.

As shown m Table 4, all 40 triples are accommodated
in the test suite and there are no don’t cares left to
accommedate more triples. The percentage of triples
accommodated is 71.5%. Therefore, 71.5% of 3-way
testing 1s said to be covered in the test suite of parwise
testing. As investigated by Kuhn et al (2012), on an
average, the percentage of failures triggered by pairwise
testing 1s 70% and 3-way testing 13 90%. Since our
approach covers 71.5% of 3-way testing in pairwise
testing, the percentage of failures triggered by our test
suite is estimated to be 85%. For some examples, the
percentage of triples accommodated range between
70 and 90% which covers up to 3/4th of 3-way testing.

4803

Asian J. Inform. Technol., 15 (23): 4800-4805, 2016

Table 3: Test suite with mary don’t cares

Test case No. A B C D

1 Al B1 Cl D1
2 Al B2 Cl D2
3 Al B3 Cl D3
4 Al B4 Cl D4
5 A2 B1 Cl D4
6 A2 B2 Cl D3
7 A2 B3 Cl D2
8 A2 B4 Cl ™
9 - B1 - D2
10 - Rl - D3
11 - B2 - D1
12 - B2 - D4
13 - B3 - D1
14 - R3 - D4
15 - B4 - D2
16 - B4 - D3

Table 4: Test suite after triple accommodation

Test case No. A B C D

1 Al Bl 1 D1
2 Al B2 C1 D2
3 Al B3 1 D3
4 Al B4 C1 D4
5 A2 Bl 1 D4
6 A2 B2 C1 D3
7 A2 B3 1 D2
8 A2 B4 C1 D1
9 Al Bl 1 D2
10 Al Bl C1 D3
11 Al B2 1 D1
12 Al B2 C1 D4
13 Al B3 1 D1
14 Al B3 C1 D4
15 Al B4 1 D2
16 Al B4 C1 D3

Table 5: Comparative results for IPO and Pairwiset

Variable 51 52 53 54 S5
IPO (Don’t cares) 14.00 3600 18.00 75.00 168.0
Pairwiset+ (Don’t cares) 0.000 4.000 6.000 2.000 30.00
3-way testing covered (%) 70.58 76.66 79.31 87.56 90.12

Therefore, the percentage of fault detection of our test
suite 1s estimated to be 85%. Note that the size of the test
suite 1s same as pairwise testing. In this way, the test suite
can be enriched. For analysis, consider the systems 51-S5.
The exponential notation used to represent the size of
mput domain by Hartman and Raskin (2004) 15 used here,
that 1s means a task with n parameters of range d
(Table 5):

S1:20.3.1,5,, 82:2°,5°

$3:2',6',1,3",84:2",5' 1 5°

85:2',6.1.6

CONCLUSION
In this study, we introduced a new approach called

“Pawrwise+ testing”. The algorithm 15 based on the
mnovative idea of accommodating triples in test suite of

pairwise testing. In this approach, we have
accommodated the maximum number of triples into the
test suite.

IMPLEMENTATION

We have implemented tlus testing approach
which 1s written 1n Java. As shown i Table 5, the
results were most excellent by covering more than half
percentage of 3-way testing in pairwise testing. Therefore,
pairwiset testing can replace pairwise testing wherever it
15 used. In future, there 1s a scope of enhancing the
existing algorithm or propose a new algorithm which may
cover more percentage of 3-way testing in pairwise
testing.

REFERENCES

Calvagna, A. and A. Gargantim, 2009. IPO-s: Incremental
generation of combinatorial mteraction test data
based on symmetries of covering arrays.
Proceedings of the International Conference on
Software Testing, Verification and Validation
Workshops ICSTW'09, April 1-4, 2009, IEEE,
Denver, Colorado, ISBN: 978-1-4244-4356-7, pp:
10-18.

Cohen, DM., SR. Dalal, I. Parelius and G.C. Patton, 1996.
The combinatorial design approach to automatic test
generation. TEEE. Software, 13: 83-88.

Cohen, D.M., SR. Dalal, M.L. Fredman and G.C. Patton,
1997. The AETG system: An approach to testing
based on combmatorial design. IEEE Trans.
Software Eng., 23: 437-444.

Cohen, MB., PB. Gibbons, W.B. Mugridge and
C.J. Colbourn, 2003. Constructing test suites for
interaction testing. Proceedings of the 25th
International Conference on Software Engineering,
May 3-10, 2003, IEEE, New Zealand, ISBN:
0-7695-1877-X, pp: 38-48.

Duan, F., Y. Lei, L. Yu, RN. Kacker and D.R. Kuhn, 2015.
Improving TPOGs vertical growth based on a graph
coloring scheme. Proceedings of the 2015 IEEE
Eighth Intemational Conference on Software
Testing, Verification and Validaton Workshops
(ICSTW), April 13-17, 2015, TEEE, Graz, Austria, pp:
1-8.

Hartman, A. and L. Raskin, 2004. Problems and algorithms
for covering arrays. Discrete Math., 284: 149-156.

Kuhn, D.R. and M.J. Reilly, 2002. An investigation of the
applicability of design of expermments to software
testing. Proceedings of the 27th NASA/EEE
Software Engineering Workshop, Dec. 5-6, IEEE
Computer Society, Washington DC., USA., pp:
69-80.

4804

Asian J. Inform. Technol., 15 (23): 4800-4805, 2016

Kuhn, DR. and V. Olkum, 2006. Pseudo-exhaustive
testing for software. of the
30th Annual IEEE/NASA Software
Engineering Workshop, April 24-28, I[EEE
Computer Society, Washington DC., USA., pp:
153-158.

Kuhn, DR., DR. Wallace and AM. Gallo, 2004.
Software fault interactions and implications for
software testing. TEEE. Trans. Software Eng., 30:
418-421.

Kuhn, D.R., T.M. Higdon, I.F. Lawrence, RN. Kacker
and Y. Lei, 2012, Combinatorial methods for
event sequence testing. Proceedings of the 2012
[EEE Fifth
Software Testing, Verification and
Validation, April 17-21, 2012, IEEE, Montreal,
Quebec, Canada, [SBN: 978-1-4577-1906-6, pp:
601-609.

Kulm, DR., R. Kacker and Y. Lei 2009. Random
vs. combinatorial methods for discrete event

networlk.
Proceedings of the Conference on Mod Sim
World, October 14-17, 2009, National Aeronautics
and Space Administration, Virginia Beach, Virginia,
pp: 14-17.

Kuln, D.R., RN. Kacker and Y. Le1, 2013. Introduction to
Combinatorial Testing. CRC Press, Boca Raton,
Florida, Pages: 309.

Proceedings

International Conference on

simulation of a grid computer

4805

Kuhn, R. and R. Kacker, 2011. Practical combinatorial
(t-way) methods for detecting complex faults in
regression testing. Proceedings of the 2011 27th
IEEE International Conference on Software
Maintenance (ICSM), September 25-30, 2011, IEEE,
Williamsburg, Virgima, ISBN: 978-1-4577-0663-9, pp:
599-599.

Lei, Y. and K.C. Tai, 1998. In-parameter-order: A test

generation strategy for pairwise testing.
Proceedings of the 3rd IEEE International
Symposium on High-Assurance Systems

Engineering, November 13-14, 1998, Washington
DC.USA., pp: 254-261.

Le1, Y., R. Kacker, D.R. Kuhn, V. Okun and J. Lawrence,
2007. TPOG: A general strategy for t-way software
testing. Proceedings of the 14th Annual IEEE
International Conference and Workshops on the
Engmeering of Computer-Based Systems, March
26-29, 2007, Tucson, AZ., pp: 549-556.

Lei, Y., R. Kacker, D.R. Kuhn, V. Okun and J. Lawrence,
2008. TPOG/IPOG-D: Efficient test generation for
multi-way combinatorial testing. Software Test.
Verification Reliab., 18: 125-148.

Mandl, R., 1985. Orthogonal Latin squares: An
application of experiment design to compiler testing.
Commun. ACM., 28: 1054-1058.

Yu, L., Y. Lei, RN. Kacker and D.R. Kuhn, 2013. Acts: A
combinatorial test generation tool. Proceedings of
the 2013 IEEE Sixth Intemnational Conference on
Software Testing, Verification and Validation, March
18-22, 2013, TEEE, Luxembourg, ISBN:
978-1-4673-5961-0, pp: 370-375.

	4800-4805_Page_1
	4800-4805_Page_2
	4800-4805_Page_3
	4800-4805_Page_4
	4800-4805_Page_5
	4800-4805_Page_6

