Asian Journal of Information Technology 15 (14): 2392-2398, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

Dynamic VM Allocation Using Adaptive Map Reduce Algorithm in Cloud Computing

'N. Senthamarai and *M. Vijayalakshmi
'SRM Easwari Engineering College, SRM University, Ramapuram, Chennai, Tamil Nadu, India
*DIST, Cellege of Engineering Guindy (CEG), Anna University, Chennai, India

Abstract: Cloud computing is a most popular technology because everything like hardware, platform and
software are provided as a service. It i1s an improving area m research which mcludes load balancing,
virtualization and storage etc. Load balancing distributes workloads across various resources such as
computers, a computer cluster and network links. The load balancing is to optimize resource usage, maximize
throughput, minimize response time and avoid overload. In a cluster system, allocating resources 1s a critical
but challenging issue. A new load balancing policy named AMRA 1s used which attempts to partition jobs
according to the user traffic and system load and improve the performance benefits. The 1dea of AMRA 1s to
allocate the job to all the servers using the system loads as parameters and dynamically tune the job size
boundaries based on the cwrrent user traffic loads. AMRA then directs the jobs whose job size lie in the same
boundary size to the corresponding servers. AMRA always gives high priority to small jobs and send them to
the less loaded servers. The algorithm evaluates the sequential and parallel jobs based on the mputs lang. This
study mainly focuses on dynamically balanced load and increases the performance of the system and reduces

the overhead.

Key words: Load balancing, cluster systems, dynamic load balancing, AMRA, resource allocation

INTRODUCTION

Cloud computing is distributed computing that uses
computers that are interconnecting through a real-time
network like the internet. Cloud computing enables well-
situated, on-demand, dynamic and reliable utilization of
distributed computing assets. Cloud computing is an on
demand service in which shared resources work together
to perform a task to get the results in minimum possible
time by the distribution of any dataset among all the
connected processing units. Such virtual servers do not
exist physically so they can be scaled up and down at any
time (Fig. 1).

Characteristics: Cloud computing exhibits several
characteristics (Haryani and Tagli, 2014).

On-demand self-service: Cloud service providers such as
Amazon Web Services (AWS), Microsoft, Google, TBM
and Salesforce.com provides services such as
applications, email, network or server service with no
human interaction with every service provider.

Broad network access: Cloud capabilities offered over the
network are accessed through standard mechanisms that
encourage use by mixed thin or thick client platforms such
as mobile phones, laptops along with PDAs.

Resource pooling: The provider is able to pool computing
resources such as storage space, processing, memory,
networl bandwidth, virtual machines. Email services are
pooled together to supply multiple clients using multiple-
tenant model with diverse physical and virtual resources
dynamically assigned and reassigned according to end
user demand.

Rapid elasticity: Cloud can provision services quickly
and elastically, automatically to swiftly scale out and
rapidly released to scale quickly in.

Measured service: Cloud computing source usage can be
measured, controlled and reported to both the provider
and consumer to the utilized service in a transparent
manner. Cloud computing services apply a metering
ability which enables to control and optimize resource use
based on pay per use policy.

Necessity of load balancing: T.oad balancing (Haryani and
Tagli, 2014) is a computer network method for distributing
workloads across multiple computing resources; for
example, computers network links a computer cluster, disk
drives or central processing units. Load balancing plans
to optimize maximize throughput, resource use, minimize
response time and evade overload of any one of the
resources.

Corresponding Author: N. Senthamarai, SRM Easwar Engineering College, SRM University, Ramapuram, Chennai, Tarmil Nadu,

India

2392

Asian J. Inform. Technol., 15 (14): 2392-2398, 2016

Arriving tasks | Front—end |

A

Dispatcher

Fig. 1: Model of a clustered server

e S

Fig. 2: Load Balancing system in cloud computing

Load balancing in the cloud differs from load-balancing
architecture and implementation by using commodity
servers to perform the load balancing because 1t"s difficult
to predict the number of requests that will be issued to a
server. Load balancing is an important challenge in cloud
computing. Tt is a mechanism that distributes the dynamic
local workload evenly across all the nodes in the whole
cloud to avoid a situation where some nodes are heavily
loaded while others are idle or domg little work. It helps to
attain a high customer satisfaction and resource utilization
ratio, consequently mmproving the overall performance
and resource utility of the system (Fig. 1).

Dynamic load balancing in cloud computing: Figure 2
dynamic load balancing algorithm (Haryam and Jagli,
2014) assumes no previous knowledge about job actions
or the global state of the system, 1.e., this load balancing
decisions are exclusively based on the existing or current
state of the system. In the distributed one, the dynamic
load balancing algorithm is executed by all nodes present
n the system and the various tasks of load balancing are
shared among them. The interaction among nodes to
realize load balancing can take two forms:

* Cooperative
+ Non-cooperative

o] S 2

Back — end Nodes

L T |

In the cooperative, the nodes work side-by-side to attain
a common goal, such as, to advance the overall response
time, etc. In the non-cooperative, every node works
independently in the direction of a goal local to it, i.e. to
improve the response time of a local task. The advantage
of distributed type is that even if one or more nodes in the
arrangement fail, it will not cause the total load balancing
process to stop; it nstead would influence the system
performance to a little extent. In non-distributed type,
either one node or a group of nodes perform the task of
load balancing. Dynamic load balancing algorithms of
non-distributed nature can be of two forms:

» Centralized
* Semi-distributed

In the centralized form, the load balancing algorithm
is executed just by a single node in the total system which
15 called the central node. This node 15 exclusively in
charge of balancing the load in the whole system. The
other nodes mteract merely with the central node. In
semi-distributed form, nodes are partitioned into clusters
and the load balancing in each cluster 1s of centralized
form. A central node can be chosen in each cluster that
takes care of load balancing nside that particular cluster.
Hence, the load balancing of the complete system is done

2393

Asian J. Inform. Technol., 15 (14): 2392-2398, 2016

Dynamic Load Balancing

Distributed
Cooperative hon .
Cooperalive

Fig. 3: Summarizing dynamic load balancing technicques

via the central nodes of each cluster. Centralized dynamic
load balancing form takes only fewer messages to arrive
at a decision as the number of overall interactions in
the system decreases when compared with the
semi-distributed case. Hence, centralized algorithms can
create a bottleneck in the system at the central node and
also the load balancing process is rendered hopeless once
the central node crashes. Therefore, this algorithm 1s
mainly suited for networks with small size (Teo and Ayani,
2001; Harchol-Balter and Downey, 1997) (Fig. 3).

Various dynamic load balancing policies

Honeybee foraging behavior: This algorithm proposed a
decentralized honeybee-based load balancing technique
that 1s a nature-mspired algorithm for self-orgamzation. In
this algorithm, the servers are grouped under Virtual
Servers (VS3) and each VS 1s having its virtual service
queue. Each server processing a request from its queue
calculates a profit or reward. If this profit high, then the
server stays at the current virtual server, otherwise the
server returns to the forage. Global load balancing is
achieved through System
performance is also enhanced with increased system

local server actions.
but throughput is not increased with an increase in

system size.

LBVFT (Load Balancing Technique for Virtualization
and Fault Tolerance): LBVFT proposed a I.oad Balancing
Techmque for Virtualization end Fault Tolerance in Cloud
Computing to assign the tasks to the virtual nodes
depending on the Success Rates (SR) and the previous
load history. In load assigning techmque, assignment of
a load is done by the Toad Balancer (IL.B) of the Cloud
Manager (CM) module by higher success rate and the
lower load of the available nodes. It enhances the
performance of the system (M ef al., 2006).

VFT (Virtualization and Fault Tolerance): A VFT
technique used to reduce the service time and to increase

Non-Distributed

centralized semi-distributed

the system availability utilizes a Cloud Manager (CM)
medule and a Decision Maker (DM) to manage the load
balancing, virtualization and to handle the faults. As a
first step virtualization and load balancing are done and as
a second step fault tolerance 13 achieved by redundancy
and fault handler. VFT is designed for providing better
fault tolerance (Das and Khalar, 2013).

Global heat diffusion algorithm: The algorithm proposed
two efficient delay adjustment schemes to address the
latency problem. The uniform adjustment scheme
performs a umform distribution of the load variation
among the neighbor servers. The adaptive adjustment
scheme performs a limited degree of user tracking but
without the need to communicate with neighbor servers.
The global heat diffusion algorithm 1s used to avoid the
delay and increase the performance of the system
(Ray and Sarlkar, 2012).

Random: Under the Random policy, (Tai et al., 2014) a
server 18 chosen uniformly at Random to serve each
incoming job by treating all jobs with the same priority.
Since this algorithm does not need to keep any history
information of jobs, it 18 widely implemented m real
systems because of its simplcity.

Round robin: This policy assigns each request to
different servers in a circular order, handling all requests
without any priority. Round Robin algorithm is simple and
easy to implement. As this policy does not consider any
characteristics of requests, it can cause unbalanced load
for each server when job sizes vary a lot (Zaharia et al.,
2008).

Join Shortest Queue (JSQ): During the arrival of a new
job, it believes that a server with the least number of jobs
inthe queue (i.e., the shortest queue) would complete that
job m the shortest time. Hence, the newly arrived job
should be assigned to that particular server.

2394

Asian J. Inform. Technol., 15 (14): 2392-2398, 2016

Adapt load: Tt builds the histogram of job sizes and
partitions the work into equal areas. Each server will be
dedicating to process jobs with similar sizes. The size
interval boundaries are adjusted dynamically according to
the history. ADAPTLOAD has been proven to achieve
high performance by reducing the number of small jobs
from waiting behind large ones (Tai et al, 2014).

Efficient and Enhanced Algorithm (EEA): In this study, a
new enhanced and efficient scheduling algorithm 1s
proposed and then implemented in cloud computing
environment using CloudSim toolkit. Here, when the VM
finishes the processing the request and the Datacenter
Controller receives the cloudlet response, it notices the
load balancer of the VM de-allocation. The Load Balancer
updates the status of VM in allocation table and easily
calculates the expected response time. So the overall
response time and data centre processing time is
umproved (Sharma and Banga, 2013).

Literature review: Mi et al. (2006) has proposed a
two-step resource allocation policy that makes resource
assignment. First, instead of equally
dispatching the work among all servers m the cluster, this
policy biases load balancing by an effort to reduce

decisions.

performance loss due to autocorrelation in the streams of
jobs that are direct to each server. As a second step,
per-class bias guides resource allocation according to
different priorities of the class. As a result, not all servers
are equally utilized (i.e., the load in the system becomes
unbalanced) but performance benefits are significant and
service differentiation is achieved as shown by
detailed trace-driven simulations.

Zhang et al. (2005) proposed a scheduling policy,
ADAPTLOAD, monitors the incoming workload and self-
adjusts its balancing parameters according to changes in
the operational environment such as rapid fluctuations in
the arrival rates or document popularity.

Mi et al. (2007) presented an analysis of the
performance effects of burstiness in multi-tiered systems.
Fmally, they analyzed an admission control algorithm that
takes into account and improves
performance by reducing the long tail of the response time
distribution.

Llorente et al. (2007) presented a VM migration is an

autocorrelation

unportant problem in modermn data centers and the
migration strategy greatly affects the
performance. Migrations can be performed to optimize the
of the in many different
dimensions. A possibility is to compact the load as

datacenter

behavior data center

much as possible to turn off the greatest amount of PMs
possible. Anocther option is to equalize the load among
the different PMs, to reject external disturbances in the
best possible way.

Problem formulation and solution

New load balancing policy: AMRA: Our new load
balancing policy, AMRA (Tai et al, 2014) which
adaptively distributes worle among all servers by taking
account of both user traffic and system load, aiming to
inherit the effectiveness of ISQ and ADAPTLOAD and
meanwhile overcome the limitations of these two policies
as shown in the previous section. The idea of AMRA 1is
to rank on-the-fly all the servers according to their system
loads and dynamically tune the job size boundaries based
on the current user traffic loads. AMRA directs the jobs
whose sizes lie m the same size boundary to the
corresponding ranked servers. The dispatcher has known
the size of each waiting job. Based on the observation
that the majority of jobs mn a heavy-tailed workload 1s
small, AMRA gives small jobs high priority by sending
them to the highly ranked, (1e., less loaded) servers.
ADAPTLOAD evenly balances the load across the entire
cluster by determimning boundaries of jobs sizes for each
server. AMRA adopts such boundaries where the
histogram of job sizes is built and partitioned into N equal
areas for N servers in the system. Then, the ith server 1s
responsible for the work locating in the ith area which
allows the decreasing variation i job sizes (or job service
times) on each server. Consequently, the proportion of
small jobs that wait behind long ones is reduced as
well and the user traffic is thus well balanced among
all servers.

AMRA periodically ranks all servers based on their
present system loads, e.g., server utilization or weighted
queue lengths, and keeps sending the incoming jobs of
similar sizes to a server with the same ranking instead of
the same server that might be overloaded by the
previously amived jobs. As a result, AMRA further
successfully balances the system load among all N
servers and thus sigmificantly diminishes the proportion
of similar sized jobs (especially small ones) being queued
on the same server during a short period. To re-rank all
servers, our policy can either use server utilization (1e.,
the percentage of time during which the server is busy) or
weighted queue length (1.e., the length of each queue that
is weighed by the size of queued jobs) to represent the
load of each server. Higher weighted queue length or
higher system utilization indicates the heavier load on that
particular server. Tt follows that our policy only needs the

2395

Asian J. Inform. Technol., 15 (14): 2392-2398, 2016

P
/

INCOMING
JoBS

i

SERVER 2

N
.
servER 2

on-line measured load information for updating the
rankings of servers and thus can be used to balance the

load on the fly.

Fig. 4: Architecture

Implementation: The architecture in Fig. 4 mcludes
providing the jobs as input to the system which
implements AMRA algorithms in which the jobs are
categorized based on the size of jobs into four categories.
Depending on the size, the jobs are fed mto servers that
are rark according to the system load. Small jobs are give
high priornity and are sent to lghly ranked servers, 1.e.,
less loaded servers.

AMRA uses the size of the partitioned jobs and the
load factor of the servers to balance the load The
algorithm evaluates the size of the partitioned jobs with
the load of the server and allocates equal size jobs to the
same ranked server.

Algorithm for AMRA:

Class MAPPER

Method MAP (docid, doc d)

For all term w_ doc d do

For all term u_smalljob (wl) do

For all term u_mediumsmalljob (w2) do
For all term u_mediumlargejob

For all term u_largejob (w4) do

EMIT (pair (wl, u), count 1)

(Emit count for each small

EMIT (pair (w2, u), count 1)

(Emit count for each medium small job)
EMIT (pair (w3, u), count 1)

(Emit count for each medium large job)
EMIT (pair (w4, u), count 1)

(Emit count for each large job)

Class REDUCER

Method REDUCE (pair p, counts [cl, ¢2...])
570

For all count ¢ _ counts [c1, ¢2...] do
S?s+c¢ (sum co-occurrence counts)
EMIT (pair p, count s)

of AMRA
described

Experiment results: Tmplementation
to achieve Dynamic load balancing is
as.

RESULTS AND DISCUSSION

Tnitialization of gridgain tool: The nodes are initialized
using grid gain. The ‘ggstart.bat’® command helps

——Snall

se Time(S)

Respons
[T I T TV R SN

—EB—Medium Small

'y Large

CPu Avg CPU

edium Large

Active
utilization load jobs

Avg Job
Execution
time

Fig. 5: Performance; vode vs CPU usage

to start up the gridgain tool using a command
prompt. Initially, three nodes are initialized and
then sent Small, Medium Small, Medium Large and
Large.

Creation of nodes: The nodes are created using the
gridgain tool and these nodes are mntercommected mn such
a way that the availability and wmavailability of other
nodes are found in a particular node. If any active node
fails, it can be identified by other nodes. The jobs are
distributed to the creation of three nodes.

Performance evaluation

Code deployment: The code is deployed to other nodes
from the User Interface and the User interface itself 1s an
independent node. The system load 1s determined and
divided into 4 nodes.

Performance: node vs CPU usage: After the code 1s
deploying, the current detail of the server is displayed
below. The bar chart explains the performance, 1.e., CPU
usage vs Node which is shown in Fig. 5.

Nodes restart and auto deployment: Clicking the restart
button restarts all the nodes
auto-deployed. The system 1s configuring with the remote
start/stop feature.

and the codes are

Job allocation: The incoming jobs are allocating to the
nodes based on their CPU usage. Small jobs are allocating
to less loaded nodes and large jobs are allocating to
heavily loaded nodes. This can be shwon in Fig. 6-10.

Parallel job allocation: Jobs are allocating in parallel to all
the nodes that are active.

Performance analysis of sequential and parallel job
allocation: Performance Analysis of Sequential and
Parallel Scheduling is show in Fig. 11. Here, Sequential

2396

Asian J. Inform. Technol., 15 (14): 2392-2398, 2016

70
60 -
& 50
Q
£ 40
=
3 30 +
=
§ 20 —
& 10 -
o T |
bo@ \-’-,0 o.bb Q‘:’LD é@y-
o A L
< R

40
35
30 -
Sos
L5
.gzo :
[+ F)
K1s
210 -
I
£ 5
o | |
< £ = 5 <
(=)
S S
¥B b’bq
<
Fig. 8: Medium large job
18
16
14
= 12
.§10
z 8
§ 6
o 4
= 2
0 T T
& &> &> 5 Eia
(=)
,§~b S = v._@
< R

Fig. 9: Large job

scheduler requires more time when compared with the
parallel scheduler to perform the same task. Hence, parallel
scheduler provides better performance when compared
with the sequential scheduler.

200
180
160
140
— 120
£ 100
= 80
60
40
20
o !
Random J5Q Adapt
Load

ResponseT

ADuSs ANMPRA

Fig. 10: Campearisonodsmall, medium small; medium large
and large

sequential

parallel

pAvg;CPU L_Joad.
[=TT B R TR ST R TV T, R -9

Fig. 12: Comprison of different files

Heavy tasks: As our system 18 designed for heavy-tailed
work load condition, the system is checked to work under
bursty workloads using heavy inputs such as mmages.
Here we perform face detection tasks with images. The
input is fetched from the input directory stored in the
temp folder. The output of face detection 1s stored in the
output directory m the temp folder. The composition of
different files are shown in Fig. 12.

CONCLUSION

The various scenarios of Load balancing using
AMRA in Cloud Computing have been studied in detail.
Also recent study mn these fields were explored. We thus
proposed a new load balancing policy AMRA which
distributes the work in the system by taking account of
both user traffic and system load parallel. Using
trace-driven simulations on synthetic and real traces, we
showed that AMRA mherits the effectiveness of ISQ and

2397

Asian J. Inform. Technol., 15 (14): 2392-2398, 2016

size-based policies and meanwhile overcomes their
limitations which results in significant performance
benefits. We also showed that AMRA can quickly adapt
to the workload changes by momtoring user traffic and
load, repeatedly ranking the
partitioning the work in an on-line fashion. This study

system servers and
mvolves dynamically allocating virtual machines to the
mncoming jobs parallel.

RECOMMENDATIONS

In the future, we will refine our new load balancing
algorithm such that it can self-adjust its parameters
(e.g., the window size) to transient work load conditions.
We will further implement this new policy in real systems
such as clouds and data centers. We expect that this
mnplementation of AMRA will provide a simple yet
effective approach for resource allocation in large cluster
e1Lv Ironments.

REFERENCES

Das, P. and PM. Khilar, 2013 VFT: A

virtualization and fault tolerance approach for

cloud computing. Proceedings of the 2013

IEEE Conference on Information and

Communication Technologies (ICT), April 11-12,

2013, TEEE, Jelu Island, TSBN: 978-1-4673-5759-3,

pp: 473-478.

Harchol-Balter, M. and AB. Downey, 1997. Exploiting
process lifetime distributions for dynamic load
balancing. ACM. Trans. Comput. Syst, 15
253-285.

Haryani, N. and D. Jagli, 2014. Dynamic method for load
balancing in cloud computing. TOSR. J. Comput. Eng,,
16: 23-28.

>

Lloriente, TM., R.S. Montero, B. Sotomayor, B. Breitgand
and D. Maraschini, 2011. On the Management of
Virtual Machines for Cloud Infrastructures. In: Cloud
Computing: Principles and Paradigms. Cloud
Computing: Prnciples and Paradigms. John Wiley
& Sons, New York, USA., pp: 157-191.

Mi, N., Q. Zhang, A. Riska and E. Smirni, 2006. Load
balancing for performance differentiation in
dual-priority clustered servers. Proceedings of the
3rd International Conference on the Quantitative
Evaluation of Systems, September, 11-14, 2006,
IEEE, Riverside, Califormia, ISBN: 0-7695-2665-9,
pp: 385-394.

M, N., Q. Zhang, A. Riska, E. Smirm and E. Riedel, 2007.
Performance impacts of autocorrelated flows in
multi-tiered systems. Perform. Eval., 64: 1082-1101.

Ray, S. and A.D. Sarkar, 2012. Execution analysis of load
balancing algorithms i cloud computing
environment. Int. I Cloud Comput. Serv.
Archit., 2: 1-13.

Sharma, T. and V.K. Banga, 2013. Efficient and enhanced
algorithm in cloud computing. Int. J. Soft Comput.
Eng., 3: 385-390.

Ta, J., Z. L1, I. Chen and N. Mi, 2014. Load balancing for
cluster systems under heavy-tailed and temporal
dependent worlloads. Simul. Modell. Pract. Theory,
44: 63-77.

Teo, YM. and R. Ayani, 2001. Comparisen of load
balancing strategies on cluster-based web servers.
Simul., 77: 185-195.

Zaharia, M., A. Konwinslki, A.D. Joseph, R H. Katz and T.
Stoica, 2008. Improving map reduce performance in
heterogeneous environments. Proceedings of the 8th
Symposium on Operating Systems Design and
Implementation, December 12, 2008, USENIX
Association, San Diego, California, pp: 1-7.

Zhang, Q., A. Riska, W. Sun, E. Smirm and G. Ciardo,
2005. Workload-aware load balancing for clustered
web servers. TEEE. Trans. Parallel Distrib. Syst.,
16: 219-233,

2398

	2392-2398_Page_1
	2392-2398_Page_2
	2392-2398_Page_3
	2392-2398_Page_4
	2392-2398_Page_5
	2392-2398_Page_6
	2392-2398_Page_7

