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Abstract: The use of optimisers in the Kriging based swrrogate models has become popular n full-scale
aerospace systems development. Computational modelling through gh-fidelity simulations provides a
possible approach towards efficient mnplementation of the design specifications but the associated
computational cost restricts its applicability to full-scaled systems. In this present research a Computational
Fluid Dynamics (CFD) optimisation strategy based on surrogate modelling is proposed for obtaining high-
fidelity predictions of aerodynamic forces (Cl, Cd) and aerodynamic Efficiency (E). An Aerodynamic Shape
Optimisation (ASO) problem 1s formulated and solved using Particle Swarm Optimisation Algorithm (PSOA) and
Modified Particle Swarm Optimisation Algonthm (MPSOA) with the mclusion of constructed surrogate models
in the place of actual CFD algorithms. Ordinary Kriging (OK) approach is used to construct the surrogate
models. PARametric SECtion (PARSEC) approach is implemented to mathematically describe the geometry of
the airfoil. The results of two optimisers and an airfoil shape optimisation problem shows that this approach,
known as MPSOA can sigmficantly enhance the accuracy of Kriging models when compared to the normal

PSOA.
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INTRODUCTION

The computational cost mvolved m performing
numerical simulations for designing and optimising
various engineering systems such as aircraft wings, is
continuously  increasing. From an  engineering
perspective, the design process 1s crucial for achieving
maximum efficiency with the minimum possible cost and
within the manufacturing restrictions. In the context of
aircraft wings, ASO techniques are of great importance for
designing a lifting surface with maximum aerodynamic
efficiency. In ASO, aerodynamic constraints such as flow
properties, Mach number (M), etc. alone are taken into
account 1n contrast to Multidisciplinary Design
Optimisation (MDO) where constraints from various
disciplines such as financial, structural, manufacturing,
etc. are considered The constraints of the optimisation
problem define the spectrum of the design variables and
strongly influence the search space where the optimal
solution lies. Parameterisation parameters, which will
parameterise the geometry of the engineering system to
be optimised, serve as a part of the design variables of the
optimisation problem. The range of values of the design
variables is defined, subject to the satisfaction of
optimisation problem constramts. Since the number of

design variables directly influences the complexity of the
problem, various perameterisation approaches such as
Discrete point approach, Partial differential equation
approach and Polynomial approach have been developed
with the intention of simplifying the parameter space
without compromising the accurate description of the
geometry (Balu and Selvakumar, 2009). PARSEC
which is employed in the current work, is one of the
parametric  polynomial  geometry  representation
approaches.

In this research both the high and low fidelity solvers
are used to solve the flow governing equations. Here, the
high-and low-fidelity solvers refer the numerical solution
of the govermng equations through CFD sunulation
software (ANSYS Fluent) and the use of Panel method
respectively. The optimisation schemes can be broadly
classified into two different categories: Gradient-based or
Derivative optimisation schemes and Non-Derivative or
Evolutionary optimisation schemes. When the traditional
gradient-based optimisation schemes are employed for
their exploitation property, the choice of the starting pomt
becomes increasingly important, as the gradient-based
schemes are more likely to be converged or stuck into
local optima (Zang and Green, 1999, Raymer, 2002).
On the other hand, the non-derivative methods are
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Fig. 1: Processes involved with the proposed approach

more powerful in finding the global optimum within the
given search space, to that end we have employed both
the PSO and MPSO algorithms in this research.

ASO problem 1s formulated in this work to identify
the best possible airfoil geometry which will have an
improved E for the given flow, structural and aerodynamic
conditions. The problem considers the NACA 2411
geometry as a base line shape and 1s solved using PSOA
and MPSOA. The flow 1s viscous, compressible and low
turbulent, with M varying between 0.1 and 0.6 with fixed
angle of attack of 5.0. The aerodynamic constraint of the
problem 1s that the E of the optimised airfoil should not be
less than that of the base hine airfoil. The structural
constraints of the problem are that the trailing edge
thickness (T,.) and trailing edge offset (T, of the airfoil

should be zero. In this research, PARSEC approach is
employed to mathematically describe the geometry of the
airfoil due its robustness and flexibility in controlling the
aerodynamic characteristics with less number of
parameters. OK approach is employed to construct
surrogate models due to its statistically unbiased optimal
prediction capability (Giunta, 1997). Figure 1 depicts the
work flow of the proposed ASO strategy.

PARSEC: The lower and upper surfaces of an airfoil are
described mdependently using a sixth order polynomial
method called PARSEC parameterisation scheme
(Sobieczly, 1998). In this approach, the shape of the airfoil
is controlled by the twelve parameters (Castonguay and
Nadarajah, 2007; Ulaganathan e al., 2010) which are listed
in Table 1 and also shown in Fig. 2.
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Fig. 2: Control parameters of PARSEC
Table 1: Design variables and their range of values . Tog

Range values for NACA Atxup=Ly, =Tgz+ 5

2411 Adrtoil

T
» _ _ TE

Lower bound Upper bound Atx, =Ly, =Ty - 5
Design parameters values values
(Rleu) Upper leading edge radius 0.020 0.023 . Atx, = 1dYup —tan| o — BTE
(Rlel) Lower leading edge radius 0.006 0.010 lo dx - TE )
(Xup) Position of upper crest 0.320 0.370
(Yup) Upper crest point 0.077 0.080 . _ dyln _ BTE
(YXXup) Upper crest curvature -0.630 -0.650 AtXlo =1 dx =tan| oy + 9
(Xlo) Position of lower crest 0.150 0.190
(Ylo) Lower crest point -0.020 -0.050
(YXXlo) Lower crest curvature 0.600 0.750 Ordinary Kriging (OK): Kriging which was proposed
(4TE) Trailing edge direction angle -4.550 -4.900 b " ; for the desi d Iysi ;
(4TE) Trailing edge wedge angle 15.000 15.100 ¥ Sacks ef al. (1989) or the design and analysis o

The mathematical formulation of the approach is
given by Eq. 1 and 2 for the upper and lower surfaces of
the airfoil, respectively:

6
_ i—(1/2) (1)
yu - a1X
1
y, = Zblxl—(uz) (2)
inl
Where:
Vu = The y co-ordinate for the upper surface
v = The y co-ordinate for the lower surface,
X = The non-dimensional chord-wise location
(chord (¢) 1s assumed to be 1)
a, and b, = The coefficients to be solved

The surface of the airfoil 1s obtained from the
solution of the above two equations subject to the
geometrical conditions:

¢ Atx =maximum, y = maximum

* At X = maximum d—y:O
dx

dy

z

At x = maximuimn, = Maximuim

computer experiments 1s very popular in Computer Aided
Engineering (CAE) applications. For interpolations of
random responses the Kriging techmiques are employed
Stein (1999). The mathematical expression for the
function to be defined 1s given by Eq. 3 during the usage
of ordinary Kriging approach (Duchaine et al., 2009;
Jouhaud et al., 2007):

N
Fix,y="3"7,(x, )(x) ¥x €8 (3)
1=1
Where :
F = The function of linear estimation for
fyi (x,) = The weighting function and
X, = A vector of sample points in the design space

which in our case is defined through the range of values
of 10 PARSEC parameters along with the M and is
dencted by ScR". The covariance of { between two
sample pomts 13 described by a function which 1s based
on the distance between the two sample points and it 1s
given in Eq. 4:

ClEx).E(x,)]=C[| x, —x, [ )

C [f(x,), f(x,)] is often expressed by the covariance matrix
as glver
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& =C)  Cllx-xl) . C(lx )
e U (e~
Cllxn—xl) Cllxe—x) . o

(5)

The variance of the sample points is given as ¢°. The

covariance vecto (C) r and the weighting functions vector

can be expressed as follows for the unknown sample point
XES:

Clll % - x1]) T:(%,)
S) = C(HXPZ—XZH) 1 (x) = Yz(;(p) (6)
Clll % —xn[]) Tu(x,)

For an isotropic stationary model, the sum of all the
weighting functions should be equal to unity as given in
Eq. 7. Hence, the covariance matrix and covariance vector
become as given in Eq 8 and 9, respectively:

ZN:YI(Xp)zl VXK, €53 (7
& =C0)  Clx-xf) . Oflx-xaf) 1
Ol x2 - x1) o Cllxz—x [y 1
C= : : . : :
Cllx-xi) Clx-xp . o 1
1 1 1 0
(8)
Clll % —x1])
Cll %o — %2 ])
&%) = : )
C(ll % — x|}

1

A Lagrange multiplier (ix,) is introduced in the
weighting functions vector in order to enforce the
unbiasedness constramt of the OK model. Hence, the
weighting functions vector becomes as follows:

1i{Xs)
Y2%)
(%) = (10)
(%)
Az

The weighting functions are calculated using the
covarlance matrix and covariance vector as given by the
following relation:

1(x,) = Ce(x,) an

Since, the predicted value of the response 1s always
different from the actual value at the sample point, an error
measure 18 mtroduced to measure the prediction capability
of the OK model. This measure of error 1s known as
estimation error (e,) and is defined as follows:

e, =f(x,)-fix) (12)

where, f(x,) 1s the actual value at an unknown point x,€8.
If the weighting functions are obtained in such a way that
they will reduce the variance of the estimation error, then
a function predictor with optimal prediction capability can
be obtained. The error variance can be computed using
the following expression:

Vie, )= D6, )y, (x, ) (13)

Since, the covariogram function is arbitrarily
computed from the observed data, a suitable theoretical
variogram model should be used to fit the experimental
variogram model, so that the Kriging equations become
solvable. Generally, the selection of a suitable theoretical
variogram model is carried out using Maximum Likelihood
Estimation (MLE) or Cross Validation (CV) approaches. In
the current work, the following theoretical variogram
models are employed and the most suitable one 1s
selected based on the CV approach (Rodriguez et al.,
2010; Baluetal., 2012).

Gaussian model with actual range:

2
C(h) = sﬂl[l exp( ’}21 H (14)
r
Gaussian model with practical range:
A2
C(h) = sﬂl{l— exp[ 3}21 H (15)
pr

Spherical model with actual range:

C(h)—sﬂl[(m][ h jOj[ h j}
2.0 J\ range range

(16)
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Exponential model with actual range:

C(h)—sﬂl[lexp[ —h B (17)
range
Exponential model with practical range:
C(h)—sﬂl[lexp( —3h B (18)
prange

where, h 1s the isotropic lag defined as the distance
between two sample points in S. In the semivariogram, the
lag value at which the semivariance becomes constant is
called as range and the corresponding semivariance value
is called as sill. The practical range is the value of lag at
which 0.94% of the sill 1s achieved.

PSO algorithm: PSO was originally developed by JTames
Kennedy and Russell Eberhart m the year of 1995 to
simulate the motion of swarm of birds as part of a
Socio-cognitive study. Tt is a population based
optimisation technique which searches for the global
optimum (Ping and Jiang, 2008, Yang et af, 2011,
Liang et al., 2011). It's a simple and powerful search
technique. P3O algorithm 1s not only a tool for
optimisation but also a tool for representing
socio-coghition of human and artificial agents, based on
principles of social psychology. A PSO system combines
local search methods with global search methods,
attempting to balance exploration and exploitation. In
P3O, a swarm of ‘n’ mdividuals commumcate either
directly or indirectly with one another search directions.
Each individual is called as a particle which is searching
for the optimum. Each particle is moving and hence has a
velocity. Each particle remembers the position it was in
where it had its best result so far and this value is called
as pbest or its personal best. Another best value obtained
so far by any particle m the neighbourhood when
compared to all the particles in the domain is called as
gbest or global best. The Algorithm for the PSO
techmque 1s given below by assuming N particles in the
swarm in the D dimensional search space. Here the ith
particle 1s represented as: X, = (x;, X, ...%y). The best
precious position giving the best fitness value 1s
represented as P, = (py, p, ... and the rate of change
(velocity) of the particle i1s given as V, = (v, v;,...v.y). The
velocity and position are updated by the following
equations:

v (D=7, (t =D +c.0,.(p, 4 — Py (t- 1)+
Cz-d’z-(p:: - Pi,a(t -1

(19)

Table 2: The MPSO parameters to control the evolution (ASO)

Parameters Values

No. of particles 24

No. of generations 100

w 0.5

Velocity Unrestricted velocity

Cyp Cp and G 0.6

$1-3 0.7

Angle of attack 5.0deg

Geometric Max thickness must be <10% chord length

constraint Min thickness must be >1% chord length and
the airfoil is zero

Objective Maximurn aerodynamic efficiency

Termination Terminate when there is a change of <10~ in

condition the successive values of the best fitness

function value (C

Pig ()= pi,d(t D+ Vid (t) (20)

In the above equations the p, indicates the best
position of ith particle up to time t-1 which is denoted as
Py.. and p} indicates the best position of the whole
swarm up to time t-1 which is denoted as G,,.. The random
numbers are denoted as ¢, and ¢, furthermore the ¢
represents the individuality coefficients and ¢, represents
sociality coefficients. In the current problem we have
imitially determined the population size and then we have
fixed the value for the coefficients ¢, ., ¢, which are
tabulated in Table 2. Subsequently, the position and
velocity (unrestricted velocity) of each particle are
initialized. According to Eq. 19 and 20 each particle moves
in the search domain and the fitness is calculated. At the
same time, the best positions of each particle and the
swarm are recorded. Finally, the stopping criterion is
achieved; the best position of the swarm is the final
solution (Khurana et al., 2009; Mukesh ef al., 2012, 2014).

Modified PSO: In this modified PSO the cognitive
component of the normal PSO is divided into two
components. The first component 1s called as good
experience component which means that the particle has
a memory about its previously visited best position. The
second component 1s called as bad experience component
which means that the particle has a memory about its
previously visited worst position (Deepa and Sugumaran,
2011). To calculate the new velocity, the bad
experience is also considered and by using that
component, the particle can bypass its previous worst
position and try to find the better position (Deepa and
Sugumaran, 2012; Qin et al, 2009). The searching
behaviour of the modified PSO algorithm is shown in
Fig. 3 and flow chart of the modified PSO 15 given in
Fig. 4. The modified velocity update equation 1s
given by:
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Where:

2D o

e = Acceleration coefficient, accelerates the particle

towards its best position
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C,, = Acceleration coefficient, accelerates the particle
away from its worst position
C, = Social acceleration coefficient

P..i = Personal best position of the ith particle
P = Worst position of the ith particle

Suar = lobal best position of the ith particle
w = Inertia weight

¢l-3 = Random numbers

RESULTS AND DISCUSSION

The optimal sample points are generated by the PSO
and MPSO algorithm and in order to get the data,
computer-based simulations are needed to be performed
at the generated sample pomnts. During the construction
of surrogate models those collected datas are used to
initiate the learning process (Mukesh et al, 2014). As
mentioned earlier, the dimension (n) and the design space
of the current preblem are 11 and ScR'", respectively.
Table 1 gives the design variables and thewr range of
values for the current problem. A sample point has 10
PARSEC parameters and a M. About 50 (N) such sample
points are randomly taken from the optimizers generated
sample points where the simulations are needed to be
performed.

Computer-based simulations, both panel (low-fidelity)
and CFD (lugh-fidelity) have been performed at these
50 sample pomts. A Linear Vorticity Surface Panel
method code developed by Tlan Kroo is used for the
low-fidelity simulations. Panel methods are more effective
mn giving reasonably accurate results without bemng
computationally expensive. The flow around the NACA
2411 airfoil is solved using the panel code for 5 deg
angle of attack with Np = 1000 (Number of panels). High
fidelity, CFD simulations are performed by solving two-
dimensional, steady and compressible Navier-Stokes
equations using FLUENT software.

Low fidelity solver: The solution Panel method which
glves more accurate results 1s used to solve the potential
equations. This approach is employed in this work to deal
with the incompressible flow. The solution procedure for
panel technique consists of discretizing the surface of the
airfoil by assuming the source strength 1s constant over
each panel but has a different value for each panel and the
vortex strength is constant and equal over each panel
(Hess, 1990; Katz and Plotkin, 1991). The cwrl of the
veloaity field 1s assumed to be zero. Figure 5 illustrates the
nodes and panels for panel methods respectively. The
coefficient of pressure can be found by using Eq. 22:

er(s, 3 = 1= [V / Vo'l (22)

Panel

Node

Fig. 5: Nodes and panels

High fidelity solver: High fidelity, CFD sumulations
are performed by wing FLUENT Software. The
turbulence phenomena have been modelled through
the Spalart-Allmaras turbulence model which 1s a
one-equation model solving the twbulent viscosity
transport equation (Spalart and Allmaras, 1992; Wilcox,
1993) and has been widely used for aerospace
applications. The computational grid is generated with
ICEM CFD package. C-grid topology 1s used since it 1s
quite good in capturing the flow physics m the wake
region of the airfoil (Zang and Green, 1998). In order to
capture the flow physics within the boundary layer
region, v = 1 has been used (2011).

Density-based implicit solver in FLUENT is used to
solve the flow around the airfoil geometry with ideal
gas as a working fluid. The viscosity 1s calculated from
the co-efficient Sutherland law and the turbulence is
specified in terms of turbulent intensity (1) and turbulent
length scale (1) and Least Squares Cell Based
discretisation scheme is used for gradient together with
the Roe-FDS flux type. Third order Monotone
Upstream-centred Schemes for Conservation Laws
(MUSCL), which can provide more accurate numerical
results even when the solutions exlibit shock, are
employed for the spatial discretisation of the flow
(Alexander and Tadmor, 2010; Konstantin and Metodiev,
Sheldahl and Klimas, 1981).

In order to validate the mesh generation and solution
techniques, flow over the NACA 2411 airfoil is solved
using the above described mesh generation and solution
methods. The grid generation process for the
remaimning 50 sample pomts 13 automated so that the same
grid generation technique can be applied for all the airfoil
geometries. It 1s also ensured that the applied grid
generation technique results to a fine mesh for all the
airfoil geometries. The flow around the 50 airfoil
geometries is solved using both the low-fidelity panel
simulations and lgh-fidelity CFD simulations. Once the
aerodynamic forces ((Cl) Low-fidelity, (C1) High-fidelity
and (Cd) High- fidelity) are obtamed for the generated
50 airfoil geometries, then they can be used for the
learning process.
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Fig. 6: Theoretical semivariogram models (low-fidelity Cl) based on PSOA
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Fig. 7: Theoretical semivariogram models (low-fidelity Cl) based on MPSOA

Three surrogate models are constructed using the
in-house OK code. The first swrogate model is
constructed using the low-fidelity penel data and can
predict the low-fidelity Cl for any airfoil geometry placed
within the design space S. The second surrogate model is
constructed using the high-fidelity C; data and can
predict the high-fidelity C, for any airfoil geometry placed
within 5. The third one 1s constructed using the difference
in C1 between the low- and high-fidelity data (ACl) and
can be used to estimate the difference in C1 between the
low-and high fidelity analysis for any amrfoil geometry
placed within S .

Figure 6-11 shows the capability of different
theoretical semivariogram models in fitting the
experimental semivariogram model for the first,

second and third swrrogate models, respectively
which have been generated based on the data obtained
from PSO and MPSO algorithms. Tt can be clearly
observed that the Exponential model with practical
range 1s fitting the experimental semivariogram
model more accurately than any other theoretical
models for all the three surrogate models. The second
most accurate one 1s the Gaussian model with practical
range.
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Fig. 9: Theoretical semivariogram models (High-fidelity Cd) based on MPSOA
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Fig. 13: Sample Points and its responses (Low-fidelity Cl) based on MPSOA
Figures 12-17 shows the sample points and its with practical range and the Gaussian model with practical

response for the datas generated by the PSO and MPSO range are fitting to the actual response than any other
algorithms. It can be observed that the Exponential model  theoretical models.
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Fig. 14: Sample points and its responses (High-fidelity Cd) based on PSOA
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Fig. 16: Sample points and its responses (AC1) based on PSOA
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Fig. 17: Sample points and its responses (ACI) based on MPSOA
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Fig. 18: CV for Low-fidelity Cl swrrogate model based on PSOA

K fold cross validation: This cross validation method 1s
used to estimate the performance of the constructed
surrogate models. In this method, N sample points which
are taken from PSO and MPSO algorithms are divided into
k different data folds. Among the k data folds, k-1 data
folds are used the train the surrogate models and the
remaining one data fold 1s used to validate the surrogate
model. The expression which is given below is used to
calculate the cross validation error of the predictions.
In this research, the most suitable variogram is
selected based on the CV approach. The influence of
different theoretical variogram models on the accuracy of
the constructed surrogate model 1s evaluated by using the
K-fold cross validation.

(IK)

_ N canl 23
T 21 (F(i) - F(1)) (23)

e

The comparison of cross validation error of Cl
surrogate model constructed based on PSOA and
MPSOA algorithms are shown in Fig. 18 and 19. In the
Figures €,, changes in the order of 10%-10° and also it
depicts that the surrogate model which is constructed by
the Gaussian model with actual range is more accurate
than the other models. The accuracy of the surrogate

model depends on the ability of the theoretical
semivariogram model in fitting with the experimental
semivariogram.

The comparison of cross validation error of high
fidelity Cd surrogate model constructed based on PSOA
and MPSOA algorithms are shown in Fig 20 and 21. Tn the
Figures €., changes in the order of 10°-10° and also it
depicts that the surrogate model which is constructed by
the Exponential model with practical range i1s more
accurate than the other models.

The comparison of cross validation error of €, Cl
surrogate model constructed based on PSOA and
MPSOA algorithms are shown in Fig. 22 and 23. In the
figures changes in the order of 10°-107 and also it depicts
that the surrogate model which is constructed by the
Exponential model with practical range is more accurate
than the other models. Hence, based on the above
analysis we have chosen the Exponential model with
practical range for the construction of swrogate
model.

The aerodynamic Efficiency (E) of an airfoil geometry
which is placed within *S” can be calculated using the
constructed swrrogate models. Once an unknown sample
pont (airfoil geometry and M) 1s generated, then it can be
supplied to the three surrogate models. As discussed
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Fig. 19: CV for low-fidelity C1 surrogate model based on MPSOA
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Fig. 20: CV for High-fidelity Cd surrogate model based on PSOA
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Fig. 21: CV for High-fidelity Cd surrogate model based on MPSOA

102 T T T

-

Cross Validation Error

Gaussian-actual
Gaussian-practical ------
Spherical actual «=-----
Exponential-actual -~

Exponential-practical
1 2 3 4 5
Fold

107

Fig. 22: CV for ACl surrogate model based on PSOA

3149



Asian J. Inform. Technol, 15 (17): 3134-3152, 2016

Cross Validation Error

T T

Gaussian-actual
Gaussian-practical
Spherical actual -+
Exponential-actual -
Exnoqential—gractical

Fig. 23: CV for AC1 Surrogate model based on MPSOA

earlier, the first surrogate model can predict the
low-fidelity Cl while the second one can predict
the high-fidelity C,. The Ac, can be predicted by the
third surrogate model. Now, the E of the awrfoil at o = 5.0
deg for the above discussed flow conditions can be
calculated from the followmg relations. Since, the
airfoil is placed within “3°, the M will have a value
between 0.1 and 0.6:

(24)

(Cl )High—ﬁdgmy = (cl )an—ﬁdgmy —AC,

() ey B8 (25)

(Cd )H1gh—ﬁclelity qws
Where:

= The lift force of the airfoil

= The drag force of the airfoil

The dynamic pressure of the flow
= The density of the flow

= The velocity of the flow and

= The surface area of the airfoil

w T o g
I

Since, S and q are constant for a given airfoil and flow
conditions (M p, Temperature), respectively, the above
relation can be written as follows:

3 4 5
Fold

E,L:EEEE@Q (26)

D (Cd )High—ﬁdehty

In order to validate the proposed strategy, the E 1s
estimated at various sample points (Le., airfoil geometries)
placed within the design space 5’ using the constructed
surrogate models. The estimated values are compared
with the actual values of E wlich are calculated from
separate CFD simulations.

The constructed surrogate models have been
coupled with the PSO and MPSOA algorithm with
parameters for controlling the ASO being summarised at
Table 2. The ASO process is carried out for maximum E.
An optimised solution which has an aerodynamic
efficiency of E = 87.376 is obtained through MPSO
algorithm and the PSO algorithm produces an
aerodynamic efficiency of E = 85.13. The flow around the
optimised airfoil geometry which i1s generated by the
MPSQ algorithm is solved in FLUENT using the
corresponding flow properties as shown in Table 3. The
CFD calculations show that the optimised airfoil geometry
has E = 84.641 comresponding to a 2.74% error. The
obtained arfoil geometry is still better than the baseline
shape which has 68.091 for the flow conditions tabulated
in Table 4. Tt can then be confirmed that the optimised
geometry has 19.285% of improvement in E over the actual
NACA 2411 at the specified flow conditions.
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Table 3: Flow properties to solve the optimised geometry

Property Value

Pressure (p) 101325 N m™
Density (p) 1.1766 kg m™>
Temperature (T) 300K

Mach (M) 0.331351

Velocity (V) 115.05

Re 7.337x10F

I 0.022%

n 1.845x10° k o' sec

CONCLUSION

A new statistical strategy 1s proposed to construct
surrogate models for actual CFD algorithms in order to get
high-fidelity predictions of aerodynamic forces (C, C,)
and aerodynamic Efficiency (E) from the commodiously
available low fidelity data and limited high-fidelity data.
An ASO problem 1s formulated and solved using PSO and
Modified PSO algorithm. The constructed surrogate
models are used in the place of actual CFD algorithms
during the optimisation. If an actual CFD algorithm is
employed for solving the flow during the optimisation,
several days would have been required for obtaining the
optimised solution. This 1s due to the time taken for a
single CFD simulation during the data mining process. It
can be clearly observed that the proposed strategy has
drastically reduced the required computational time and
resources to carry out an ASO problem. Tt is observed
that the method of parameterisation scheme is crucial for
both surrogate model construction and optimiser since its
variables are used as the design and optimisation
variables. PARSEC parameterisation scheme 1s provides
effectiveness since it offers flexibility in controlling the
aerodynamic characteristics of the airfoil geometry with a
minimum number of parameters. The statistically unbiased
characteristics of the Ordinary Kriging approach enhance
the ability and accuracy of the swrogate models in
predicting response values at an unexplored space. MPSO
algorithm is observed to be more effective in exploring the
search space when compared to the PSO algorithm. Since
the variability exists in all the generations of the MPSO,
huge numbers of desirable solutions to the defined
problem are generated. Hence this process can also be
considered as a data mining process and can be further
used for airfoil design and analysis.
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