Asian Journal of Information Technology 15 (14): 2306-2312, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

Optimization of Virtual Machine Placement

A R. Ragavi Privadharshini, K. Koushika and P. Prakash
Department of Computer Science and Engineering, Amrita Vishwa Vidyapeetham,
641 112 Coimbatore, India

Abstract: Cloud computing is an internet based computing, where shared resources and information are
provided to computers or other devices on demand. It has now become a highly demanded service or utility
due to the advantages of high computing power, cheap cost of services, high performance, scalability,
accessibility as well as availability. Cloud computing of course has some pitfalls which need to be given proper
attention to make cloud computing services more reliable and user friendly. Some of the major drawbacks are
underestimating cloud sprawl, failing to momtor performance, perils of platform lock-in mismanaged
performance guarantees, data jurisdiction, data storage area, possible down time, inflexibility, etc. In this study,
we have studied about the power consumption so as to improve the efficiency of a computing system. Here,
we detect the requests and then the placement of virtual machine takes place, thereby improving the

performance of the computing system.

Key words: Cloud computing, power, performance, VM request and VM placement, information

INTRODUCTION

Computer performance i1s characterized by the
amount of useful work accomplished by a computer
system or computer network compared to the time and
resources used. Accompanmied by 1mproving the
performance of a computing system, its power
efficiency is also addressed as a major concern. Though
performance of a computing system is enhanced per watt,
the total current drawn by the computing systems has not
come down. For an instance, the cost of power consumed
will be relatively more than that of the hardware cost
which 1s a major distress to the entrepreneurs. This
scenario 1s again worse quality if in clusters or data centre
like large scale systems.

The so called power consumption depends on
various factors like, hardware efficiency, infrastructure,
resource management, nature and type of applications
runming in the system. Also if the number of computing
components increases, its cooling mechanism takes a
lot of effort. Along with this cooler systems, power
distribution mfrastructures must be cared a lot
which mcludes, UPS and power delivery units
(Barroso, 2005).

Certain servers are hard to cool down because, there
will be densely seated components preventing the space
to let aur flow between them. This puts the servers m an
excited state and its performance might come down. Yet
there are servers to aid, like blade servers which can do

higher computations with components which demand less
space. Though the space complexity seems reduced, the
power demand 1s still a problem, wanting =4000 Watt for
the entire system.

Literature survey: So from 1992, energy efficient green
computing methods were found. This credit goes to the
energy star, a program which was launched by US
Environmental Protection Agency. Energy star was mainly
created to reduce the greenhouse gas emissions and also
to find and promote energy efficient products. One such
technique discussed (Flinn and Satyanarayanan, 2004) is
that it deployed the ‘sleep” mode in electronic devices. As
we know, this had a great welcome and almost all
electronic gadgets come with this ‘sleep’ mode feature
which is a state that does not consume more power.

Then, came the term ‘green-computing’ to denote
power-efficient methods of computing. As years flew
away, the computing need mcreased. The resource
required increased which directly impacted on the power
consumption. So about, after a decade, a newer version of
1t was mntroduced (Buyya et al,, 2009) to make sure optimal
performance 1s done which consumed less power, even in
a very big tired system.

Apart from energy star, many companies took
imtiatives to develop the standardized methods and
techmques which help 1n reduced power
consumption, also to limit the carbon emission in the
atmosphere.

Corresponding Author: A R. Ragavi Priyadharshini, Department of Computer Science and Engineering,
Amrita Vishwa Vidyapeetham, 641 112 Coimbatore, India
2306

Asian J. Inform. Technol., 15 (14): 2306-2312, 2016

Some of them include, the green grid, ECO, cloud,
ECO, cloud and green electronics council, green
computing impact organmization, Inc., FIT4Green, chimate
savers computing imtiative and mternational professional
practise partnership. All these initiatives as mentioned
(Beloglazov, 2013; Feller et al., 201 2) were deployed with
correspondence with membership from large companies
like DELL, Microsoft, Intel, IBM, Sun Microsystems,
HP, etc.

Tt is necessary to manage the resources under each
cluster to match the demand m order to maximize total
returns by mimimizing the power consumption cost.
Researchers of the study (Prakash er al., 2014) have
minimized by applying minimal virtual design, live
migration and variable resource management. But, the
traditional way of scheduling doesn’t meet their expected
requirements. So, they introduced the distributive
power migration and management algorithm for cloud
environment that uses the resources in an effective and
efficient marmer ensuring ammal use of power. The result
indicates that the algorithm reduces up to 30% of the
power consumption to execute services.

The power controller gets the server details and
sends the 1dentified server to the PIC microcontroller. The
PIC microcontroller shuts up or down the server by
passing the respective signal to the specific server. By
this method, every incoming virtual machine 1s allocated
a server by an arbitrary order defined by the user. Thus,
a server cannot be left alone unless its maximum capacity
is reached and no server can be left idle or without
running at maximum potency. In algorithm (Prakash et al.,
2014), it was implemented using a 12 v power supply, a
controller section into which the input is fed from a USB
and the output section. The dynamic power migration
technique was highly satisfactory but could always be
umproved further with zighee, bluetooth, etc.

MATERIALS AND METHODS

The state of the art of cloud computing: The process of
optimizing the virtual machines starts with understanding
the scenario. The current network will be checked for any
under-load or over-load. If any, the corresponding
requests will be sent to the respective components so that
they will be handled and acted upon as required.

Handling an under-load request will be as follows:
the local manger will study the scenario and finds if there
are any host under-loaded. This will be found with the
help of the under-load detection algorithm.

If an under-load 1s detected, the local manager sends
an under-load request to the global manager, stating the
name of the under-loaded host. The global manager

calls the APT and gets the list of VM allocated to the
under-loaded host.

On getting the VM list, global manager triggers the
VM placement algorithm with the following details, list of
VM, their resource usage and state of the host taken from
the database as arguments. Then, everything works
according to the algorithm and the global manager will
ensure if the migration is fully done.

Once the allocated hosts and the under-loaded host
are popped out and migrated, the host becomes 1dle. So,
the global manager puts this node into sleep mode. The
host over-load request will be handled as follows.

The local manger will study the scenario and it finds
if there are any host over-loaded. This will be found with
the help of the over-load detection algorithm.

If any over-load is detected, the local manager sends
an over-load request to the global manager, stating the
name of the over-loaded host, along with the list of
UUIDs of the virtual machines.

Which wvirtual machine should be popped out so
that, the load can be balanced will be decided by the
configured VM selection algorithm. On receiving the
global manager triggers the configuration VM placement
algorithm, for which the argument list will be as follows,
list of VM, other system mformation.

On the event off putting the popped-out virtual
machines, if they are re-mapped to currently idle servers,
then those servers will be activated by the Wake-on-LLAN
technology as addressed (Jung et al, 2010). In both
under-load and over-load request the requests will be
served at a single resource which are accessed by the
‘put” method of the Hypertext Transfer Protocol (HTTP)
(Fig. 1 and 2).

Host under load detection: The algorithm stated below
states that: select the newly CPU utilization measurement
and with the help of this measurement find and calculate
the mean of x.

Make a comparison with the threshold value which
you have already set as static with the measurement
which you have calculated from mean time which 1s
addressed (Cleveland and Loader, 1996).

If the outcome of this is very low when
compared to the threshold value then the CPU utilization
1s underperformed (Algorithm A).

Algorithm A; underperformed:

Input: threshold, x, consumption

Output: Whether the node is underperformed

If Consumption Is Not Emptythen
Consumption?last_x values of consurmption
meanConsumption?sum(utilization)/len(utilization)
Return (meanConsumption<threshold)
Retumn false

2307

Asian J. Inform. Technol., 15 (14): 2306-2312, 2016

Eequest 1 Fequest 2 Fequest 3 EFequest 4

[

Request & Fequest §

l

l VIRTUAL MACHINE REQUEST

l

A4

l OVER-LOAD OR UNDER-LOAD DETECTION

v

l WIRTUAL MACHINE PLACEMENT

Server 1 Serverl e
oL N e
] \orF |

Fig. 1: Process of optimization

Fig. 2: VM detection

Read: Consumption

Consumption

s not empty?

Assign: Consumption = Last x
values
of consumption

]

Assign: Mean
Consumption=sum(Utilization)/
len{Utilisation)

Consumption
==Threshold?

h 4

Return false

Return true

2308

Asian J. Inform. Technol., 15 (14): 2306-2312, 2016

‘ MINIMUM_STORAGE=MINIMUM ‘

h A

MAXIMUM_CPU=0,
ASSIGN_VM=NONE

" VM, CPU 1=10°

h 4

VMS_STORAGE_ROUTE[IVM)=MINIMUM_STORAGE

h 4

VV=LAST-X VALUES OF CFU
MEAN=SUM(VNLEN(V)

MAX CPU=MEAN
ASSIGNVM=VM

PRINT ASSIGNVM

Fig. 3: VM selection

VM selection: When we find the exact node wluch 1s
overloaded, then it 1s very important to identify the best
VM. When the VM is been selected then we should
migrate from the node. To solve this issue, VM selection
can be implemented here to get an optimal solution. The
algorithm (Wood ef al., 2007) which clearly states that

choose the VM which 1s having a limited amount of
storage. This reduces time in live migration time
period (Cleveland, 1979). After this use a maximum CPU
utilization for the selected VM. This method is known as
minimum migration time with meximum CPU utilization
(Fig. 3, Algorithm B).

2300

Asian J. Inform. Technol., 15 (14): 2306-2312, 2016

1. update vm_rows with all cpu vals and vmstorage information
2. sortvms in descending arder of requirement

1. update node_rows with all nodes cpu information and storage information
2 sortin descending of availability

i

1. update idle_node_rows with all idle nodes cpu infrarmatioon and storage
information
2. sortin increasing order of availability

i

route the vm to the appropriate nodes and update all cpu ad storage information of
the routed node

return routing infarmation

Fig. 4 VM placement

Algorithm B; CPU utilization:
Input: x, vimsCpuR oute, vmsStorageRoute
Output: A VM to migrate
minimumStorage-minimum(values of vinsStorageRoute)
maximmnCpu-OassignVm-none
forvm, cpu in vmsCpuR oute
do
Tf (wmsStorageRoute [vm]>minimumStorage) then
Continue
Velast x values of cpu
Mean~-sum (V)/len (V)
If (maximumCpu<mean) then
maximmnCpu-mean
assignVim-vin
Return assignVm

VM placement: Some of the methods under the bin
packing problem are first fit method, first fit decreasing
method, best fit method, worst fit methed, etc., where the
bin size can be fixed or variable. These bin sizes represent
the CPU capacity in the physical nodes and the items
mapped to the bin will the virtual machines. There may be
additional parameters like the CPU storage or the amount
of RAM required as said (Beloglazov et al., 2013). Making
a new step with open stack neat they had tried to change

the best fit algorithm which shows to use no >11/9. OTP
+1 bins that makes an optimal conclusion with the number
of bins. This BFD algorithm clearly sates about the how
to control over an additional constrains which mncludes,
current ideal node and the amount of storage needed by
the VM. If there is another node which is in an execution
mode then ideal node cannot be placed here (Fig. 4,
Algorithm C).

Algorithm C; node execution:
Input: x, nodecpu, nodeStorage, ideal nodecpu, idealnodestorage, vmscpu,
vimsstorage
Output: A map of VM UUIDs to node names
vimRows—ermpty list
forvim, cpu in vimsCpu
do
vals—last n values of cpu
Append a tuple of the mean of vals, vinsStorage[vm], and vm to
vmRows
vms—sortDecreasing (vinRows)
nodeRows? empty list
for node, cpu in nodesCpu
do
Append a tuple of cpu, nodesStorage [node], node to nodeRows
Nodes-sortIncreasing (nodeRows)

2310

Asian J. Inform. Technol., 15 (14): 2306-2312, 2016

idleNodeRows—ermpty list
for node, cpu in idleNodesCpu
do
Append a tuple of cpu, idleNodesStorage[node], node to
idleNodeRows
idleNodes—sortIncreasing (idleNodeR ows)
Routing-empty map
For vimCpu, vmStorage, vimUuid in vims

do

Route to—false

While not route to do

Allocated -false

For every node in nodes

do
If (nodesCpu [node] > vimCpu and nodesStorage [node] = vmStorage)

then

Routing [vmUuid]-node
nodesCpu [node]-nodesCpu [node]-vmCpu
nodesStorage [node] -nodes Storage [node]-vmStorage
Route to-true
Allocated~true
Break
If (not allocated) then
Tf (idleNodesTsNotEmpty) then
initializedNode-pop the first from idleNodes
Append initializedNode to nodes
Nodes -sortIncreasing (nodes)
nodesCpu [initializedNode [2]] ~initializedNode [0]
Nodes Storage [initializedNode [2]] -initializedNode [1]

Else
Break
Tf len(vims) = len{routing) then
Retum routing

Return empty map

This algorithm, mitially checks for the availability of
the host. If it is free then the virtual machines will be
mapped to it. If not, it will try for the next host. If any
overload is found, the overload request will be triggered
and the overloaded virtual machines will be popped
out and redirected to other hosts. For the case of
under-loaded scenario, depending upon the mput traffic,
either new virtual machines will be mapped to it or the

B Optinuzed Best Fit M Best Fut M Fust Fit

virtual machines existing in the under-loaded host will
be popped out to malke it idle and then it will be switched
off.

RESULTS AND DISCUSSION

Deploying this algorithm, the scenario is first
checked to know whether the hosts or the physical nodes
are under-loaded or overloaded. Knowing this, the
algorithm acts according to the need of the situation,
either by picking up over-loaded VM(s) and re-mapping
them to other hosts or in case of under-load, either pop
out the VM(s) and make the host idle or map some more
VMI(s) and balance the load.

Keeping this logic, we are trying to compare the
working of this algorithm with various factors like power
consumption and total price with respect to best fit,
first fit and worst fit to know which of all gives the
optimal result. The results as estimated by CloudSim
(Calheiros et al., 2011) are shown as.

Figure 5 shows VM requests VS Power Consumption
with respect to best fit, first fit and worst fit algorithms.
The consumption of power in optimized best fit algorithm
is very low when compared to the other standard best fit,
first fit and the worst fit algorithm. Hence while talking
about power consumption, our optimized best fit
algorithm holds best.

Figure 6 shows the number of VM requests that
optimised best fit, best fit, first fit and worst fit receive and
the total price at that point. When VM requests arrive,
optimized best fit has the lowest total price at almost
every random point when compared to the other standard
algorithms proving that the optimized best fit algorithm
would be the best in all possible situations.

W Worst Fit

1304

120

110

1004

Power Consumption
-
o

Fig. 5: No. of VM requests vs. power consumption

30
No. of vm 1equests

2311

Asian J. Inform. Technol., 15 (14): 2306-2312, 2016

B Optiuzed Best Fit M Best Fit M Fost Fit

B Worst Fit

851
201
754
704
651
60
55
50
451
40
35
30

Total Price

25
20
15
10
54

o4

10

30

Yo, of v requests

Fig. 6: No. of VM requests vs. total price
CONCLUSION

For the proper placement of virtual machine, the
scenario has to be well understood. In this study, we
propose the 1dea of first checking the condition (host over
load/host under load) where the virtual machine falls into
and the host is detected. After detecting the host, the
correct VM is selected and it is placed. The above process
is well explained using 3 algorithms. Keeping in mind the
various constraints available, 2 graphs have been drawn
where the power consumption and the total price 1s
plotted against the No. of VM requests. The generated
algorithm proves to stand better than the standard best fit
algorithm. Thus, the optimization of virtual machine
placement is done.

REFERENCES

Barroso, T.A., 2005. The price of performance. Queue,
3: 48-53.

Beloglazov, A., 2013. Energy-efficient management of
virtual machines in data centers for cloud computing.
PhD Thesis, Department of Computing and
Information Systems, The Umversity of Melbourne,
Berlin, Germany.

Buyya, R., C.S. Yeo, S. Venugopal, J. Broberg and
I. Brandic, 2009. Cloud computing and emerging IT
platforms: Vision, hype and reality for delivering
computing as the 5th utility. Future Gener. Comput.
Syst., 25: 599-616.

Calheiros, RN, R. Ranjan, A. Beloglazov, C.AF. de Rose
and R. Buyya, 2011. CloudSmn: A toolkit for modeling
and simulation of cloud computing enviromments
and evaluation of resource provisioning algorithms.
Software: Pract. Experience, 41: 23-50.

Cleveland, W.S. and C. Loader, 1996. Smoothing by Local
Regression: Principles and Methods. Tn: Statistical
Theory and Computational Aspects of Smoothing.
Wolfgang, PD.H. and P.DM.G. Sclumek (Eds.).
Physica-Verlag HD, Heidelberg, Germany, ISBN:
978-3-7908-0930-5, pp: 10-49.

Cleveland, W.5., 1979. Robust locally weighted regression
and smoothing scatterplots. Robust locally weighted
regression and smoothing scatterplots. 74: 829-836.

Feller, E., L. Rilling and C. Morn, 2012. Snooze: A scalable
and autonomic virtual machine management
framework for private clouds. Proceedings of the
2012 12th TEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (ccgrid 2012),
May 13-16, 2012, TEEE Computer Society, Ottawa,
Canada, TSBN: 978-0-7695-4691-9, pp: 482-489.

Flinn, I. and M. Satyanarayanan, 2004, Managing battery
lifetime with energy-aware adaptation. ACM. Trans.
Comput. Syst. TOCS,, 22: 137-179.

Tung, G., MLA. Hiltunen, K.R. Toshi, R.D. Schlichting and
C. Pu, 2010. Mistral: Dynamically managing power,
performance and adaptation cost in cloud
infrastructures. Proceedings of the 2010 IEEE 30th
International Conference on Distributed Computing
Systems (ICDCS), June 62-73, 2010, IEEE, Genoa,
Ttaly, ISBN: 978-1-4244-7261-1, pp: 62-73.

Prakash, P., G. Kousalya, SK. Vasudevan and
K K. Rangaraju, 2014. Distributive power migration
and management algorithm for cloud environment. J.
Comput. Sc1., 10: 484-491.

Wood, T., P. Shenoy, A. Venkataramani and M. Yousif,
2007. Black-box and gray-box strategies for virtual
machine migration. Proceedings of the 4th TTSENTX
Conference on Networked Systems Design and
Implementation, April 11-13, 2007, Cambridge,
Massachusetts, USA ., pp: 17-17.

2312

	2306-2312_Page_1
	2306-2312_Page_2
	2306-2312_Page_3
	2306-2312_Page_4
	2306-2312_Page_5
	2306-2312_Page_6
	2306-2312_Page_7

