Asian Journal of Information Technology 15 (19): 3801-3809, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

A Secured Proof of Ownership and Enhanced Deduplication
Scheme for Cloud Storage

'S. Umamaheswari, °T. Purusothaman, N P. Supriva and *Arun Thundyill Saseendran
'Anna University, Chennai, Tamil Nadu, India
"Department of CSE/I'T, Government College of Technology, Coimbatore, India
*HP Software R and D, Bangalore, Karnataka, India
*TATA Consultancy Services, Bangalore, Karnataka, India

Abstract: Cloud storage services use cross-user deduplication techniques to maintain unique copies of
duplicate data. Client-side deduplication detects and prevents duplicates at the client before the data is sent
across the network bringing in huge benefits in terms of network bandwidth. However, these techmques are
prone to security breaches. Proof of Ownership (PoW) 1s a cryptographic concept that requires a client to prove
to the server that it possesses the data before the server accepts its upload request and marks the client as the
owner of the data. In this paper, a secure PoW technique for cloud storage systems is presented by overcoming
the drawbacks of existing research works such as overhead due to pre-computed challenges, third party entities
and I/O computational overhead. The proposed solution 1s implemented in OpenStack Cloud enviromment for
the proof of practicability. A trusted entity called Pseudo Open Stack Manager (POM) is introduced for
enhancing security which acts as an interface isolating the cloud storage from malicious users. POM is assumed
to be a part of the cloud storage system. The security and performance of the proposed solution 13 evaluated
and the results demonstrate significant improvement m the upload bandwidth usage and efficient use of storage

space without compromising security.

Key words: Cloud storage, deduplication, preof of ownership, data security, Pseudo OpenStack manager

INTRODUCTION

Cloud computing provides an economical method for
leveraging computing resources to manage large amounts
of digital data with efficient storage capabilities. Rapid
growth in the amount of data has led industry-wide
mitiatives to provide efficient online storage services
such as Dropbox, Wuala, MozyHome and many public
and private OpenStack based cloud storage systems. This
development has increased the amount of redundant data
stored in the cloud and this redundancy is typically
addressed usmg deduplication teclmiques. Data
deduplication stores a single copy of redundant data and
creates links to the single copy instead of storing multiple
copies of the data (Harnik et al, 2010). Server side
deduplication has the overhead that the data has to be
sent to the server over the network before applying the
deduplication technique. Hence, client-side deduplication
is preferred in the industry (Keelveedhi et al, 2013).
Client-side deduplication focuses on reducing redundant
data by identifying it before it 1s sent to the server,
thereby reducing the network bandwidth usage and
upload time to a significant amount.

Security issues: Though client-side deduplication brings
in advantages such as reduction of network bandwidth
and data upload time, several security threats are
associated with it. These threats have to be addressed in
order to reap the full potential of client-side deduplication.
Halevi et al. (2011) identified various threats that affect a
remote storage system that implements client-side
deduplication. First, in traditional storage systems,
privacy and confidentiality are compromised when an
attacker learns the hash value of a file and gain access to
the entire file from the server. For example, Dropbox uses
Secure Hash Algonthm 256 (SHA256) i a strasghtforward
manner; thus, it 13 possible for an attacker to obtain
hashes for confidential files of others. Using the hash, a
hacker can easily download an unauthorized file from the
server. A practical way of performing this hack 1s
demonstrated by the use of the Dropship Application
Programming Interface (APT) utilities for Dropbox which
allows a hacker to download confidential files of others
from Dropbox servers by obtaining the file hashes which
is comparatively easy to obtain and exploiting the weak
deduplication technique that is applied
(Dropship APT). Second, if an attacker can access the

client-side

Corresponding Author: S. Umamaheswari, Anna University, Chennai, Tamil Nadu, India
3801

Asian J. Inform. Technol., 15 (19): 3801-3809, 2016

server cache, then all confidential hashes will be
disclosed. Hence the attacker can make the cloud
storage service behave as a Content Distribution
Network (CDN) by publishing the hacked hash values.
In a case where the file hashes are published globally, the
only way to protect the files from hackers is to tumn off
client-side deduplication for the files for which the
hashes have been compromised, for lifetime in most
cases (Halevi et al., 2011). The above said two security
threats are mitigated by the use of Remote Data Auditing
(RDA) (Sookhak et al., 2014) procedures. RDA refers to
the set of protocols or procedures that can be used to
verify the correctness of the data over cloud environment.
Proof of Ownership, first explained by Haveli et al 1s a
RDA procedure that can be used to mitigate the security
threats faced during client-side deduplication
PoW can be used m mdustry for its efficiency mn
terms of computation, I/O, memory usage and bandwidth.
Also, it should be optimized in such a way that it should
not require a large amount of file data to be loaded in
memory by the server and client to execute PoW. Though
several research works have addressed various necessary
characteristics of PoW, a robust solution which addresses
all the characteristics has not been published The issues
that are addressed in this work are an efficient Proof of
Ownership scheme without the use of pre-computed
challenges and third party entities with efficiency in terms
of computation, I/O and memory utilization.

OpenStack: The need for secure, scalable and reliable
cloud storage services inside organizations has raised
concerns regarding open-source cloud solutions such as
OpenStack. OpenStack is an open-source cloud operating
system that enables the creation and management of large
virtual machine clusters of private and public clouds.
Open Stack software is capable of controlling large
clusters of compute, storage and networkmg resources
spread across datacenters. These resources can be
controlled by making use of the web-based graphical user
interface or by using the REST based APTs provided by
OpensStack (http: /www.openstack. org/software/).

The object storage component of OpenStack 1s called
Swift. Tt is an object store that enables storing and
retrieving data from the cloud using APTs. Tt provides
durability, availability and concurrency for the entire data
set. Swift 13 suitable for storing unstructured data sets of
arbitrary size. Though OpenStack Swift provides efficient
object storage, it does not offer deduplication out of the
box. However, it provides a rich set of REST based APIs
through which deduplication can be enabled. Hence, in
our research, we use OpenStack Swift to demonstrate the
applicability, practicality and efficiency of our solution.

openstack

Fig. 1: Solution overview diagram

The software layer that is developed to interface
between OpenStack Swift and the client requests 1s called
as Pseudo OpenStack Manager (POM). Tt is explained in
the following study.

PSEUDO Openstack Manager (POM): POM (Fig. 1)is a
trusted entity for OpenStack that acts as a secure abstract
layer between OpenStack and a client (the data owner or
a group of users). POM is always synchronized with
OpenStack Swift metadata. The metadata mcludes
information about the files present in the OpenStack Swift
Meta data store such as object name, its owner(s), file size
and its digest value.

It is not a third party entity or does not require a
separate host. During the implementation of the scheme
proposed m this work, POM 13 implemented as a part of
OpenStack and is responsible for executing the RDA
procedures. Hence there 1s no network delay in the
transaction between POM and OpenStack Swift. The
mmplementation of POM gives the Cloud Service Providers
an additional layer of security as it isolates the cloud
environment from malicious users. POM also acts as the
metrics store which provides the essential metrics for
performance and security tuming. The various
performance metrics such as upload time comparison and
network bandwidth usage presented in this study are
collected from POM.

Pseudo Openstack Manager (PoM): POM (Fig 1) 1s a
trusted entity for OpenStack that acts as a secure abstract
layer between OpenStack and a client (the data owner or
a group of users). POM is always synchronized with
OpenStack Swift metadata. The metadata mcludes
information about the files present in the OpenStack Swift
Meta data store such as object name, its owner(s), file size
and its digest value. Tt is not a third party entity or does
not require a separate host. During the implementation of
the scheme proposed in this work, POM is implemented as
a part of OpenStack and is responsible for executing the
RDA procedures. Hence there is no networlk delay in the
transaction between POM and OpenStack Swift The
implementation of POM gives the Cloud Service Providers
an additional layer of security as it isolates the cloud

3802

Asian J. Inform. Technol., 15 (19): 3801-3809, 2016

environment from malicious users. POM also acts as
the metrics store which provides the essential metrics
for performance and security tuning. The various
performance metrics such as upload time comparison and
network bandwidth usage presented in this paper are
collected from POM.

Literature review: The objective of deduplication 1s to
identify duplication of data in the server and avoid it so as
to save storage space and bandwidth. The related
solutions that have been proposed to counter the threats
of client-side cross-user data deduplication.

Proof of Ownership (PoW) The PoW concept was
introduced by Halevi et al. (2011). PoW is a two-part
protocol that 13 used to verify that the client owns a
particular file. Tt functions between two players that
operate on a joint mput file, F. First, the venifier generates
a shorter verification information v by summarizing to
itself F. Later, the prover having F and venfier having only
v, engage in an interactive protocol; at the end of this
protocol, the verifier either accepts or rejects the proof
(Halevi et al., 2011). The ressearch describe that PoW as
the combination of a summary function and an interactive
two party protocol. The authors present three schemes
that differ in terms of security and performance. In all the
schemes, the client is challenged by server to give the
paths of the sibling for a leaves subset m Merkle tree
(Merkle, 1989). Both the client and the server build the
Merkle tree; the server only keeps the root and challenges
clients that claim to own the file. This scheme is efficient
i terms of CPU, bandwidth and I/O for the server and
should not require the server to load the file from its back-
end storage at each execution of PoW. But it has high 1/0-
bound operation at the client side (reading files from disk)
and calculating cryptographic hashes is a CPU-intensive
task

s-PoW: Next we shall describe the s-PoW scheme
presented by DiPietro et al. (2012). If the server receives
the file for the first time, it pre computes the number of
challenges for a file for both the cases of file store request
and precomputed challenges has been used. The server
sends the unused challenge to the client. The client
computes and sends the response to a challenge of the
server. The server checks the response for equality with
the precomputed challenge and outputs success or
failure. In the modified PoW scheme (DiPietro et al., 2012)
considered, the cost of computing the hash value for
small files is negligible; for the distribution of files with

the same size and for sizes of more than 1MiB, the
file size is a good indexing function. s-PoW trades
information-theoretical security for inproved space
efficiency, by deriving challenge seeds from a master
secret. It 1s achieved by using Client-side algorithm to
generate a fresh random seed s for each new challenge.

bf-PoW: The next scheme that is explained in this paper 1s
a PoW scheme proposed by Blasco. The authors use a
space-efficient randomized data structure called Bloom
Filters. Bloom filters is a probabilistic data structure in
which false positives are allowed but false negatives are
not allowed. Tt 1s a data structure that consumes very less
memory (Bloom and Burton, 1970). The research claim that
Bloom Filters have been used successfully in other
domains of computer security (Geravand and Ahmadi,
2013), however 1t was never used in data deduplication.
In reality, the scheme proposed by Blasco works in two
phases. The solution provided in tlis scheme 13 more
efficient in the client side than the solution proposed by
Halevi et al. (2011) and is efficient in the server side
than the solution provided by Roberto. With the use of
bloom filters, the authors have reduced the space and
computation complexity meurred in the server side. Yet,
this solution also depends on pre-computed challenges.
This may prove ineffective in terms of practicability.
Also, the research by Zheng and Xu (2012) addresses
PoW efficiently and also presents a formal security

analysis. However, a tlird party entity named
“AUDITOR” is introduced which makes it less
practicable.
MATERIALS AND METHODS
This study describes the proposed protocol

called o-PoW, Proof of Ownership for OpenStack (Fig. 2).
The main idea of o-PoW is to implement secure
deduplication i Open Stack through POM. The challenge
to the client 15 calculated by POM following the method
described m Algorithm 1. The client sends the hash d of
the file which 1s to be uploaded to the server. On receiving
an upload request from the client, the POM first creates a
session identifier s, The study identifier i1s used for
authenticating the client session. Once a study is created,
POM subsequently computes a seed s from the current
date and time in POM. The seed s is then input into a
PRNG (Pseudo Random Number Generator) which
initializes a random pointer r to generate a sequence of
random numbers. A constant integer N is also chosen by
POM. N corresponds to the number of bits that should be

3803

Asian J. Inform. Technol., 15 (19): 3801-3809, 2016

11
18 Physical machine without o-Pow
8 Physical machine with o-Pow
7
6
g 5
S 5
o 4
s 3
[
2
2
1
0
11
10
9
8
7
§ 6
c 5
o 5
E 4
3
g Vitual machine without o-Pow
1 Virtual machine with o-Pow
0
S S S o Q 8 g9
BB EEEEEE
S & o 4 8 & 8§ 8 9o ©
S — A ™ < [fe} oS~ o (=}
SizeinMB

Fig. 2: Comparison of data upload rate of small size files
with and without o-PoW

concatenated to form the challenge from the server and
the respomse from the client. Let f; be the file n
OpenStack Swift that corresponds to the hash d received
from the client. get bit() is a simple method to retrieve a
bit from a file at a specified position. Challenge res,is
calculated by concatenating N bits generated using the
get_bit() function. The pseudo code for POMChallenge is
givenin Algorithm 1.

Algorithm 1: POM challenge:

Input: file f in OpenStack swift with hash d, Seed s, constant integer N
Output: Seed s, Session Identifier s,, constant value N
begin

r<- PRNG(5)

Cormpute session identifier s
for i in range(0, N)do
resy<- res, + get_bit(fd,r.next)
done
store resq with sy
return (Seed, 8id, N)

End

Ongce the challenge is sent from POM to the client,
the Algorithm 2 is executed on the client side to calculate
the response res. The client receives the session
identifier sy, the seed s and the constant nteger N from
POM. The client should also possess the file fe for which
the upload request was posted to POM. As in the POM
side, the client uses the seed s to input to a PRNG which

initializes a random pointer 1, capable of producing
random integers. Since the same seed is used in both the
POM and client side, the random integers produced by
the PRNG will be equivalent. The client then concatenated
N buts from the file fc for each integer generated by r. The
client sends the computed response res.and the input
session identifier sy to POM. The pesudo code for
oPoWClient is given in Algorithm 2.

Algorithm 2: oPoWClient (POMResponse):

Input: Seed s, constant integer N, file to upload f;, Session Identifier s
Qutput: Response to the DupChallenge res,
hegin

1 <- PRNG(s)

for i in range(0, N)do
res,<- res, + get_bit(f, r.next)
done
return (res,, s,
End

As soon as the response is received from the client,
POM executes Algorithm 3 to verify the response. The
nput to the Algonithm 3 (PoMValidate) 1s the session
identifier s; and the response from the client res.The
PoMValidate Algorithm first uses the session identifier
received from the client to check if the session is valid. If
the session is timed-out or invalidated for any reason, the
client 1s notified to retry the upload. If the session is
active, the challenge res; for the session identifier s,,1s
fetched from the respective POM session cache and 1s
compared with the response resreceived from the client.
If the challenge res,and the response resare equal, then
the client is marked as the owner of the file. The
PoMValidate 1s given as pseudo code in Algorithm 3.

Algorithm 3: POMValidate()
Input: Response fiom the Client res,, Stored Challenge resy(Fetched
from the cache using session identifier s
Qutput: Dup Response to the Client
hegin
if res.— res;then
accept UploadRequest
/Store client as a new owner of the file
else
reject UploadRequest
endil
End

The overall interaction between the OpenStaclk POM
and the client is described in Algorithm 4. Algorithm 4
consists of two scenarios. First, the file that is intended to
be uploaded by the client 1s already present with the
service provider. Second, the file that is intended to be
uploaded 1s not present with the service provider and 1s
uploaded for the first time. The interaction between the
client and POM is given as a pseudo code in Algorithm 4.

Algorithm 4: Interaction between a client and POM
Client
To Upload File £, to Openstack Swift
hegin
d <-H{f)

3804

Asian J. Inform. Technol., 15 (19): 3801-3809, 2016

send d to POM
end
POM
Upon Receipt of d
begin
if d exists in Openstack Swift then
POMResponse <- POMChallenge()
oPoWClient(POMResponse)
POMValidate()
else
POMResponse <- AllowFileUpload
Fip == AllowUpload
if d equals Hif,.,.;)
o Fome
Mark the user as owner of file
deletefin)
Send positive response to user
else
deleteif,..,;)
Send negative response to user
endil
End

The check for proof of ownership i3 mandatory
during the upload of the file to prevent a malicious user
from downloading a file for which he/she is not the owner.
Consider the scenario where a malicious user can try to
gam ownership of a file with only the metadata (hash of
file, size, cached parts of the file etc.) of the file. The
algorithm should be able to detect and stop such an
attempt. Also, a malicious user can try to perform a poison
attack where the cloud server is made to associate the key
(in this case the hash of the file) to a poisoned (not the file
that corresponds to the hash of the file) file. The algorithm
should be able to detect such an attack and stop the
malicious user. The four possible scenarios that a
malicious user can attempt and the preventions
mechanism employed by o-PoW with the help of
Algorithms 1-4 is as follows.

Legends

* Enuine User:A normal user will no harmful
intentions

o Alicious User:A user who intends to steal the data
from the cloud or create problems for others

¢ Loud Server / Server: OpenStack Swift Store

Scenario 1: A genuine user tries to upload a file that is
not present in the cloud server: Consider the scenario in
which a genuine user is trying to upload a file to the ¢loud
server. In this scenario let’s consider that the file is not
present in the cloud server. As per Algorithm 4, the hash
of the file (d) 1s computed by the client and sent to the
cloud server. The cloud server prompts the user to upload
the file since the file is not present in the cloud server.
Since the genuine user possess the file from which the
hash (d) was computed, the user will be able to upload
this file to the cloud server. The cloud server stores the
file in a temporary location f,,,. Once the file is present in
the cloud server, the server computes the hash H(f,,) of

the uploaded file and compares it with the hash (d) that
was initially sent by the client. Since both d and H{f,,)
will be equal, the file will be stored permanently in the
cloud server and the genuine user will be marked as the
owner of the file.

Scenario 2: A malicious user tries to upload a poisoned
file that is not present in the cloud server: In this
scenario a malicious user who wants to poison the server
by associating a file with a wrong hash is considered in
this scenario. In this scenario too, 1t 1s assumed that the
file 1s not present in the server. As the first step, the client
uploads the hash to the file (d) and since the file is not
present in the server, the server prompts the client to
upload the file. In this scenario, the intent of the malicious
user 18 to poison the cloud server so that when a genuine
user uploads the file with the same hash, the server will be
misguided that the file 1s already present mn the server.
Hence the genuine user will be challenged as per the PoM
Challenge algorithm with challenges generated from the
poisoned file. Hence the genuine user will not be able to
upload the file to the cloud server. However as defined in
Algorithm 4, the malicious user will not be able to upload
a powsoned file simce the file 13 temporanly stored in the
cloud server (f_) once it is uploaded the freshly
computed hash (H(f_)) is compared with the hash
uploaded by the client (d) before permanently storing the
file are marking the user as the owner of the file. In thus
scenario, since the H(f,_,) and d will be different the file
will not be stored permanently and the malicious user’s
request to upload the file will be rejected.

Scenario 3: A genuine user tries to upload a file that is
already present in the cloud server: In this scenario, a
genuine user tries to upload a file that is already present
inthe server. As per the algorithm, the user first sends the
hash of the file to the server. The server identifies that the
file 15 already present in the server. The chance of a
poisoned file is eradicated as explained in scenario 2. The
cloud server challenges the client usmg the
POMChallenge Algorithm and then validates it using the
POMVahdate algorithm. Since the genuine user possesses
the original file, the user will be able to succeed the
challenge. Hence the user will be marked as the owner of
the file. From now onwards the user can download the file
anytime from the server

Scenario 4: A malicious user tries to upload a file that is
already present in the cloud server: In this scenario, a
malicious user having hacked metadata about the file tries
to gain ownership of the actual file in the cloud server. As
per the algorithm 4, mitially only the hash of the file 1s
uploaded to the server. The server identifies that the file
15 already present in the server. The cloud server
challenges the user as per the POMChallenge Algorithm
and gets the response. Since, the POMChallenge

3805

Asian J. Inform. Technol., 15 (19): 3801-3809, 2016

challenges the user with a sequence of bits distributed
throughout the length of the file, the user cammot
overcome the POMChallenge with a part of the file. Hence
the malicious user will not be able to gain access to a file
that he/she does not possess.

RESULTS AND DISCUSSION

The implementation presented in this research
was run on a client-server duo with the following
configuration.

Client configuration: The client system that was used 1s
a laptop computer with a 2.5-GHz Intel (R) Core (TM)
15-4300U CPU, 8 GB of Random Access Memory (RAM)
and a 7200-RPM hard disk. The operating system used
was 64-bit version of Windows 7 Enterprise and the file
system format were EXT4 with a 4-kB page size.

Cloud instance configuration: The cloud instance was
set-up using OpenStack (Juno) on both a virtual and a
physical machine. The implementation of the algorithms
discussed in this research was done in Python. The
python-swiftclient library for the OpenStack Swift API
was used to inplement POM. The commumcation to the
OpenStack Swift instance was done using RESTful APIs
exposed by Swift. Swift has the benefits of ease of use,
open source and industry adoption. Performance
evaluation was done by uploading a set of 30 real-world

Table 1: The O-PoW data upload time metrics for small size files

files ranging from the size 0.005 MB to 975 MB which were
already present in the OpenStack Swift in three ranges as
follows:

» Small size files-from 0.005MiB up to 10 MiB
» Medium size files-from 10 MiB upto 100 MiB
¢ Large size files-from 100 MiB upto 1000 MiB

The total time talen to upload the file to OpenStack
Swift 1s measured as the time from the upload request is
imtiated by the client to the time the final response 1s
received from the server. The unit of time 15 set as
seconds. The time measured is inclusive of the time taken
for the execution of the algorithms, if any. The o-PoW
algorithm is implemented on an OpenStack Swift instance
set up on a physical machine and a virtual machine. The
time measured on different scenarios for smaller size files
1s tabulated m Table 1. As described, the files are
uploaded to both the setups and the uplead time is
measured and tabulated. The graphical representation of
the scenario in which the small files are uploaded to an
OpenStack Swift mstance on a physical machine and a
virtual machine 1s given in Fig. 2. It can be seen that in
case of a physical mstance, for small files the difference in
upload time is comparatively narrow. However, in virtual
instances, the implementation of o-PoW reduces the
upload time to a considerable extent. The next set of the
experiment was done using a set of 10 medium-sized files
and the results are tabulated in Table 2 and the readings

Upload time (sec)

Open stack swift on physical machine

Open stack swift on virtual machine

File size (MiB) Without O-PoW With O-PoW Without O-PoW With O-PoW
0.005 1.858 0.925 3.622 1.497
0.150 3502 0.811 5.574 1.450
0.475 4.739 1.036 8367 1.534
0.592 4.310 0.889 2314 1.487
0.949 4.669 0.936 43,266 1.528
1.353 5.055 0.873 37.079 6.576
4.875 6.332 1.003 51.068 1.541
5.523 7.254 0.967 T6.724 1.586
8.032 10.335 1.061 92,160 1.825

Table 2: O-PoW data upload time metrics for medium size files

Upload time (sec)

OpenStack Swift on Physical Machine

OpenStack Swift on Virtual Machine

File size (MiB) Without o-PoW With 0-PoW Without o-PoW With o-PoW
10174 7.521 1.076 87.795 6.791
11.048 28.619 1.092 96.621 6.671
16571 7.516 1.217 138.070 1.732
19.086 7.909 1.233 158.603 6.807
22.095 8.423 1.311 187.587 1.786
27.618 9.060 1.326 229.169 1.913
33.141 9.541 1.438 262.651 1.937
38172 10.151 2,133 308.741 7.117
60.786 17.083 1.883 496,693 7.576
91.180 180.99 2.355 765.633 2.798

3806

Asian J. Inform. Technol., 15 (19): 3801-3809, 2016

200
180 Physical machine without o-Pow
160
140
120
100
80
60
40
20

Physical machine with o-Pow

Timeinsec

900
800

700
Vitual machine without o-Pow

600
500

Virtual machine with o-Pow

400
300
200
100

Timeinsec

1.0E+01°
2.0E+01
3.0E+01
4.0E+01
5.0E+01
6.0E+01
7.0E+01
8.0E+011
9.0E+01
1.0E+02

Fig. 3: Comparison of data upload rate of medium size files with and without 0-PoW

Table 3: 0-PoW data upload time metrics for large size files
Upload Time (seconds)

Open stack swift on physical machine Open stack swift on virtual machine

File size (MiB) Without O-PoW With O-PoW Without O-PoW With O-PoW
112,995 69,751 2.296 907.692 8.055
188 664 40.107 3.724 1516.941 6.234
208392 44.301 4.113 1675.559 6.886
212752 45228 3.256 1718.245 6.800
275.911 68.111 3.567 2228.336 8.819
483.049 119.245 2.134 3456.877 5.200
571.440 141.065 2.524 4089.440 6.152
691.558 149,123 3.055 4387.432 5.900
893.017 192.564 2.912 5303.345 6.100
974.558 210.147 3.178 5885.809 6.657

are plotted in a graph for comparison in Fig. 3. From the
Fig. 3 we can see that, unlike the case of small size files,
the time for upload increases by a sharp margin even in
physical instance when the size of the file increases above
50 MiB. In case of virtual instance, the upload time
mcreases linearly when o-PoW 1s not implemented,
whereas with the implementation of o-PoW algorithm, the

upload time almost remains a constant. The third set of

upload time measurements was taken from large files.

In case of larger files, it is clearly observed that the
upload time remains a constant. We have compared the
upload time mn the case of both physical and virtual
instances without o-PoW implementation. The upload
time with o-PoW implementation is very less. The
upload time measurement for large files 18 given in
Table 3 and the graph with upload time comparison for
large files with and without o-PoW implementation is
given in Fig. 4.

3807

Asian J. Inform. Technol., 15 (19): 3801-3809, 2016

220
210
200
190
180
170

Physical machine without o-Pow

Physical machine with o-Pow

§ 160
150
£ 140
2 130
= 120
110
100
920
80
70
60
50
40
6500
6000 Vitual machine without o-Pow
gé 5500 Virtual machine with o-Pow
< 5000
()
E 4500
[
4000
2500
3000
2500
2000
1500
+ + + + + + + + + +
4 L L 04 & o5 L 4 4 5 04
— o [l < o g NG o o o <]
Size (MB)

Fig. 4: Comparison of Data Upload Rate of Large Size Files with and Without o-PoW

7000
6000 Physical machine without o-Pow
§ 5000 Physical machine with o-Pow
f=
é 4000
= 3000
2000
100C
C
10
9
8
§ 7
s 6
@ 5
E a4
ko3
2
1
0 . o
g8 8 8 § g 8 S
i H i i i i o
o (=] o o o o 5
o N <~ ©) - -
SizeinMB

Fig. 5: Data upload rate comparison overview on physical
and virtual instance with and without o-PoW

From the measurements, it 1s calculated that the
average time for upload of 1 MB onto OpenStack Swift on
a physical mstance 15 0.003 seconds and 0.216 sec with
and without o-PoW implementation respectively.
Similarly, it 1s 0.027 seconds and 6.919 sec with and
without o-PoW implementation respectively on a virtual
instance. Tt can be observed that the time taken for upload
increases by 32x on a virtual mnstance compared to a
physical instance without o-PoW implementation.
However, the upload time increases only 8x on a virtual
instance compared to a physical instance with the
implementation of o-PoW. It stands as the proof to the
efficiency of o-PoW algorithm implementation. The
comparison is shown as a in Fig. 5.

CONCLUSION

Researchers have presented an improved mechanism
for PoW named o-PoW algorithm which offers an
effective Proof of Ownership scheme without the use of
third party entities. The o-PoW algorithm can be used n

3808

Asian J. Inform. Technol., 15 (19): 3801-3809, 2016

cases where secure deduplication is the primary goal.
The advantage of the proposed
minimal-security-state server with high performance on
the client side.Since all the algorithms proposed m work
are implemented and experimented in real time on
OpenStack Swift Cloud Storage instance, it ensures that
the proposed solution 1s practicable and can be

scheme 18 a

umnplemented on any Cloud Storage system.
REFERENCES

Bloom, B.H., 1970. Space-time trade-offs in hash coding
with allowable errors. Commun. ACM., 13: 422-426.

DiPietro, R. and A. Sorniotti, 2012. Boosting efficiency
and security in proof of ownership for deduplication.
Proceedings of the 7th ACM Symposium on
Information Computer and Communications Security,
May 2-4, 2012, ACM, Korea, ISBN: 978-1-4503-1648-4,
pp: 81-82.

Geravand, S. and M. Ahmadi, 2013. Bloom filter
applications in network security: A state-of-the-art
survey. Comput. Networks, 57: 4047-4064.

Halevi, S., D. Harnik, B. Pinkas and A. Shulman-Peleg,
2011. Proofs of ownership in remote storage systems.
Proceedings of the 18th ACM Conference on
Computer and Communications Security, October
17-21, 2011, Chicago, TL., UUSA., pp: 491-500.

Harnik, D., B. Pinkas and A. Shulman-Peleg, 2010.
Side channels
mn cloud
40-47.

Keelveedhi, S., M. Bellare and T. Ristenpart, 2013.
Dupless: Server-aided encryption for deduplicated
storage. Proceedings of the 22nd USENIX Symposium
on Presented as Part of the Security (USENIX
Security 13), August 14-16, 2013, Usenix Publications,
Washington, USA., ISB N: 978 -1-931971-03-4, pp:
179-194.

Merkle, R.C., 1989. A Certified Digital Signature. In:
Advances Tn Cryptology-CRYPTO 8%, Brassard, G.,
(Ed), LNCS 435, Springer-Verlag,
218-238.

Sookhak, M., H. Talehian, E. Ahmed, A. Gani and
M.K. Khan, 2014. A review on remote data auditing in
single cloud server: Taxonomy and open issues. I.
Network Comput. Appl,, 43: 121-141.

Zheng, Q. and S. Xu, 2012, Secure and efficient proof of
storage with deduplication. Proceedings of the 2nd

m cloud services: Deduplication

storage. IEEE Secur. Privacy, &

Berlin, pp:

ACM Conference on Data and Application Security
and Privacy, February 7-9, 2012, San Antomo, TX.,
USA., pp: 1-12.

3800

	3801-3809 - Copy_Page_1
	3801-3809 - Copy_Page_2
	3801-3809 - Copy_Page_3
	3801-3809 - Copy_Page_4
	3801-3809 - Copy_Page_5
	3801-3809 - Copy_Page_6
	3801-3809 - Copy_Page_7
	3801-3809 - Copy_Page_8
	3801-3809 - Copy_Page_9

