Asian Journal of Information Technology 15 (17): 3205-3216, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

Detecting Shotgun Surgery Bad Smell Using Similarity Measure Distribution Model

'G. Saranya, 'H. Khanna Nehemiah, *A. Kannan and *S. Vimala
'Ramanujan Computing Centre
*Department of Information Science and Technology, College of Engineering Guindy,
Anna University, 600025 Chennai, India
*Department of Computer Science and Engineering, Tamil Nadu, India

Abstract: Bad smells are the symptoms of code decay which leads to the severe maintenance problem. Shotgun
surgery is a smell where a change in a class may cause many small changes to other different classes. There
are several approaches that identify bad smells based upon the definition of rules and change history
information. These rules are the combination of software metrics and threshold values which sometimes not
able to detect the code decay such as shotgun surgery. Since, it is difficult to find the best threshold value for
rule based detection and alse finding the best combination of metrics from the historical information seems to
be difficult. To detect the shotgun surgery, the co-change should be feasible. In that case, the need for having
sufficient history of observable co-changes, without wlich the approach of change history is not possible.
Therefore, these techniques cannot report the accurate instance of smells to detect the shotgun surgery bad
smell. So as an alternate, 1n this study, a framework similarity measure distribution modelfor detecting shotgun
surgery bad smell for object oriented program without the need for change history information is proposed. The
framework 1s expenimented on HSQLDB, TYRANT, XERCES-T and JFREE CHART open sowrce software. To
enable the detection of Shotgun surgery certain class files of the software under experimentation are modified.
The results obtained through this framework are compared with the results obtained from the bad smell
detection tools namely, inFusion and iPlasma in terms of precision and recall. From the results it is inferred that
the shotgun surgery can be detected more accurately using this proposed approach. The proposed framework
improves the maintainability by detecting the bad smell shotgun surgery.
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INTRODUCTION

Software maintenance 1s one of the important phase
i the software life cycle. Maintenance of software has
become a major challenge due to changing requirements.
To adapt to changing requirements, programmers modify
or add new functionalities to the existing software system.
This results i poor design and violation of the object
oriented design principles such as data abstraction,
modularity and encapsulation (Riel, 1996) wiuch serves
as a cause for bad smell occurrence. The presence of
bad smells indicates that there are issues with code
quality, such as understandability and changeability
(Yamashita and Moonen, 2012). The name bad smell (code
smell) was first used by Kent Beck (Fowler 1999). Bad
smells makes program modification and reuse more
complex which affects the software quality (Dexun et al.,
2013). There are different types of bad smells mn software
programs. Fowler (1999) presented twenty two types of

code smells namely; comments, speculative generality,
long method, lazy class, large class, switch statements,
alternative classes with different interfaces, long
parameter, temporary field, inappropriate mtimacy, data
clumps, divergent change, data class, refused bequest,
feature envy, shotgun surgery, duplicate code, message
chains, primitive obsession, parallel inheritance
hierarchies, dead code and middle man Traditionally,
inspection of bad smell was done manually for large
systems and 1t 13 a tume consuming process for
programmers to detect the bad smell. According to
Fowler et al. bad smells can be removed using refactoring.
Studies show that bad smells hinder clarity (Abbes et al.
2011) and possibly ncrease change and fault proneness
(Khomh et al. 2012; Palomba et al, 2013). Also, the
interaction between bad smells in different classes/
methods can negatively affect maintain  ability
(Yamashita et al., 2013). Hence, the bad smells have a
negative impact on software evolution; it should be
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carefully monitored and removed through refactoring
operations (Palomba et al., 2013). Although, many tools
are practically used to detect the bad smell, there 1s still a
lack in the detection of bad smells in code.

Shotgun Surgery 1s a bad smell where, a change n a
class may cause many small changes to other different
classes (Fowler, 1999). Shotgun Surgery bad smell can
also take the form of a piece of code which 1s replicated
repeatedly in various methods, belonging to various
classes which might otherwise not give the impression of
being coupled to each other. This happens when the
programmers use duplicate copies of code. The methods
mn a class affected by the shotgun surgery have many
design entities dependent on it. If a change is implied on
such inter dependent methods, the programmer 1s required
to make all cascading changes. Due to system-wide
dispersion of changes and high amount of coupled
entities, there is a risk of missing recuired changes which
may cause maintenance problems (Olbrich ef af., 2009). In
the existing work, the majority of the work 15 focused on
bad smell detection some which is based on the rule
based and historical change information (Palomba et al.,
2013, 2015). For each bad smell, the rules are based on the
combination of metrics and threshold. To find the best
threshold value for the rule based detection and finding
the best combination of metrics from the historical
information 1s difficult.

To overcome the above mentioned limitations, in this
study, shotgun surgery bad smell 15 detected using
similarity based distribution model which does not rely on
the rule and change history nformation. Using sumilarity
measure the methods replicated throughout the program
1s 1dentified and a similarity matrix s constructed. From
the similarity matrix the frequency histogram 1s generated
and from the histogram residual threshold is computed to
detect the shotgun surgery bad smell. The framework
similarity measure distribution model was evaluated on
four open source software’s namely, HSQLDB, TYRANT,
XERCES-] and JFREE CHART, respectively. When
comparing the framework performances in terms of
precision and recall agamst the tools mFusion and
iPlasma, it is observed that the similarity measure
distribution model tends to provide good performances
both in precision and recall, 1.e., the framework 1s able to
detect more code smell that the tools omit.

Literaure review: This section analyzes the introduction
and various detection approaches for detecting bad smell
in source code is discussed. Detecting bad smells and
refactoring of bad smells in programs is a challenging task

faced during the maintenance phase. Fowler (1999)
introduced code smells that are design defects in source
code. Fowler (1999) presented twenty types of bad smells
without classifying it. Since, there are more number of bad
smells and they are closely related to each other Mika and
Mantyla (2003) presented a classification of bad smells.
Their classification was more understandable and can
identify  the  relationship between the
Travassos et al. (1999) introduced reading technique for

smells.

detecting bad smell which 1s a manual detection process
and no attempt was made to automate this. The limitation
of this technique 1s manual detection of bad smell is time
consuming and the results are inaccurate. Instead of
detecting bad smell manually, Marinescu (2004) proposed
a metric-based approach to detect bad smells with
detection strategies. The strategies capture deviations
from good design principles and heuristics. However,
there are some limitations in their detection strategies
which have no justification for choosing the metrics,
thresholds and the combmation of the metrics and
threshold.

To overcome these limitations, Murnro (2005) defined
a combination of conventional metrics to identify the bad
smell. In their work, a framework to extract the main
characteristics of bad smell design problems and
interpretation rules that use existing and extended metrics
to identify candidates in the results are defined. They
presented the evaluation results of an automatic
detection of two bad smells namely lazy class and
temporary field. The technique used in this study is
applicable to small software system and cannot perform
well for large scale software systems. Marinescu (2003)
and Mumro (2005) used metrics based approaches which
are msufficient to detect bad smell because metrics cannot
expose important structural and semantic properties.

Sahraoui have presented an approach for large scale
software systems based on visualization. They claim that
the automatic analysis is poorly understood and the
manual analysis 1s slow and incorrect; they have defined
a semi automatic approach based on visualization for large
scale software. Eva presented an approach that uses full
automatic analysis to detect the bad
visualization technique to display the result which 1s done

smell and

manually. However, human mterpretation in both the
approaches is a time consuming process.

Moha et al. (2010) proposed three contributions
related to code and design smell. First, Moha et al. (2010)
proposed a method named DECOR which describes all
necessary steps to detect code and design smell. Second,
a detection technique DETEX was instantiated to detect
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the bad smell at a high level of abstraction and
finally the DETEX technique was validated with the help
of precision and recall. Their proposed work lacks in
handling uncertainty m deciding whether the class 1s
antipatterns or not.

Liu et al. (2012) presented a detection and resolution
sequence for different kinds of bad smell mcluding large
class bad smell. This evaluation was performed on two
open source software, namely, Java Source Metric and
Thout Reader and the results were validated. In their
work, they focused more on the schedule of detection
rather than the large class bad smell detection and the
detecting process was not clear in their work. Dexun e al.
(2013) proposed a detection and refactoring method for
large class bad smell which 1s based on scale distribution.
All classes were extracted n one program and its length
is measured using average length of the program, i.e., if
the length of one class is greater than the average length
of the class then it 1s the large class. Then the distribution
model of class scale 13 built based on the length of these
classes. Moreover, the cohesion metrics are measured to
confirm large class. Then, using agglomerative clustering
algorithm the extract class refactoring operation is
performed. For clustering algorithm, the distances
between the entities are calculated using the cohesion
degree. This method is applied to open source software
JFreeChart and the results are analyzed. In their work, the
distribution rule used to confirm the length of the class 1s
net defined properly.

Tiang et al. (2014) proposed distance metrics and
K-nearest neighbor algorithm to detect divergent change
bad smell. In their research, the dependency between the
entities is defined using the distance metrics theory. The
distance metrics values give the relationship between the
entities. Then K-nearest neighboring algorithm is used to
detect the bad smell. The value of K 1s dynamic in this
approach. This approach has been applied in HSQLDB
and Tyrant open source software’s and the result is
analyzed. Rao proposed a design change propogation
probability matrix approach for detecting shotgun surgery
and divergent change bad smell. The matrix is constructed
using the unified representation of artifacts graph. Using
the DCPP matrix the bad smells shotgun surgery and
divergent change 13 detected. This matrix method has
lower computation complexity.

Tsantalis and Chatzigeorgiou (2009) proposed a
methodology for the identification of move method
refactoring opportunities that provide a way for solving
Feature Envy bad smell. In this study, the notion of
distance between an entity and a class is employed to
support the automated identification of feature envy bad
smell and algorithm has been developed to extract the

move method refactoring suggestions. This study
clearly indicates which method and to which class they
should be moved. It 1s evaluated on large scale open
source projects namely, JFree Chart, JEdit, Mol and
Diagram.

Oliveto ef al. (2010) has introduced a new approach
based on munerical analysis technique using B-sphines for
the 1identification of antipatterns. This approach has been
illustrated on the blob and compared with DECOR and the
approach based on Bayesian Beliefs Network. They
classify classes strictly as being or not antipatterns and
thus cannot report accurate information for borderline
classes.

Bavota et al. (2013) proposed a new technique for
automatic re-modularization of packages using structural
and semantic measures to decompose a package into
smaller or more cohesive package. The result of this
approach indicates that the decomposed packages have
low coupling and ligh cohesion. The structural and
semantic measure 18 used i this study for the feature
extraction of the bad smell shotgun surgery.

Tufano et al. (2013) conducted a study in 200 open
source projects from different software ecosystems and
wvestigated when bad smells are mtroduced by
developers and the circumstances and reasons behind
their introduction. The results of the approach contradict
common wisdom stating that smells are being mtroduced
during evolutionary tasks.

Kessentini et al. (2010) proposed an approach for the
automatic detection of potential design defects in code.
The detection 1s based on the notion that the more code
deviates from good practices, the more likely it 15 bad.
Instead of characterizing each symptom of each possible
defect type, here, the principle of biological ummune
systems has been applied to identify what is abnormal.
The more something 1s different, the more it 18 considered
risky. In this work, they looked only at the first step of
immune systems: the discovery of risk. But the
identification and correction of detected design defects
(refactoring) were not inplemented.

Sahin et al. (2014) proposed a code smell detection
rules as a bi-level optimization problem. Tn this the upper
level problem generates a set of detection rules and
combination of quality metrics. The lower level maximizes
the number of generated artificial code smells that cannot
be detected by the rules produced by the upper level. The
main advantage of our bi-level formulation is that the
generation of detection rules 1s not limited to some code
smell examples identified manually by developers which
are difficult to collect but it allows the prediction of new
code smells behavior that are different from those m the
base of examples.
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Palomba et al (2015, 2013) proposed an
approach HIST to detect five different code smells by
exploiting change history information mined from
versiomng systems. The mam disadvantage of HIST 1s
there is a need for having sufficient history of observable
co-changes, without which the approach falls short. The
results indicate that HIST 1s able to identify code smells
that cannot be 1dentified by competitive approaches.

Serban (2013) presented a case study based on the
Shotgun Surgery design flaw detection. The detection
approach 1s based on software metrics and Fuzzy Divisive
Hierarchical Clustering (FDHC). Camelia applied the
framework on an open source software namely logdnet.
Camelia compared the framework with the similar approach
by Marinescu (2003). Camelia achieved all the suspected
entities affected by the shotgun surgery bad smell like
Marinescu except one entity due to the change of class
metric values.

In addition to the detection techniques, there are
many tools to detect the bad smell. Fontana et al. (2012)
analyzed and compared the bad smell detection tools
namely, Checkstyle, inFusion, iPlasma, PMD and
IDeodorant. In their work they focused on six bad smells
namely duplicated code, feature envy, god class, large
class, long method and long parameter list. They
automatically identified the bad smells using the detection
tools and applied to six different versions of Gantt project
which 1s open source software written 1 java. Francesca
concluded that only Jdeodorant bad smell detection
tool can detect the bad smell and do refactoring to
remove the smell.

The researches discussed in the literature deals with
various detection of bad smell and refactoring technicues
used for object oriented software. In the literature there 1s
less work on shotgun surgery bad smell detection and no
methods or tools locate the bad smell shotgun surgery n
the source code. Hence, the work proposed in this study
suggests a framework that detects the bad smell shotgun
surgery based on similarity measure distribution model
which 1s focused only on object oriented software. The
frame work has the potential to detect the bad smell
shotgun surgery and there by improve the software
maintenance of object oriented software.

MATERIALS AND METHODS

Similarity measure distribution model: Let S be the
object oriented software for which the bad smells have to
be detected and C be the set of classes such that C = {c,,
Cy, Coy -oor Gy, CCS, where n is the number of classes. From
the set of classes C each class ¢(1<kzn) 1s a set of
methods and attributes such that ¢, = {mk,, mk,, mk,, ...

mk,, ak,, ak,, ak,, .., ak,,} ¥ 1<pk<n, 1 <rk<n where ml,
are methods ¥j, 1<j<pk and ak, are the attributes 7,
1 <j<rk from c,. For the software S the computation of the
similarity measure is presented.

Similarity matrix: Shotgun Surgery is a smell, where
change(s) made to a class creates ripple effect(s) in
one or more related classes. This may be caused when
programmers copy blocks of code and paste them in many
different modules. To spot this type of code blocks the
similarity measure 13 used. Computing similarity measure
plays a key role since it captures the relationship between
the methods (Bavota et al, 2010). To compute the
similarity measure, the three different measures, Structural
Similarity between Methods (SSM) (Gui and Scott, 2006),
Call-based Interaction between Methods (CIM)
(Bavota et al., 2010) and Conceptual Similarity between
the Methods (CSM) (Marcus et al, 2008,
Poshyvanyk et al., 2009) has to be computed first.

The first measure 13 SSM which was mtroduced by
Gui and Scott (2006). SSM calculates the siumilarity
between the methods, 1.e., if the mstance variable shared
between the two methods 1s higher and then the similarity
between the methods 1s also higher. It 1s calculated by
using the following mathematical model:

ok Nl if[ak; Ualy| %0
SSMmk ,m1) = ‘akj Ualj‘ I (1)
0 otherwise

where, mk;, ml, are methods ¥, 1,<j<pk from the class ¢,
and c,, respectively. Where ak;, al, (%], 1 <j<rk) be the two
instance variables referenced by the method, mk, ml,
respectively. The second measure CIM 1s to be calculated.
The CTM was introduced by Bavota et al. (2010) which is
necessary to know the set of methods called by any
method where it is used to reduce the coupling between
the classes. If the interactions between the methods are
higher, then the value of CTM is higher. Tt is calculated by
using the following mathematical model:

CIMmk]%mlj

calls (mk;,ml.
# if calls in(mlp =0 (2
= calls in(ml;)

0 otherwise

where, calls (ml;, ml) be the number of calls performed by
method mk; to ml and calls in (ml;) , the total number of
incoming calls toml,.
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In addition to the structural information, there is also
a need for the conceptual mformation So, CSM 1s
considered and it i1s the third measure. It was first
mtroduced by Marcus et al. (2008). CSM 1s based on the
conceptual information. Two methods are said to be
conceptually related if they perform similar actions. CSM
computes the relationship between the methods by
measuring the textual similarity of the code components.
CSM is calculated by using the following mathematical
model:

3)

where mkj and mlj are the vectors correspending to the
methods mkjml; | respectively and |mkj|- |t represents the
product of the Euclidean length. If the similarities
between the methods are higher, then the value of CSM
is higher.

All the measures mentioned above have the value set
[0 or 1]. Finally, the similarity measure is calculated by
combining the SSM, CIM and CSM (Marcus et al., 2008,
Poshyvanyk ef al., 2009). Sunilarity, measure 1s computed
using the following mathematical model:

sim{cy ,¢)) = Wygng xSSM(mkj,mlj)+ W egpg X

(“4)

where, ¢, and ¢ is the two different classes in the set C;
Woan> Weny and Wegy€(0, 1) and Wogy twoptWegy = 1. The
value of Wy, Wo and wegy, ensures the weight in each
measure (Bavota ef al., 2010).

The similarity measure has the values in the range of
[0...1]. Using Eq. 4 a similarity matrix is computed by
calculating the similarity measure for each class in the set
C. And the similarity matrix is given as simc,c,.

Frequency histogram: From Eq. 4, the similarity matrix is
obtained. From the similarity matrix, the order of the matrix
is computed. Then, the frequency histogram is computed.
The algorithm COMP FREQUENCY HISTOGRAM is as
follows:

Input:
Similarity Matrix S™e;c,

Process logic

Step 1: Compute the number of groups K. From the similarity matrix, the
data is grouped using Sturge’s formula (Sturges, 1926). Sturge’s formula is
used to find the total number of class intervals and to set the number of
intervals as close as possible. The Sturge’s formula is calculated using the
mathematical model (Sturges, 1926):

K =1+3.322%l0gN (5

Where, W is the order of the matrix and K is the number of groups.

Step 2: Compute the width of the interval I. To have the same width for
all the class intervals, the width of the interval is calculated (Pearson, 1895)
using the mathematical model:

I=RK (®)

where, I is the width of the class interval, R is the range which is used to
find out the class width and K is the number of groups. The range is
calculated by using the following mathematical model (Pearson, 1895):

R = maxSim-minSim ()]

where, maxSim = maximum value of the similarity matrix and minSim =
minimum value of the similarity matrix.

Step 3: Compute the class interval CI; Using the width computed
in step 2 the class intervals are calculated by using the following
mathernatical model (Pearson, 1895):

CL, = min sim+(i-1)*1, min sim+i*I [€)]
where, i =1, 2, ..., K and CT = Class Interval

Step 4: Compute the frequency distribution: Using Eq. 2, the midpoint
is computed:
X =% (Lower class limit+Upper class limit) (&)

where, X is the mid point. Using Eq. 10, the frequency is calculated:
f'=Total number of occurrence of values in each class interval (10)

where { = frequency. Using the Eq. 8 and 10 a frequency histogram is
constructed. Where X-axis is the CI; (Class Interval) and Y-axis is the
(frequency) of the graph.

Output:
Frequency Histogram

Classes are divided with the similarity measure by
Sturge’s equation (Sturges, 1926) and the frequency for
each mterval 1s calculated. A series of pomts 1s created in
rectangle co-ordinates to represent the similarity measure
statistics. From the histogram, the residual threshold is
computed. The value of residual threshold RT 1s the
average of each group of Standard Deviation (SD) in
curve fitting. The value of SD 15 calculated by using the
following mathematical model:

k
SD = iz(xi—r?()zxf an

i=1

where, N = EXfand ¥ is the mean which is calculated by
using the following mathematical model:

,}—(ZZXf (12)
=X
Where:
YXf = The sum of the product of midpoint and

frequency
%X = The sum of midpoints
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If the value of RT, of each class interval is larger
than the residual threshold RT then there is shotgun
surgery bad smell m the class interval. Where, RT; 1is
given as the SD of each group in the curve fitting. After
calculating the residual threshold, the wvalue of class
interval CI corresponding to the highest residual
threshold RT, 1s obtained and repeated occurrence 1 each
row of the sumilarity matrix i1s computed by Eq. 13:

Clj =simg, o (13

The row with the maximum number of occurrence of
the value CI; 13 obtammed and that corresponding class 1s
detected to have the bad smell shotgun surgery.

Empirical study definition and design: The goal of the
study is to examine the framework similarity measure
distribution model, in detecting the bad smell shotgun
surgery in software systems. The quality focus 13 on the
detection accuracy on the bad smell shotgun surgery and
compared to the bad smell detection tools while the
perspective is of researches who want to evaluate the
effectiveness of the framework in identifying code smells
to build better recommenders for developers.

The context of the study consists of four open
source projects, namely HSQLDB, TYRANT, XERCES-T
and JFREE CHART. HSQLDB (http:/hsqldb.org )
(Hyper SQL DataBase) 1s SQL relational database
open source software written in TJava. Tyrant
(http:/tyrant. sourceforge. net/index. php) is a game written
in java and Xerces-J (http://xerces.apache.org) 1s a library
for parsing, validating and manipulating XML written in
java. JFree chart (http://www.jfree.org/jfreechart) is a free
chart library for java where the developers display the
professional quality chart easily. The four open source
projects have different size and are of different domains.
Table 1 reports the characteristics of the analyzed
systems, namely the software versions, number of classes
and number of methods.

Research question, data analysis and metrics

The study aims at addressing the following two research
questions

RQ1: How does the framework similarity measure
distribution model perform in detecting bad smell shotgun
surgery?

RQ2: How does the framework similarity measure
distribution model compare to the techniques based on
static code analysis?

To answer RQ1, the framework similarity measure
distribution model was simulated in a real usage scenario.

Table 1: No. of classes and methods in open source programs

Programm name Version  No. of classes No. of methods
HSQLDB 229 525 6258
TYRANT 0.334 262 2106
XERCES 7.0 991 14994
FREE CHART 1.0.13 583 To64

Table 2: No. of group and width of the class interval in open source
programs

Programm Order of No. of Width of the
name the matrix roups class intervel
HSQLDB 275625 19 0.05
TYRANT 68644 17 0.06
XERCES-J 982081 20 0.05
JFREE CHART 339889 21 0.04

At first, the different similarity measure is applied to the
open source software’s where the relationship between
the classes and methods is identified. After applying the
three different measures the similarity matrix is computed.
And the best result 15 obtamned by setting the weights to
Waoy = 0.1, Wepy = 0.2, Wegy = 0.7 on HSQLDB, w,y = 0.3,
Wepg = 0.2, Wegy = 0.5 on TYRANT, Wy, = 0.2, Wy = 0.1,
Weey = 0.7 on XERCES-T and wey =02, woy = 0.2,
Weogy = 0.6 on JFREE CHART. From the similarity matrix,
the order of the matrix, number of group and the
width of the class mterval 1s computed and it 1s listed
in Table 2.

Table 2 the classes of open source software’s are
grouped and the width is computed. There are 19 groups
for HSQLDB, 17 groups for TYRANT, 20 groups for
XERCES-T and 21 groups for JFREE CHART. From this
the frequency histogram 1s computed and the listogram
graph 1s given in Fig.1-4.

From the output of frequency listogram, it is clear
that the similarity codes are grouped and arranged in each
class interval. After computing the frequency histogram,
the residual threshold is computed. The residual threshold
RT and RT; is calculated and compared and the bad smell
in the class interval 1s detected. Besides, different open
source software have different number of classes, the
class interval of each program may differ with each
other. For HSQLDB 9 class intervals are detected, for
TYRANT 5 class intervals are detected, for XERCES-T 7
class mtervals are detected and for JFREE CHART 3 class
ntervals are detected. Now, the bad smell m the
class/classes 15 computed using Eq. 13. Table 3 the
mumber of shotgun surgery bad smell detected for open
source software’s is given.

Once the bad smell shotgun swrgery has been
detected m open source software’s using the framework,
then the performance of the framework 1s evaluated using
the widely two adopted Information Retrivel (IR) metrics,
namely precision and recall (Baeza-Yates and Ribeiro-Neto
1999):

‘corﬂdet‘ o (14)

recall =
| cor|
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Fig. 1: Histogram of the open source software HSQLDB

Fig. 2: Histogram of the open source software TYRANT

Fig. 3: Histogram of the open source software XERCES-]
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Fig. 4: Histogram of the open source software JFREE CHART

Table 3: No. of shotgun surgery bad smell detected in the four open source
software

No. of shotgun

surgery HSQLDB TYRANT  XERCES-J JFREE CHART
Bad smell 7 3 5 4
. cor [ det
Precision = g (15)
‘det‘

where, cor and det represent the set of true positive smells
(those manually identified) and the bad smell shotgun
surgery detected by the framework similarity measure
distribution model respectively. The F-measure is reported
based on the indicator precision and recall. And the
F-measure is defined as follows:

Precision x Recall % (16)
Precision + Recall

F —measure = 2x

To enswer RQ2, the framework 1s compared
with the bad smell detection tool namely inFusion
(inFusion-Design Flawdetection tool. Availableat: //www.
intooitus.com/products/infusion) and iPlasma (iPlasma:
http:/Aloose. upt.ro/iPlasma‘index html) (Marinescu, 2003).
1Plasma 1s a detection tool implemented using the
detection strategies by Marinescu (2004). The detection
strategies 1dentify the code deviation from good design
principles of object oriented systems. iPlasma allows to
detect more than 15 bad smells including shotgun
surgery. mFusion has its root in 1Plasma and then
extended with more functionality. To improve the quality

of the system infusion focuses at architectural and at
code level. inFusion allows to detect more than 20 bad
smells, like code duplication, shotgun surgery, feature
envy, methods and so on. These tools have the ability to
detect the bad smell shotgun surgery mn the source code
of object oriented programs. But it does not provide the
location of the source code m the bad smell detection.
These tools do not perform the refactoring operation. To
compare the performances of the framework similarity
measure distribution model with the above mentioned
tools, recall, precision and F-measure were calculated.
Table 4 and 5 reports the results of the comparison.
Moreover, to provide a further comparison of the
framework with the tools, the following overlap metrics
has been computed (Palomba et af. 2013):

‘oorrect (correct,,

Correcty, fm;) = Bilog, (17)
‘oon"ect Ucon"ect
‘corTectm1 mcorrect,
Correcty yn y = Log  (18)
Y ‘correctm \J correct,;
i i

carrecty correct

where, represents  the set of
code smells detected by the method m;,
measures the overlap between the set of true code smells

detected by both methods m; and m ;and &= 'omet;,
measures the true smells detected by m, only and missed

by m;.

correct
i ('\C(HTECth
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Table 4: Similarity measure distribution model as compared to the tool inFusion

Rimilarity based distribution model inFusion tool
Open source Affected
Code smell software components Precision (%) Recall (%) F-measure (%) Precision (%) Recall (%) F-measure (%)
Shotgun HSQLDB 7 30 100 38 30 38 34
TYRANT 3 95 100 97 8 57 14
Surgery XERCES-J 5 100 100 100 5 33 12
JFREE CHART 4 100 100 100 28 20 25

Table 5: Similarity measure distribution model as compared to the tool iPlasma

Rimilarity based distribution model iPlasma tool

Open source Affected
Code smell sothware cormponents Precision (%)  Recall (%) F-measure (%)  Precision (%6 Recall (%6 F-measure (%0)
Shatgun HSQLDB 7 80 100 88 15 25 19

TYRANT 3 95 100 97 7 44 12
Surgery XERCES-J 5 100 100 100 5 25 8

JFREE CHART 4 100 100 100 29 20 24

RESULTS AND DISCUSSION was able to outperform when compared to the tool

This study reports the results of the proposed
research with the aim of addressing the research
questions formulated Table 4 and 5 reports the results in
terms of recall, precision and F-measure achieved by the
framework and the tools on the four open source
software. From the result it is clear that the framework
attained very good recall at a maximum of 100% for
XERCES-T and JFREE CHART, 1.e., the framework 1s able
to detect at most all the smells from the source code.
Table & reports the values concerning overlap and
differences between the framework and the tools. Column
similarity measure distribution model M inFusion reports
the percentage of correct code smells 1dentified by both
similarity measure distribution model and tools. Column
similarity measure distribution modeliinFusion reports
the percentage of correct code smells identified by
similarity measure distribution model but not by the tool
mfusion, column mFusion'similarity measure distribution
model reports the percentage of correct code smells
identified by the tool infusion but not by similarity
measure distribution model. Table 7 reports the values
concerming overlap and differences between the
framework and the tools. Column similarity measure
distribution model N iPlasma reports the percentage of
correct code smells 1dentified by both similarity measure
distribution model and tools. Column similarity measure
distribution model\iPlasma reports the percentage of
correct code smells identified by smmilarity measure
distribution model but not by the tool mfusion, column
iPlasmatsimilarity measure distribution model reports
the percentage of correct code smells identified by the
tool infusion but not by similarity measure distribution
model.

From the result, it is seen clearly that the framework
similarity measure distribution model performs good in
detecting the code smell shotgun surgery. The framework

inFusion and iPlasma. From the framework it 1s claimed
that there 1s no need to refer to the past change history.
Using our framework the maintainer can able to detect the
exact location of the smell when a change occurs. So,
there 1s no need to have the sufficient past lustories of the
co-changes. The advantage of this framework i1s it
highlights and identifies the exact location of the smell
shotgun surgery which is not focused in the tools
inFusion/iPlasma, they all just gives the number of smells
but can’t able to detect the exact location.

Summary of RQ1: The framework similarity measure
distribution model performed good in detecting the bad
smell shotgun surgery considered in this research. The
F-measure was between (88-100%). While the result
obtained was quite expected on the bad smell shotgun
surgery since it features are extracted using both the
structural, semantic and call based interaction between

the methods.

Summary of RQ2: The framework was able to outperform
the design flaw detection tools namely mFusion and
iPlasma in terms of recall, precision and F-measure. The
comparison suggests that the design flaw detection tool
and the framework could be nicely complemented to
obtain a good result.

Threats to validity: In this study, construct validity,
internal validity and external validity 1s addressed.
Construct validity concern with the relationships between
theory and observation. In general, the threat internal
validity focuses on the factors that influence the
results. External validity concern the generalization of
the result and finally reliability concems the replication
of the study.

Construct validity: The main contribution of this study is
to detect the shotgun surgery bad smell. The framework

3213



Asian J. Inform. Technol., 15 (17): 3205-3216, 2016

Table 6: Overlap between the framework similarity measure distribution model and the tool inFusion

Similarity measure distribution Similarity measure distribution inFusiomnsimilarity
Code smells model [1inFusion modelinFusion measure distribution model
Shotgun surgery 40 100 40

Table 7: Overlap between the framework similarity measure distribution model and the tool inPlasma

Similarity measure distribution

Code smells model (1 iPlasma

Similarity measure distribution
maodel\iPlasma

iPlasma‘similarity
measure distribution model

Shotgun surgery 30

100 30

used 1n the study 1s the stepwise selection approach. The
memory consumption would be substantially large
because the similarity matrix and the values of the
residual threshold are maintained until the bad smell is
dentified.

Internal validity: In this study, the relationship between
the classes 1s focused. The dependencies related to the
methods that affect the maintainability and other types of
dependencies caused by structural relation between
methods, call based interaction between methods and
conceptual semantic between the methods 1s considered.
The detection of the bad smell shotgun surgery using the
frequency distribution model is easy and reduces the time
to detect the smell.

External validity: The framework was experimented on
four open sowrce software was highly effective and
accurate. The framework deals with only one smell
shotgun surgery while the other smells are not uncovered.
The open software chosen exhibit the
characteristics of the object oriented software that are
subjected to the detection of the bad smell shotgun
surgery. The degree of maintainability improvement would
vary from software to software.

source

Reliability: The data used for the experiment is available
ordine. The efficient similarity measure 1s used to calculate
the similarity matrix. And from it, the distribution model 1s
computed. So the detection of the bad smell shotgun
surgery reduces the computation time.

CONCLUSION

In this study, a framework for detecting shotgun
surgery bad smell 15 modeled using similarity measure
distribution model. In this model, a piece of code which 1s
scattered throughout the system is identified using
similarity measure. From the result of the similarity
measure a frequency table 1s constructed. In the
frequency table the width of the class interval 1s
constructed using sturge’s rule and a frequency
histogram is generated. From the generated frequency

histogram, the residual threshold i1s computed to detect
the bad smell in the class interval CI, . In each row of the
similarity matrix, the maximum number of occurence of the
value of class interval Cl, for which the residual threshold
15 largest 1s computed to detect the bad smell shotgun
surgery. The proposed framework maximizes the number
of detected defects. The study aims at evaluating the
framework performances in terms of precision and recall
agamnst the tools inFusion and 1Plasma. From the result, it
is inferred that the framework attains a good recall when
compared to the tools. Thus, this study sheds light on a
branch of statistics which has received attention from
software engineers. In future, the different kind of
distribution model is to be considered and applied to
other types of bad smell.
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