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Abstract: Next Generation Wireless Network is Internet Protocol(TP) based that supports any time anywhere
service and provide “Always Best Comnected” (ABC) state. For real time multimedia service (eg: Video
streaming, video conferencing, IPTV and online gaming) high Quality of Service (QoS3) should be guaranteed
with minimum delay, packet loss and jitters etc. Since NGNzs is a ubiquitous wireless communication system
seamless mo-bility need to be there to have a continuous service. Different technologies are integrated in to
the NGNs and the frequent handover will be there with different technologies and therefore QoS need to
maintain. Traffic in the network can be modeled in such a way that it should reduce the delay packet loss and
jitters in the NGN environment. Conventional traffic modeling used to model the networks Poisson or
Markovian process is inappropriate to model traffic in the networks. The time series Fbm, FGN or FARIMA can
be used as traffic model to model the bursty traffic m the network. The FARIMA (p, d, q) 1s the best fit to model
long range dependency as well as the short term dependency traffic in network and predit the future traffic from
the present and past traffic. If we are able to predict the traffic in advance resource (mainly bandwidth) can be
allo-cate in advance. Network performance like queue length, queue delay, loss probability etc can be anaylsed.
Expermental result shows the reduction in buffer size and packet loss so as mamtaine QoS in the network For
the queueng analysis and simulation has been done with large deviaton tech-miquie which represent the rare

events occur in the most likely way.
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INTRODUCTION

Next generation networks are TP based infrastructure
that supports heteroge-neous access technology. The
network would have a service provider which 1s equipped
with multiple mterfaces in the network. User can operate
n cellular network technology and get handed over to a
satellite based network and back to a fixed wireless
network, depending upon the network coverage and
prefer-ence of charging (Adas and Mukherjee, 1995). The
service provider which is equipped with multiple
mterfaces (WiMAX, WLAN, GPRS etc) in the network
has seamless mobility. The seamless mobilty i the
networks will provide frequent handover from one
technology to another. The real time application in the
protocol level have stri-gent Quality Of Service (QoS)
parameters (like mmimum delay, mimnum packet loss) will
degrade performace of the network.If resource is allocated
(mainly bandwidth) effiently, performance in the network
can be improved so as to main-tain QoS given by the
Service Level Agreement (SLA). Modeling the traffic can
improve the resource allocation in the network
(Leland et al., 1994). Conventional method used to models

the traffic are PoissionMarkoivn model or time series
models like AR, ARMA, ARTMA models (Paxso and
Floyd, 1995; Garrett and Willinger, 1994). These models
are mappropriate to model the bursty traffic m high speed
network with high bandwidth requirement and high
variability. The high vanabilty exhibits burstiness (peak
rate/mean) for aggre-gated traffic can be described as a
stochastic process with self similarity prop-erty. The
persiestence at a wide range of time scale in arrival traffic
input can be charaterised by property the Auto
Correlation Function (ACF) will never di-verge to zero for
large lag 1e long range dependency; spectral density
increases as with frequency.

Traffic modeling in the next genration networks
should timely deliver real-time packets while minimizing
packet losses virtually error-free transmission of non-real
time packets good average delay and throughput
performance of non-real time trace utilizing the bandwidth
left unused by realtime trace fair usage of a channel for
non-real-time trace among mobiles and low latencies for
non-real-time packet transmissions and real-time
connection setup and in handling handoff requests. The
real time traffic having high variabilty and burstness over
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Fig. 1: Burst traffic

wide range of time scale and traditional traffic modeling
smoothed by
averaging over a long enough time scale as shown
in Fig. 1. The failure of the poisson model may results in
the underestimation of the traffic burstiness and have
greater impact mn network performance mcluding larger

like Poisson or Markovian process

quewng delay and packet loss rate.

To model the traffic the packet arrived in the network
can be considered as a stochastic process with time series
X.(t) which is continues time or discrete time series and
traffic can be viewed as a process defined by a set of
packet arrival times t,, t,... The traffic in a network can be
analyzed as Poisson pro-cess with inter arrival time in the
network A with an exponetial parameter ft arrival rate
and this is given by P (A,.) = 1- exp(™) is as an identical
independent process (iid) random variable with mean
arrival rate 1/A4 and mean service 1/u. The packet
mterarrival times in the next generation networks are
described by marginal distributions with heavy tail rather
than that of the ex-2 ponential. Aggregate number of
packets and bytes in time exhibit correlations over large
time scales (1.e., long-range dependece) and self-similar
scaling prop-erties. Poisson arrival processes are quite
limited in their burstiness, especially when multiplexed to
a high degree. Wide-area traffic is much burstier than
Poisson models predict, over many time scales. This
greater burstiness has im-plications for many aspects of
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congestion control and traffic performance. The real VBR
traffic analysis exhibits persistence with burstiness and
nonstation-ary properties (1e., this will not have a
constant mean and variance). Poisson processes which
memeoryless process lose their burstiness and flatten out
when time scales are changed as shown in Fig. 2 and this
model 13 inappropriate for the real time VBR traffic. The
video VBR traffic in the network has both Long Range
Depedency element (LRD) and Short Range Dependency
(SRD) element so self-similarity model like fractional
browian motion or fraction gaussian model are ineffeicent
to model VBR traffic in the network ‘We are using
FARIMA an asymptotic self similarity to model the traffic
in the network. The three variable m the model can model
both SRD and LRD. FARIMA can predit the future traffic
from the present and past information. The queue
simulation can be done using large derivation.

MATERIALS AND METHODS

Self similarity, long range dependency and heavy tailed
distribution: The real time traffic have significant vanance
{(burstiness) on a wide range of tume scale. The burstiness
in wide range can be represented stastically using self
similarity charaterstic (Leland et al., 1994; Erramilli et al.,
1996). The self-similarty commonly used to capture the
fractal behavior of traffic model which 13 a ubiquitous
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Fig. 2: Example for ethernet traffic for self similarity model

pheneomenon in next gen-eration traffic networles (Adas
and Mukherjee, 1995) and the network traffic behaviour
can be analysed as a stochastic time series data in
distributional sense. For real time multimedia traffic in next
generation network shows burstiness in wide range of
time scale as shown m Fig. 2. High variability and
persistence in the packet arrivial exhibits both correlation
and burstiness. This can be represented as self similarity
pro-cess. The inter arrival time to the network can be
represented as stochastic time process  X(t)
with constant mean 1, variance 0.’ and the autocerelation
function (ack) p(k) = E[Xe p}Xe-hVEI(Xei], k=0, 1, 2.
The se-ries X(t) when aggregated over m non overlapped
block size x* = (3¢, k=1,2,3,. )as P(k) = kP L (k)1
where 0 <p<1 and L is slowly varying at infinity as

series

AR00 60000 BORO0

LimL(xVL{x) (x)=1. For an aggregated traffic with m non
overlapping block size can be represented as X,*” = 1/m
(K1t X0). The process 1s exactly (second order) self
similar with X" if the p®(k)-p(k), k>0 forallm =1,2,.. k.
Fractional Browian Motion is an example of exactly
(second order) self similar model. Asymptotically self
similar as p™(k)~p(k) as m-eand FARIMA time series
model is an example of this model. The main features of
self similarity is the variance of the sample decrease very
slowly, the autocorrelation function decay hyperbolicaly
(LRD) rather than exponential, the spectral density obey
power law behaviour.defines the property of so-called
Long-Range Dependence (LRD). High speed traffic in the
NGN shows persistence and slowly decaying correlation
and this can be described as long range depe-dency. The
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long range dependence or long memory, the
autocorrelation function of a stochastic time series decays
slower than an exponential in time. The aggre-gated traffic
with wide range of time scale exlubit long-range
dependence with the acf asymptotically equal to: X
(mt) = m"X(t).

Self similarty along with Long memeory process or
long range dependency process can be measured by
Hurst parameter. The value of H, 0.5<H>1 mean the
process 1s having high self similarity with long range
dependency. Major cause of persistence 1s due to heavy
tail packet arrival traffic mn the net-works and this can
degrade the queueing performace.So the QoS parameter
such as paclket delay, lost packet and jitter depend on the
queueing performance. The random variable in the bursty
traffic will show a heavy tail distribution. P [Z > x] ~ ex™
This we can find wsing the probabilty density
function.The self similarity have a hyperbolically
decaying covariance function of the following form p(k)
= K™L{1) as k-o] where L(t ) is the function slowly
variable at infimty as this will show the process long
range dependenc Lim, ,L(&)L = 1° the covariance function
15 nonsummable al” the series formed by sequential
values of the covanance function diverges as X
p(l) = . A covariance stationary process X is called
asymptotically (second-order)
similarity parameter capthuring the persistence phenomena

self-similar with self

observed empirically in many modern highspeed
networks. High speed traffic in the networlk exhibit
perisestence due to high variability and correlation ie the
armiving current packet value strongly depends upon the
past values of a stochastic process. The empiri-cal
marginal distributions are typically not Gaussian, they
tend to be skewed to the right and the tail behaviour of
the marginal distribution can be accu-rately described
using the heavy-tailed distributions. So, the meodel
proposed is the FARTMA with stable innovation. For an
infinite variance process the d value depends on H-1/ct
where ¢ is tail index of heavy tailed distribution. Tn high
speed networks multimedia traffic the packet interarrival
time can be described as a marginal distribution with an
heavy tailed rather than an expo-nential. The probabilty
density function of this traffic 1s normally skewed to the
left (lowest values). Due to burstiness in the traffic, this
will show lgh vanabilty and whose activity period
follows heavy tailed distribution may be caused by LRD.
The Heavy-tailed distributions characterise long-memory
processes with strong time-dependence structures that
vanish very slowly. The heavy tailed distribution is
asymtotically self similar and the this asymtotically self
similar x® = xasm-eo this define the LRD and has the

asymptotic form. Infinite variabilty in the networks shows

high burstiness and the major cause of bursti-ness heavy
tailed distribution. The p(x) ~ cl*where ¢ = 0, 1 and
H = 1-1/e. A random variable X follows a heavy-tailed
distribution (with tail index ):

P(X>=x)=cx™

The infinite variance is given by the tail of the
distribution that is given by = and the value is in between
l<@<2. The heavy tailed distribution is stable ¢ and this
is sum of Gaussian iid infinte variance random variables
generalized by the central limit theory:

2y = k° LK), k — o=, 0<B<1

Several studies shows that the long-range
dependence may be caused by heavy tailedness of certain
traffic characteristics like file size and web application.
Both long range dependency and self similarity are
associted with heavy tail behaviour. The heavy-tailed
distribution is the root cause of LRD and self-similarity.
Different mathematical models are their to represent the
self similarity, long range depedency and heavy tailed
distribution.

Indroduction to time series model: A time series is a set
of observations generated sequentially in time and this
can be consider as stochastic process with equispaced N
dimesional random variable x,, X, X; .., X, with a
probabilty density function p(x,, x,, X5, ..., %y ) (Basu and
Mukherjee, 1996). The process can be either stationary or
nonstationary. Stationary process means the marginal
distribution of the process does not change with time. We
can find stationary in the series using Dickey-Fuller
(Basu and Mukherjee, 1996). Mostly VBR traffic signal
non-stationary with varying mean and variance. If a time
series 1s nonstationary then the auto correlation function
will never cut off nor die quickly but will slowly decay to
zero. Time series models like ARMA and ARIMA
processes are inherently short-range dependent models,
incapable of parsimoniously capturing the persistence
phenomena observed empirically in many modern high
speed networks ARMA and ARIMA processes have
autocorrelation functions which decay geometrically in
the lag, namely, (n)*for some 0 <r<1 as n ~¢. Traffic in the
network can either be stationary or nonstatinonary,
stationary the mean value of the process remain in
equilibrumi about the a constant mean level we can find
stationarty in the series tatking the charatistic equation of
the polynomial. Mostly multimedia data will exibit
nonstationary behaviour and this we can find by verify
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polynomial if the value greater than unit circle then the
series is a stationary if we differcate d times the series will
become a stationary series and we can fit the series.

RESULTS AND DISCUSSION

Fractional arima time series model: FARIMA 1s an
extention of classic ARMA model and this is flexible to
model both short term and long term correlation structure
of a series (Leland et al, 1994). Both lower frquency
componets as well as higher freqency can be fitted using
one or two parameters. FARIMA 15 a class of long
memory that can explicitly account for persistence to
incorporate the long term correlation in the data. A
FARIMA (p, d, q) process X = X(k), keZ FARIMA
process 1s a standard given by ARIMA process degree of
differencing d being a real number with (0, d, 0) sequence
showing the long-range dependence is generated 1/2<d
<1/2. For sta-tionarity and mvertibility, it 1s assumed that
all roots of @ (p)B|(q) = O are outside the umit circle and |d|
<0.5 where p = q =0 is known as fractionally differenced
white noise. Real time multimedia traffic measurements
found the co-existence of both long range and short range
dependency The FARIMA(p, d, q) time series X = X(k), k
€Z is define as:

H(BIV'X,=6(B)a,_ (-0.5, 0.5) (1)
Where:
o(B) = ¢, (B) +0,(BY* + ... + ,(BY

¢(B)=6,(B)+0,(B)* + ... +9q(B)q
Vilz(l -Bix =x,-xy,
R

p(K):d(Hd)...(KfHd)

(1-d)(2d) (k) "

FARIMA process have correlation p, which behave
asymptotically as k*"'. Parameter estimation is the first
step 1n fitting an FARIMA For a series if the value of 0 <
d < 0.5 the series 1s nonstationary this will not have a
common mean and variance. FARTMA (0, d, 0) process is
called fractionally differenced noise and this can represent
the wide range of LRD we have to make the series
stationary so the series become ARMA process and we
can fit the series using the ARMA model. The
autocorrelation function in FARTMA is given by:

Table 1: Parameter estimated for FARTMA
Model b 5l d
FARIMA (2, 0.46.1) (0.88, 0.01) 0.46 0.77

p, =[(1 - Tk + dYT(T(k + 1-d)

If d>0, the hyperbolic decay of the correlation as lag
increases, this the hyperbolic decay will
asymptotically self similar:

show

$(BX1-B)'x,

FARIMA (p,d,q) where p, g ¢ N u {0} and d € R For long
range dependency .p=q=0Letd e R, {X},, s FARIMA
wherer'X, = e @(B)a"X, = @(B)a, estimate A’x, = a, where
a, 1s an 11d with mean 0 and variance ¢’ ,LRD in a traffic
model is by simply allowing the input into a queue to
have heavy-tailed characteristics FARIMA is two step
estimatioican procedure d value is estimated usingR/S
method and parameter for p, q are estimated using normal
ARMA fitting method

Identification and estimation of farima: For the time series
both short term as well as the long term dependence are
observed. Hyperbolic decay of the correlation function.
Select parameter p and q using goodness of test (AIC
value should be mimmum) estimate the parameter values
dB), OB) forp, gvalue using maximum likelihood
algorithm (Basu and Mulkherjee, 1996). Calculate value for
d using R/S method (11). FARIMA (2, 0.46, 1) with &,, ¢,
and 6,. Estimate the parameters of the FARTMA model
Table 1.

Forecasting and bandwidth allocation: In the VBR traffic
dynamic bandwith allocation is needed. The traffic in the
network has either mean value or peak value. The
bandwidth in the network should be a value between this
peak and mean value. It 13 difficult to estimate the
effective bandwidth in the network. Usmg FARIMA
model, we can predict the resowce needed for the
incoming traffic and allocate that resource to the particular
application. For this, we have to buffer the mean square
error value with a biase value.If the traffic is SRD their is
no significant effect in the queue only a white noise will
buffered (Garrett and Willinger, 1994; Adas and
Mukherjee, 1995).

Procedure for forecasting 1s as follows calculate the
residuals from the fitted model and obtain the 100uth
percentile of the distribution of the residuals. Call it €,
obtain the minimum mean square error forecast for X,.,,
based on the FARIMA model. Call it X(1). The forecast
for the 100uth percentile for X,,, 15 X(1)+eu.
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Fig. 3: Autocorrelation fimetion and spectral density for VBR traffic

X, (0= X(1) +e,

where low bandwidth 15 needed and in other very high
bandwidth 1s needed to satisfy the QoS.Predicting the
future behaviour of the traffic for the present and past
traffic and we can allocating the bandwidth for the
mcoming traffic. A dynamic bandwidth allocation strategy
predict bandwidth requirement for the future traffic using
linear prediction with minimizes the mean square error.
Reserving bandwidth equal to predicted value only
prediction error should be buffered. The predicted value
will be white noise or short memory. FARIMA parameters
are estimated and used to predict traffic in next generation
net-works. The FARTMA parameters are estimated from
the lustorical traftic data. Estmate the nonlinear parameter
which mimmize the to predict the traffic forecast h step
ahead as shown in Fig. 3. Predicting the behaviour of the
traffic form the present holt-winters filtering value and
allocating buffer space and bandwidth:

X, (=Xt) +e,

The real time traffic behaves bursty (e.g. its variance
varies over time). So linear prediction of time series will
not give a accurate result. We can add a biase value with
this so both peak and mean value can be represented by
this prediction. So bandwidth can dynamicaly allocated.

The k step ahead prediction can be defined as X,,, mean
square error E = (X - X)) X, = By XX
Prediction of traffic and dynamic allocation mimmize the
cell loss rate and delay if the predicted value 1s more, extra
bits can be transmitted from the buffer. Since, the errors
resemble noise or at most short memory then smaller
buffers, less delays and higher utilization are expected
when compeared to traditional model (Fig. 4) (Garrett and
Willinger, 1994). The tail behavior of queues for the
buffered traffic decays exponentially. The effective
bandwidth for queue simulation depends on:

P(Q>B) m &

Traffic model will evaluvate the behaviour of the
aggregated traffic and pre-dict the queuing performance
so that resource can be allocated. If the traffic is
overloaded in the link this will result in congestion and
packet loss and this will degrade the strigent QoS
parameter. To overcome this call admission con-trol
should establish neither on peak nor average bandwidth
allocation using effective bandwidth. This effective
bandwidth is a function of traffic charateristic. The input
to the buffer is the error series which is short white noise
and will not have the persistence. The analysis of
Queueing system work load process 1s assumed to have
an associate large derivation principle (Fig. 5).
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Fig. 5: Forecast h step ahead (Forecasts from ARFIMA (2,0.36,1))

CONCLUSION

Real time VBR bursty network traffic 1s complex in
next generation network as it exhibits strong dependence
and self-similarity, models of time series such as Poisson
and Markov processes are not appropriate for its
modeling Maintaimng high utilization of the bandwidth 1s
the objective for efficient traffic manage-ment which
include call admision control policing, scheduling, buffer
manage-ment and congestion control etc. The high
variable and highly correlated VBR traffic m the
network can be modeled with self similarity models like
FARIMA or FGN. Mostly VBR traffic in the networlk
exhibits both short range and long range dependency
along with heavy tailed distribution can be modeled with
FARIMA time series model with parameter (p, d, q).
FARIMA time series traf-fic model can predict traffic and
allocate bandwidth dynamically. This model 1s flexible

enough to parsimoniously capture the statistical property
of traffic can allocate bandwidth on demand. The tail
behaviour of the queue can be analysed with traffic
model. Performance in the network can be improved with
the analysis of QoS parameter like packet loss, delay and
variances.
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