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Abstract: Recently cloud computing has been widely used by researchers for executing scientific applications.
Cloud offers resources in the form of virtual machines which are dynamically provisioned and released and
comes with a usage cost. This gives an illusion of abundance of resources available for execution. Hence,
efficient scheduling mechamsms which satisfy the various quality of service requirements while minimizing the
cost are the need of the hour. Although, scheduling algorithms which map a deadline constrained workflow to
a cloud while minimizing cost have been studied, most of the time the makespan of the optimal schedule
returned will be less than the deadline. Hence, a fine tuning of the optimal schedule thus retirned will be useful
and has the advantage of minimizing the under utilization of resources thereby achieving savings in cost. This
study proposes an expedite genetic algorithm with fine tuning for scheduling deadline constrained workflow

applications onto a cloud.
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INTRODUCTION

High Performance Computing (HPC) is the use of
parallel processing for runming advanced application
programs efficiently, reliably and quickly. HPC
applications are widely being used by scientists for
solving a large number of research problems. They exist
mn almost all disciplines. Examples of such applications
can be found n the field of Molecular Dynamics (NAMD),
astronomy (Montage), bioinformatics (mpiBLAST) and
many more. These applications involve complex sets of
computation and data analyses. Each of these
computations may consist of thousands of steps and are
distributed 1m the execution environment. The
congregation and management of such complex
computations pose numerous challenges. Workflows
have evolved as the archetype for representing and
managing complex distributed scientific computations
thereby accelerating the pace of scientific progress
(Taylor et al., 2014). The execution of such scientific
workflows demands a high performance computing
environment which 15 usually achieved by clustering
of computing resources. Prior to the era of cloud
computing, scientists largely relied on clusters and grid to
test and run scientific workflows (Lee et al, 2009).
However, the onset of cloud computing has brought in a

dramatic change in the way scientific workflows are
executed. Nowadays, cloud computing mfrastructure 1s
increasingly being adopted as a cost effective alternative
to supercomputers, clusters and grid for rmning such
large scale business and scientific workflows. Cloud
services are gamning popularity because they reduce
the cost and complexity of owning huge infrastructure
and networks.

Cloud computing 1s a model of computing which
refers to the delivery of computing resources over the
internet. Tt is a model of utility computing characterized by
on-demand service, elasticity, resource pooling and broad
network access. Other benefits include efficiency,
scalability and reliability. Cloud computing infrastructure
can be wed to test, run and deploy any kind of
applications that are normally run on systems ranging
from simple desktops to massive supercomputers. The
computing resources are offered m the form of Virtual
Machines (VMs). Recent studies (Deelman et al., 2008;
Kondo et al., 2009) have shown that Amazon’s Elastic
Compute cloud (EC2) is widely being used by scientists
for runming scientific workflows. One of the mamn
reasons behind this change is that cloud provides
resources on-demand which 1s scalable and elastic thus
making it conducive for testing and running such
workflows.
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Table 1: Sample of amazon EC2 instance pricing

Instance type CPU Memory (GiB) Cost per hour ($)
Smmall 1 2 $0.03
Medium 2 4 $0.07
Large 4 8 $0.13
Xlarge 8 15 $0.27

Deadline constrained workflows such as mteractive
deadline constramed e-learning, online media streaming
applications and online banking systems are also
pursuing favorable circumstances to utilize computer
clouds. Among several others, a standout amongst the
most umperative perspective which separates a cloud
framework from its counterparts like cluster and grid is the
market oriented business model. Amazon EC2 offers
various types of mstances on a rental basis and
a sample of instance types offered by EC2 1s shown in
Table 1.

Under such circumstances, the execution cost of an
application refers to the monetary cost mvolved in
runming the application. Therefore, as a user who wishes
to deploy his/her application on a cloud this cost is of
high sigmficance. Moreover when the application comes
with a deadline, there 15 a tradeoff between the optimal
selection of the number of VM instances rented and the
completion time. If faster mstances are hired, the cost
meurred will be more but with the guarantee that the
application executes within the deadline. When slower
mstances are hired, the cost meurred will be less but user
has to compromise on the completion time. Therefore an
efficient scheduling algorithm which guarantees that an
application executes within its deadline while at the same
meurring mimmum cost 15 of at most importance.
Workflow scheduling is a well known NP-complete
problem and many heuristics have been proposed in the
literature for scheduling the same onto homogenous
(Kwok and Ahmad, 1999) and heterogeneous distributed
systems (Baja) and Agrawal, 2004; Daoud and Kharma,
2008). Given this motivation, this study proposes a
Genetic Algorithm (GA) based metaheuristic approach for
scheduling a deadline constrammed worktlow onto a cloud
such that the total cost meurred for its execution is
minimal. GA is a part of metaheuristic algorithms which
can find a good near optimal feasible solution in less time
compared to traditional methods. They search in parallel
from a population of points. Consequently, it can abstain
from being caught m local optima like traditional methods
which search from a single pomt.

Our proposed algorithm works in two phases. In the
first phase, a deadline constramed workflow 1s scheduled
onto a cloud using an expedite GA (EGA). Our system
model assumes that there exist VM instances of various
types (heterogeneous environment) with varying speed
and cost. However, in order to arrive at an optimal

schedule in considerably less time, we compute an upper
bound and lower bound on the cost required for executing
the workflow m a cloud. This computation 1s done by
considering a homogenous environment where all VMs
instances rented are of the same type. The variation of the
cost when scheduled in heterogeneous environment with
respect to these bounds determines whether exploration
or exploitation of the search space 1s required.
Accordingly either the crossover or mutation is applied.
Even though an optimal schedule with minimum cost is
returned by the EGA, most of the time it so happens that
the makespan of the schedule 1s less than the deadline.
This difference between the makespan and deadline gives
room for further improvement. In the second phase, the
optimal schedule thus found in the first phase 15 further
refined. A fine tuming method 1s applied by clubbing two
tasks in one VM instance. This is done because VMs are
charged on an hourly basis. Therefore, a VM that
executes for 20 min and another VM that executes for 40
minutes are charged the same (for 1 h). Hence, by
clubbing these two VM instances such that the total time
of these two instances are less than or equal to one hour,
considerable saving in cost can be achieved. However
when domng so, the precedence relation among the tasks
is to be preserved.

We have compared ouwr work with Standard GA
(8GA) and PSO algorithms from the literature. The
experiments have shown that EGA 1s able to meet 100%
deadline m almost all cases and 1s able to achieve a
significant reduction in cost. The key contributions of this
study are:

* A novel way of applying crossover and mutation

¢+  Computation of lower bound and upper bound for
the optimization problem

*  Anovel fitness function based on the bounds

¢ A fast evolutionary approach called Expedite Genetic
Algorithm (EGA)

s Fine tuning the optimal schedule

»  Extensive sinulation studies considering various
cases

Literature review: Workflow scheduling aims at mapping
and execution management of tasks which are dependent,
to distributed resources. The problem of scheduling a
workflow onto distributed systems has been well studied
over the years and is known to be an NP-complete
problem. Since, it is not possible to generate an optimal
solution m polynomial time, heuristic and meta heuristic
algorithms are used that focus on achieving an
approximate or near-optimal solution. Algorithms for
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scheduling workflow applications with various QoS
constramts onto clusters and grid have been well explored
(Chen and Zhang, 2009, Falzon and L1, 2012ab; Cao ef al.,
2010). For example, Yuan et al. (2009) tackles the cost
optimization for scheduling a workflow that comes with a
deadline constraint m a grid environment. They have
proposed a heuristic called Deadline Early Tree (DET)
which constructs an early feasible schedule and then a
deadline division strategy is applied. For critical activities,
an optimal cost solution under given deadline constraint
1s achieved by using a dynamic programming method.
Workflow scheduling in cloud has also been explored
but relatively few works exist when compared to that
available in clusters and grids. Abrishami et al. (2013), a
Partition Balanced Time Scheduling (PBTS) algorithm is
proposed which estimates the minimum number of
computing hosts required to execute a workflow 1n a cloud
within a user-specified fimsh time. But here a
homogenous set of resources is considered so as to
reduce the scheduling overhead. The heterogeneity of the
resources offered by a cloud in not explored in this study.
Yan ef al. (2013) studied the problem of scheduling a
deadline constrained workflow onto a hybrid cloud
infrastructure (grid and cloud). They evaluated the degree
of deadline-guarantee for subtasks of workflow in grid
system based on a probabilistic deadline guarantee model.
Then, proper cloud resources are selected as an
enhance the deadline-guarantee of
subtasks. A similar study was done by Bossche et al.
(2010) in which a Hybrid Cloud Optimized Cost (HCOC)
scheduling algorithm was proposed which decides which
resources should be leased from the public cloud and
aggregated to the private cloud to provide enough
processing power to execute a workflow within a given
execution time. A novel compromised-time-cost
scheduling algorithm which considers the characteristics
of cloud computing to accommodate instance-intensive
cost-constrained workflows by compromising execution
time and cost with user input is proposed by Liu et al.
(2010). Here, they concentrate on reducing the cost by
compromising on execution time. A Revised Discrete
Particle Swarm Optimization (RDPSO) s proposed in
(Wu et al., 2010) to schedule applications among cloud
services that takes both data transmission cost and
computation cost into account. Here they try to achieve
savings 1n cost and better performance on makespan.
MOHEFT, a pareto based list scheduling heuristic that
provides the user with a set of tradeoff optimal solutions
from which the one that better suits the user requirements
can be manually selected 1s presented by Durillo er al.
(2012). The problem is formulated as a multi-objective
optimization problem which aims at optimizing two

accelerator to

conflicting criteria, namely makespan and economic cost
of workflow’s execution. The research is closely related to
the work presented in (Rodriguez and Buyya, 2014) which
uses a P3O based approach to mimmize the overall
workflow execution cost while meeting deadline
constramts in a cloud environment. However, the work
differs from their research in that a fine tuning strategy
15 applied in second phase after getting an optimal
schedule. GA based algorithms have been used to
address the workflow scheduling problem in grids and
clusters (Yu and Buyya, 2006, Nesmachnow et al., 2010,
Falzon and ©Li, 2012a, b). However in a cloud
infrastructure most of the GA based algorithms try to
reduce the makespan and cost. Our work considerably
differs from the all the other works mentioned in the
literature by computing bounds on execution time and
execution cost which are used to guide the GA in arriving
at an optimal solution in less time. Furthermore a second
phase 1s applied to further refine the optimal schedule
based on the pricing strategy which 1s typical of IaaS
clouds.

Problem formulation: In this study, we briefly describe
the system and application characteristics and sumimarize
the various notations used in this research.

System environment: The system model consists of a
cloud TaaS provider which offers compute nodes n the
form of Virtual Machines to its users. We assume that a
service similar to Amazon Elastic Compute Cloud EC2 is
offered where different types of VMs which vary in
computational speed, memory, cost per hour are available.
These services are used to run the workflow. Also, it is
assumed that a storage similar to the Amazon Elastic
Block Store (EBS)is available to which the compute nodes
are attached. This enables the storage of input and output
data and also sharing of data among various tasks. A
sample of mstance types offered by EC2 has been shown
(Table 1). Without loss of generality, researchers assume
that the computational speed of a VM 1s expressed as
MIPS (Million Instructions Per Second) and this
information is available from the cloud service provider.
This umt s used m our algorithm to determine the
execution time of a task on a VM.

Let S, denote the speed of a VM of instance type 1.
Assuming there are ‘m’ VM instance types in the system,
the relationship between the processing capabilities of
VMs can be specified as given in Eq. 1:

S, # 82 8,1€ {l.m} (1)
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The cost incurred to run VM instances per unit time
(C) 18 given by a table called VM Cost Matrix (VMCM)
(Table 1). The relationship between the costs of VMs can
be described by Eq. 2:

C,+C+C, 1€ i{lm} (2)

We assume that there are several instances available
for each VM type and these are kept in a VM pool. Each
mstance of a VM 1s assigned an id (VM) for example
VM,,. The first digit represents the type of VM (for
example, 1 for xlarge, 2 for large and so on) and the second
digit represents the i1d number of mstance m that type.
Hence, VM, represents an instance numbered 3 of
type 1. VMs usually take some time to boot. But since
available and ready VMs are stored in the VM pool, this
time is assumed to be zero in our work. Tasks are non
preemptive and it 1s assumed that each VM instance can
execute only one task at any given time. The VM
instances are charged on an howly basis (called unit
time). Hence, if a task executes for 1 hand 10 min ona VM
mnstance, 1t 18 charged for 2 h. In all cloud providers, VM
mstances executing tasks of a smgle workflow are
assigned to a single data centre. Therefore, the bandwidth
between the computing nodes is the same and hence,
they do not charge for data transfers between two
mstances. Therefore in our work, the cost of data
transmission is not considered while estimating the
execution cost of the entire workflow.

Application characteristics: The workflow application 1s
modeled as a Directed Acyclic Graph G = (V, E) where V is
a set of ‘n” tasks. The set:

V={T,T, ... T.};1e(l,m (3)

is represented as vertices in the DAG. The set of tasks T
€ (1, n) are dependent of one another and hence:
T, T, T, ..., n T #+O 4
The interdependencies between the tasks are
represented using the set E which is the set of directed
edges. A directed edge <I,, T>E represents the
dependency and the precedence between T, and T;. That
1s task T, has to be executed before task T;. T, is called the
parent of T, and T, the child of T, Based on ths,
researchers can say that a child task T, cannot be
executed until all its parent tasks have completed
their execution. An example of a workflow is
shown in Fig. 1.

Fig. 1. A sample workflow represented as a DAG

Table 2: Summary of notations

Notations Description

8 8peed of a VM instance of type T expressed in MIPS
o Cost/unit time of VM instance of type i

v Set of Vertices

E Set of Edges

T; Represents ith task

I Length of task i-expressed as Million Instructions (MI)
W, Deadline of workflow W

M, Lower bound of makespan

M, Upper bound of mak espan

C Lower bound of cost

Cy Upper bound of cost

M, Mean of bounds for makespan

Ch Mean of bounds for cost

Ty Value of makespan for individual i

I, Value of cost for individual i

F Fitness of individual i

Each workflow comes with a user defined deadline
W,. A vertex in a DAG without any parent task is called
an entry task and a vertex without any cluld task 1s called
an exit task. In the sample worlflow given in Fig. 1. T, is
the entry task and T,; 1s the exit task. For DAGs which
have multiple entry and exit tasks, our proposed method
adds two dummy tasks T, and T_, with zero execution
time, since our algorithm works for workflows having a
single entry and exit task. Table 2 summarizes the various
notations used in this research.

MATERIALS AND METHODS

Block diagram of proposed model: Figure 2 shows the
overall working of our proposed model. The user submuits
a workflow with deadline to the Workflow Management
System (WFMS). The WFMS determines a schedule for
executing the tasks of the workflow and gives it to the VM
acquisition module. VM monitor monitors the availability
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Fig. 2: Block diagram of proposed model

of VMs n the VM pool and gives it as input to the VM
acquisition module. VM acquisition maps the tasks to the
corresponding VMs. The VM provisioner module is
responsible for the provisioning of VMs in the compute
nodes. Resource Monitor momnitors the execution of VMs
on the compute nodes.

Calculation of lower bound and upper bound: Since, the
problem of scheduling a DAG in a heterogeneous
environment is NP-complete, it is difficult to find an
optimal makespan satisfying the deadline constraint in
polynomial time. In order to estimate the performance of
our algorithm, a lower bound and upper bound for
makespan and cost are computed for comparison purpose.
To facilitate the calculation of these bounds, we relaxed
some constraints in our system model. Researchers
assumed that all VMs have a umform configuration i.e.,
the environment is homogenous.

Researchers apply the Highest Level First with
Estimated Times (HLFET) (Adam et of., 1974) scheduling
policy to compute the lower bound and upper bound for
makespan and cost. HLFET is a scheduling mechanism
that uses static b-level as node priority and ignores
commumnication cost on the edges. It includes the
following steps.

¢  Calculate the static b-level of each node.

¢ Make aready list in descending order of static blevel
*  The ready list contains only the entry nodes mitially
*  Ties are broken randomly

Compute Nodes

Repeat:

¢  Schedule the first node in the ready list to a
processor that allows the earliest execution, using
the non-insertion approach

»  Update the ready list by mserting the nodes that are
now ready

Until all nodes are scheduled.

Lower bound for makespan (M) and upper bound for cost
(C,): In this test case, all VMs are supposed to be in the
same configuration with highest speed possible. That 1s
all are xLarge mstances and hence cost incurred is
comparatively high. The HLFET heuristic is used to
compute the minimum expected makespan. For the
generated schedule, the cost is calculated using the cost
matrix. Since all VMs are xLarge instances, the makespan
of the schedule gives the lower bound for makespan (M,).
Alternatively, since all are xLarge mnstances, the value of
cost computed will be the highest possible total cost and
this forms the upper bound for cost (C,).

Upper bound for makespan (M, ) and upper bound for cost
(C): Inorder to compute values for M apnd C same
scenario as above 1s applied, except that all VMs are small
instances and hence cost is comparatively less. Once the
values of M,, M,, C,and C have been computed, the mean
of these bounds M, and C, for makespan and cost are
calculated as shown in Eq. 5.
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M, = M.M)/2; C, = (CHCH2

MATERIALS AND METHODS

)

Proposed method: The algorithm works in two phases
which are explained in this section.

Phase 1; Expedite Genetic Algorithm (EGA): The
research focuses on finding a schedule to execute the
tasks of a workflow which mimimizes the execution cost
while meeting the workflow’s deadline (W,). Iitially, 1f the
deadline W =M, then the workflow 1s not accepted. A
feasible solution for a workflow scheduling problem is one
which satisfies the following constraints

* The precedence relations among the tasks are
satisfied

* A task appears
schedule

once and only once in the

A simple one dimensional string as shown in Fig. 3
(corresponding to the sample workflow in Fig. 1) is not
suitable for representing a schedule of a workflow.
Therefore, when a GA based concept 1s used to solve the
worlkflow scheduling problem, we need to ensure that
each solution satisfies the user constraints and task
dependencies to prevent generating infeasible solutions.
Generating solutions over multiple iterations that are
feasible will take considerable amount of time and for a
workflow with thousands of tasks this may result in poor
performance. Hence a fast method to generate individuals
which are feasible is of utmost importance. For this we
divide the workflow into several levels based on the depth
of interdependency. We associate a parameter called
height along with each vertex in DAG. Researchers use a
Breadth First Search (BFS) to traverse the DAG and
compute height of individual vertices. The modified BFS
(MBFS) to compute height of tasks in a DAG is
given below. Tt also creates an inverted adjacency list
for tasks m a DAG which stores the list of parents
of each task.

level=level+1
if visited[ Tj]=false then
push T; onto quene
T;height=level
Append v to the predecessor list
of T,
else
/fwhen T; has more than one parent. The parent which has the maximum
height is to be considered
if T;.height<level then T jheight
= level
end
end

All tasks with same height are in the same level.
Tasks mn the same level can be executed mn parallel. Each
task is represented as a tuple called the Task Attribute
Vector (TAV) with the following fields.

Task Attribute Vector (TAV):

» Taskid
*  Height
+  Vmid

+ EST

« LFT

+  Pointer to predecessor list

The EST and LFT represent the Earliest Start Time
and Latest Fimsh Tiume of each task and are
calculated as:

0 if T, =T,
EST(T,) = .
max {LFT({T)};T, epred(T) otherwise
(6)

LFT(T,) = EST(T,+E, (N

Where, E, 1s the execution time of task T,

Representation of a chromosome: Here, researchers use
a 2 dimensional string to represent a chromosome and
then map itto a 1 dimensional string as shown in Table 3
and Fig. 4.

Table 3: The 2 dimensional strings

Algorithm to compute height of tasks in a DAG: Level Tasks
MBFS(G) 0 T,
level=0 1 T,
T.per-height=0 BFS(v) Hirst call to 2 T.. Ty,
BFS(v) 15;=Te1:tty 3 Ta, T, Tra, Tis
push v onto queue. 4 To.To. To. Tra Tis
‘While queue not empty
do 5 To, Ta
v=delete{queue) visited[v]=true g ?ﬁ
for each task T, adjacent to v 17
i 8 T,
do
Ty . T . T T T T: T Tw Tu Te Te Ta Te To Ta Te
[ s | b [ bt | e [ o | e [ bte [ bt [ e | M | b [ e [ bt | s | e [ e | bt | |

Fig. 3: One dimensional representation of workflow
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Fig. 4: The structure of four realistic scientific workflows: a) Montage; b) LIGO, ¢) Cybershake; d) Epigenomics

Generate initial population

Calculate fitness

-ve

New population

Calculate filness of new
population

Fig. 5. Flowchart of EGA

A chromosome is a one dimensional vector divided
mto ‘I’ parts where 11s the number of levels/rows of the 2d
string. The values in the vector define the VM instance to
which the task is assigned.

Initial population: The individuals in the mitial population
are generated through a random heuristic by assigming
them to the computing nodes chosen at random. Tt is
assumed that the tasks assigned to the same computing
node are queued and are executed on a FCFS basis. In
each mndividual the time slot at which the task 1s to be
scheduled at each computing node (EST) is computed and
included in the TAV and is determined by the following
rules. Choose a ready task T, that has all of its parents
scheduled:
EST (T) = Max LFT (T))

where, T, is a parent of T,.

Termination
condition?

+ve

New population

Apply mutation

Calculate fitness of new

population

Fitness function: A fitness function in a GA 1s a measure
of the quality of the individuals according to the given
optimization criteria. Here our objective is to minimize the
cost while at the same time meeting the deadline. Tn this
work a novel fitness function 1s defined which measures
the deviation of an mdividual’s cost with respect to its
mean value. The fitness 15 computed as shown below:

Fi=@.-Co (8)
Where, I, 1s the cost of individual I subject to I;,gW , A
negavite value for F, implies that I, lies between lower
bound and mean whereas a positive value indiactes that

it lies between mean and upper bound A flowchart of
EGA is shown in Fig. 5.

Genetic operators
Selection: Here, in the proposed research a proportionate
based selection called roulette wheel selection 13 used.
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After selection process, the entire population is divided
into two groups. One group has a collection of all
individuals with a negative value of fitness function whle
the other group consists of all individuals with a positive
value of fitness function. Negative value of fitness F, for
an individual i means that C<T;<C,, is satisfied. A positive
value on the hand signifies that C<I,<C, 18 true. Hence,
a crossover (exploitation of the search space) is applied to
the first case and mutation (exploration of the search
space) is applied to the second case.

Crossover: Crossovers are used to create new individuals
in the current population. The basic idea behind
crossover is that it may create better individuals by
combiming two fitter mdividuals. The crossover 1s
unplemented as follows:

¢+ Two parents are selected at random

*  Tworandom pomts are selected from the schedule of
first parent

¢ The tasks between these two random points form the
crossover window

*  The computing nedes of all tasks n the crossover
window are exchanged with their corresponding
entries in parent 2

Mutation: In this process, an individual s picked at
random. A child task which has multiple parents has to
wait for all parents to be completed. Such a child task is
chosen and LFT of parents are compared. Those parents
which have a lesser LFT are scheduled on slower VM
mstances and the EST and LFT of the tasks are
recomputed based on the new assignment.

Stopping criteria: The algorithm stops in one of two
cases. Hither an optimal solution is achieved when the
value for F, is equal to C; or the best fitness value between
several iterations are recorded and the algorithm stops
when there 1s no sigmificant difference among them over
generations.

Phase 2; Refinement of Optimal Schedule (ROS): When
an optimal schedule is obtained in phase 1 two cases are
possible. Let M, denote makespan of the optinal
schedule.

Case 1; (M, = W, ): This denotes the case when
makespan retumed by the optimal schedule i1s exactly
equal to the deadline. Under such circumstances, no
refinement is needed and the algorithm returns the optimal
schedule. However, studies have shown that the
makespan of the optimal schedule will always be less than

the deadline. This necessitates a fine tuning of the
optimal schedule which leads to the solution falling
under case 2.

Case 2; (M,<W,): The optimal schedule returned by the
GA 18 examined m a bottom up fashion. In the optimal
schedule, each task of the workflow is assigned to exactly
one VM instance. Therefore, the total number of instances
rented for execution of the workflow 1s equal to the
number of tasks in the workflow. In the second phase, the
schedule is examined further to reduce this total number
of VM instances rented. For this, the tasks of the
workflow are examined in a bottom up manner starting
with the exit task.

For a task which has only one parent (this
information is encoded in the TAV (Fig. 4), the following
computation is done (this means that the child task and
the parent task are in sequential execution). Let T, denote
the child task and T, dencte the parent task. Assume they
have been mapped to VM instances of type x and v,
respectively.

Let U, and U, denote the unit cost of VM instances
of type x and y (these are stored in a table called
VMCM-Table 1). Let E_ and E  genote the execution
times of T, and T, respectively. (The x and y in the
subscript denote the VM instance type). If any of the
followmng condition holds:

E.modU, # 0andE, mod U, # 0
E.medU,=0andE med U + 0
E.modU, # 0andE, ,modU,=0

then the followimng computation is done to examine
whether these two tasks can be clubbed in one VM
instance. The cheaper of the two mstances 1s chosen. Let
us assume that VM instance of type x 1s the cheaper
among the two:

D= (E_*E,)med U,

If D = 0 then both are clubbed on one instance
thereby reducing the number of instances. Based on this
assignment, the EST and LFT of tasks are recomputed. If
not, the workflow is further examined to identify any such
tasks and the process repeats itself.

Experimental
experiments
performance of our algorithm. We use a simulated cloud
environment provided by CloudSim (Calheires et al., 2011)
to validate the approach.

In order to evaluate a workflow scheduling algorithm,
its performance has to be measured against some sample
workflows. Two commonly used approaches are:

setup: This study elaborates the
conducted in order to evaluate the
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Fig. 6: The structure of four realistic scientific workflows: a)Montage; b) LIGO; ¢) Cybershake; d) Epigenomics

»  Either uses a random graph generator to generate
several workflows with varying characteristics like,
number of tasks, dependency, level, etc

*  Oruse realistic workflows conventionally used in the
scientific community

Here, researchers use the latter. Four different
scientific benchmark applications from the Pegasus
Workflow  Generator, namely Montage, Laser
Interferometer Gravitational Wave Observatory (LIGO),
CyberShake and Epigenomics (GENOME) were used. Each
of these workflows varies in their structure and
computational requirements (Fig. 6).

The Montage workflow is an astronomy application
used to generate custom mosaics of the sky based on a
set of mput images. The LIGO i1s an application in
gravitational physics which amns to detect gravitational
waves produced by various events in the universe as per
Einstein’s theory of general relativity. The CyberShake
workflow 15 used to characterize earthquake hazards using
the Probabilistic Seismic Hazard Analysis (PSHA)
technicue. The Epigenomics workflow is essentially a data
processing pipeline that uses the Pegasus workflow
management system to automate the execution of the
various genome sequencing operations. In addition to
these workflows, we sunulate four types of VMs (refer
table 1). We use three different workflow sizes for each
application, namely, small (about 30 tasks), medium(about
50tasks) and large (about 1000 tasks). Another important

factor to be considered 1s the tuning mterval of a VM
instance. We assume a timing interval of 1 h and VM
boot time is ignored, since we assume that ready
instanices are available in the VM pool. Finally, to evaluate
EGA we have to assign a deadline to each workflow. For
this, the lower bound and upper bound of makespan 1s
considered. These bounds represent the minimum (lower
bound) and maximum (upper bound) makespan of a
workflow in a homogenous environment. The difference
between these bounds is divided by 5 to get a deadline
interval size 4. This interval size 1s added to the lower
bound of makespan in the order M+, M+2[3, Mi3p,
M+4P, M+5P to define 5 different deadlines for the
application.. We use standard GA[ |, HEFT[ ] and PSOJ ]
algorithms as baseline to evaluate our algorithm. In
standard GA implemented m order to evaluate the
algorithm, crossover 1s carried out in each iteration,
whereas the mutation occurs with a probability of 0.5.

RESULTS AND DISCUSSION

Deadline evaluation: Tn order to analyze the performance
of algorithms in meeting the user deadline, we plot the
percentage of deadlines met for the 5 different deadlnes.
Since a large set of workflows with varying sizes and
characteristics are used, we compute the average of
makespan and then calculate the percentage of
deadlines met over several runs. The results are
displayed i Fig. 7.
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For the Montage workflow, SGA fails to meet the
deadlines when they are strict, ie, the deadlines are close
to the lower bound of makespan. When the deadlines
defined were strict SGA achieves <50% in the first
mterval, <80% 1n the second and third intervals. But when
moving to more relaxed deadlines, it achieves 100%. The
same can be attributed for PSO and EGA but they exhibit
a better performance than SGA in the imtial cases also.
This can be attributed to the fact that PSO and EGA
converges faster and are able to meet the deadlines earlier
than the SGA. Similar performance 1s achieved for the
LIGO and Epigenomics workflow. As for the CyberShake
workflow, both SGA and PSO fails to meet the deadlines
when compared with EGA. This is because of the complex
structure and characteristics of the workflow which has a
large number of parallel tasks and dependencies. Under
such a scenario, when the size if the individual 15 large,
EGA performs better than PSO, since PSO assumes an
initial boot time for VM instances which contributes a
significant part in the completion time of the workflow. On
the whole it has been found that both PSO and EGA are
able to meet the deadlines in all the scenarios when
compared with SGA. This 1s because, SGA takes more
time to explore the search space as the constraints
becomes stricter and is unable to return an optimal

schedule.

Cost evaluation: Since, a large number of worldlows with
different characteristics are used, in order to effectively
analyze the impact of our proposed approach on the cost
of running the application, we define a Regulated Cost
Factor (RCF) of a workflow as follows (Fig. 8):

RCF = Total cost/C,

where C, gives the cheapest cost possible for executing
a workflow. It 1s seen that the cost incurred by EGA 1s
comparatively less than the PSO and SGA m all the cases.
This is because even when the PSO meets 100% deadline,
the makespan of the resulting schedule 1s always less
than that of the deadline. Hence, as for the deadline
satisfaction criteria, 1t performs 100% 1n almost all the
cases and the workflows are able to execute before their
assigned deadline. But when compared with EGA, EGA is
also able to achieve 100% deadline satisfaction. But when
it finds that the makespan of the resulting schedule
15 less than that of the deadline, tuning
method is adopted. This accounts for a lesser value

a fine

in cost as compared to the PSO. Moreover, it can be
seen that the cost 18 comsiderably high when the
deadlines are strict and this gets reduced as deadlines are
relaxed.

When deadlines are strict, there is little room for fine
tuning and even if fine tuning 1s applied the instances
rented are of high speed to meet the deadline. For the
CyberShake workflow, both PSO and EGA incur almost
the same cost. This can be attributed to the complex
structure of CyberShake application where PSO fails to
meet the deadlines and if 1t meets, the cost mcurred 1s
almost the same as that of EGA. The experiments were
conducted on small and medium workflows and the
results obtained were siumilar to the ones for large
workflows.
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Fig. 8: Evaluation of Cost for 4 different workflows: a) Montage; b) LIGO; ¢) CyberShake; d) Epigenomics

CONCLUSION

This study presents an expedite genetic algorithm for
scheduling workflow applications with deadline onto a
cloud computing infrastructure. Tt has been observed that
while scheduling worlflows with deadline, most of the
time while the optimal schedule satisfies the deadline
criteria, the makespan of the resultant schedule is less
than the deadline. This difference is of significance in a
cloud environment where the resources are rented and
considerable savings in cost can be achieved by renting
les costlier resources. This process calls for a fine tuning
method of the optunal schedule. The experunents
conducted have shown that our proposed EGA with fine
tuning 1s able to achieve comsiderable savings m cost
when compared with already existing algorithms in the
literature. As a future work, we would like to include data
transmission cost among data centers so that an
application may be deployed in different regions.
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