Asian Journal of Information Technology 15 (11): 1691-1705, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

An Enhanced Query Optimization Approach for Cloud Data Management

Eman A. Maghawry, Rasha M. Tsmail, Nagwa [.. Badr and M.F. Tolba
Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt

Abstract: Cloud computing is a promising computing model that provides a combination of parallel and
distributed computing paradigms. It has the characteristics of on demand provisioning of a shared pool of
configurable computing resources as a service. It provides a cost effective paradigm of computational, storage
and database resources to users over the internet. Cloud storage is an important service that is provided by
the cloud system, it provides the data owners with high accessibility, availability and scalability in respect to
increasing the amount of their data in cloud repositories. The increasing number of users query data from
deployed virtual instances can lead to mcreased loads on the cloud data management system. Multiple queries
compete for hardware resources causing resources contention within a rapidly changing in environment
computational properties. So efficient concurrent queries execution on especially structured data in such

environment has become an important challenge.

Key words: Query optimization, query processing, cloud computing, cloud storage, distributed resources

INTRODUCTION

Cloud computing is becoming an emerging powerful
model for hosting computing services. These services are
delivered to clients over the mtemet with ther
different expectations on the quality of the service
(Maghawry et al, 2014a). Cloud computing unifies
computing components to provide software, platforms
and infrastructure as a service. Software-as-a-Service
(SaalS) is considered the top level component that
presents the model of deploying applications to end users
on demand. The next level is Platform-as-a-Service (PaaS)
that provides development tools to build applications
based on the service provider’s resources. On the lowest
level, Infrastructure as a Service (JTaaS) offers resources
such as processing power or storage to the end users.
These services are offered and mamtained by various
cloud computing providers over the internet.
providers offer
provisiomng to the clients in a pay-only-for-what-you-use
pricing model (Kossmann and Kraska, 2010). Some of
these major cloud service providers are Amazon (Amazon
Web Services http://aws.amazon.com/), Google Apps
(Google Apps:www.google.com/Apps/Work), Microsoft
(Microsoft Azure: http://azure. microsoft.com/en-us/) and
Sales-force (Sales-force:http: //www.salesforce.com/).
They prevent the clients from operational costs such as
purchasing, maintaining hardware and set up costs. Also
cloud systems offer Service Level Agreements (SLA) that
describe the Quality of Service (QoS) and service pricing
to cloud’s users. In addition, it applies penalties to the

Service on-demand resources

service provider in the case of user agreement violations
(Brandic and Dustdar, 2011). Cloud data storage is one of
the services offered by the cloud computing providers.
As the continuous data i1s growing, cloud provider
enables the remote clients to store their data to the cloud
storage environment by hosting their data on the cloud
resources instead of their own servers, these resources
are virtual machines with previously mstalled and
configured database systems. A query processing on
data stored within the cloud clusters is considered the
major challenge over cloud data storage
Therefore cloud storage has resulted in an mereasing
demand to handle the high amount of concurrent queries
submitted by wusers that accessing the resources
(Maghawry et al., 2014b).

Most of the commercial cloud providers are
supported by collections of physical instances within
distributed data centers over large geographical regions.
New challenging research issues are raised with such
environment controlling these cloud resources efficiently
offer services to the clients. As cloud computing grows in
popularity, querying distributed data sources becomes a
challenge because a data source is needed to handle any
failures and deliver high availability. Cloud users and
providers are interested in achieving performance
objectives such as; minimizing requests response time
and maximizing the utilization of cloud resources. In this
study, a collection of techniques are proposed in an
integrated methodology m order to enhance the
performance of query processing over cloud
resources.

service.

Corresponding Author: Eman A. Maghawry, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt
1691

Asian J. Inform. Technol., 15 (11): 1691-1705, 2016

Cloud environments
commodity resources and they process workloads and
tasks in parallel. When a client submits a query, master
nodes dispatch the query into worker nodes for
concurrent queries processing and the collected results

consist of heterogeneous

are returned from the distributed nodes. The queries
execution may cause low performance because queries are
executed under rapidly changing computational properties
in the cloud environment such as; loads. Some of the
nodes may execute faster while some may be slower
because of the system nodes contention. This node
contention can slow the query response time and effect
on the system performance. Therefore, heterogeneous
resources can result in a load imbalance during execution,
therefore load balancing technique is essentially required
to handle the high amount of concurrent queries that
access the resource (Maghawry et al., 2014a, b). So an
optimized query processing technique 1s required with
taking into consideration continuous monitor assessment
and fast response according to the progress of resources
execution.

Previous researches on query processing over a
cloud focused only on issues on query optimization,
query resource allocation or query scheduling topics.
Therefore in this study, we focus on presenting integrated
techniques for optimizing, scheduling and allocating
queries in addition to load management techniques that
are presented and implemented n an efficient arrangement
for enhancing the overall query processing performance.
The approach enhances the overall performance of query
executions over cloud environments. The main aim of the
proposed approach 18 minimizing the response time and
maximizing the utilization of cloud resources. The
presented approach is evaluated in terms of the query
processing performance. This study mnproves the query
processing efficiency by contributing with integrating the
following techniques:

¢ Query optimization techniques to exploit the shared
data among the submitted queries through
optimizing and merging the related queries to
unprove query processing efficiency over cloud
resources. It also considers different delay times of
submitted queries m order to apply the queries
merging step in case of a positive impact on the
query execution performance

¢ Scheduling technique to determine the efficient
ordering of the queries execution to reduce their
response time. It also determines the scheduling
decisions by taking into account saving the waiting
time of the queries within the execution queue

* Agsigning and allocating the queries across the
cloud virtual instances in an efficient manner

» Workload Management technique to recover the
failure or imbalance that may occur during the
queries execution. This 1s achieved by exploiting the
database replicas to enhance the execution
performance and handling instances contention.

This study focuses on presenting the following main
contributions:

¢ Enhancing the query processing performance over
the cloud by combining the previous presented
techniques (query optimizing, scheduling, allocating
and workload management) in a working architecture

» Using areal world cloud (Amazon EC2 infrastructure
provisiomng service) instead of the sumulated
environment that’s used in our previous research
and in most other researches

¢ Different query types and machine capabilities were
used to evaluate the proposed architecture. Examples
of the used measurements are the query response
time, the query throughput and query optimization
tune

Literature review: Previous researches on query
processing have focused on issues on only query
scheduling, query query
optimization. Unfortunately, most of the research in this
area has focused on processing a single query and does
not consider multi-users and concurrent queries with
multi-resource issues such as loads. Although, previous
research addresses several 1ssues in queries processing,
our proposed architecture combines the query
optimization and query resource allocation techniques
with momtoring the concurrent queries execution over the
running resources. Furthermore, it responds to any load
imbalance by applying the workload management
technique on the cloud environment. Tn the query
optimization research area, a Merge-Partition (MP) query
reconstruction algorithm was presented by Chen et al.
(2011).

Their algorithm is able to exploit data sharing within
the submitted concurrent sub-queries to reduce the
average commumication overheads. Their research is
related to the IGNITE system that was proposed by
Lee et al. (2007) which was developed based on the
PostgreSQI. database (PostgreSQL. homepage:
http:/www postgresgl.org). Also, Liu and Karimi (2008)
they proposed a resource selection module to select the
appropriate sub-set of resources to execute the query by
applying a ranking function on the available resources to
iumprove the query execution performance and
optimization time. In the mentioned techniques

resource allocation or

1692

Asian J. Inform. Technol., 15 (11): 1691-1705, 2016

(Chen et al., 2011) they focused only on exploiting and
optimizing the shared data among the submitted queries.
On the other hand, Liu and Karimi (2008) they focused on
scheduling and assigming the queries to suitable
resources. our previous research by Maghawry et al.
(2012) combined and enhanced the previous techniques
by Liuand Karimi (2008) and Chen et @l. (2011) to optimize
the shared data among the queries then assign the queries
to suitable resources based on a ranking function to
improve the query processing performance.

On the other hand, many approaches discussed
scheduling techniques some of them relied on machine
learning and prediction techniques to estimate the
performance metrics of database queries before starting
the execution as proposed by Luo er al (2006),
Gupta et al. (2008), Genapatlu et al. (2009), Akdere et al.
(2012) and Ti et al. (2012). Their goal was to create an
accurate prediction tool to predict the performance of new
queries for making scheduling decisions. In addition, the
Contender framework was presented by Duggan et al.
(2014) for concurrent query performance prediction; they
used an integration of empirical evaluation and semantic
mnformation to create models for the query template. These
models describe the resource contention for each query
template at different concurrency levels. Query interaction
was also considered by Ahmad et al. (2011a) and
Sheikh et a@l. (2011), they presented an approach for
calculating workload completion times by taking into
consideration the samples of the space of possible query
mixes by choosing the most suitable models, they then
built performance models by observing the performance
of these samples.

A Service Level Agreement (SLA) tree which is a
data structure was proposed by Jarke et al. (2014).
Authors constructed the SLA tree for each query to
combine a sequence of buffered submitted queries
together with their SLA requirements. They built this tree
to support profit oriented decisions in many components
within cloud systems such as scheduling. The main
disadvantage of machine leaming techniques is the
accuracy of the query running times prediction which is
a difficult problem because it is a complex function of the
query itself mcluding any run-time parameters and
dynamic factors. Therefore, this i1s not practical m most
real world database applications. Recently, there have
been many efforts in research areas (Ganapathi et al.,
2009, Chi ef al., 2011) to reduce the errors of the query
runming times prediction (Tozer ef al, 2010). The
Shepherd technique stands for (scheduling under
probabilistic histogram based query time distributions
scheduling technique) was proposed by
Maghawry et al (2014). It used the probability

distributions of query execution times for scheduling
queries in the presence of SLA requirements. Therefore
the Shepherd scheduler techmique (Chi et al., 2013) was
preferred to be used m our proposed system because it
considers all possible values of the queries execution time
rather than relying on just a single point of execution time
estimation. On the other hand, Shepherd didn’t consider
the related queries runmng in the system. Therefore, in
owr previous research (Maghawry et al, 2014a, b) an
enhancement on the Shepherd technique was proposed
by considering the related queries rumming in the system
which depends on how much 'O and CPU are needed to
finish the queries execution.

In the field of workload management, several
techniques have been proposed to achieve a workload
balance during the tasks execution. Many approaches
(Krompass et al., 2006; Schroeder et al, 2006) were
introduced workload management for managing resource
allocation for database queries to handle different
resource requirements and capabilities in workload
environments. Also the research by Paton et ol
(2009a) proposed several techniques for dynamically
re-distributing assignments of processor loads with
consideration to the varying resource capabilities.

These techniques were designed for wsing in
unpredictable environments conditions; they proposed an
adaptive load balancing approach depending on
incremental replication of a query operator state.
Furthermore, the workload manager presented by
Subramaman et al. (2000) used feedback control to adjust
and govern the resources execution. It receives
information about data workload performance from
performance monitoring that’s created by the application
provider then their workload manager uses a controller to
specify the suitable resources for allocating a workload,
on the other hand some techniques consider the impact of
concurrency and query properties on managing the
workload. Their technique focuses on the query behavior
analysis so they proposed sampling techniques mn order
to predict resource contention as Liu and Karini (2008)
and Duggan et al. (2011). The authors as Avnur and
Hellerstemn (2000) and Tian and DeWitt (2003) continually
monitor the speed of query operators and use this
information to modify the query plan by improving the
query performance. Furthermore, they used a queuing
network to describe performance metrics for response time
system throughputs for a distributed
management system to control workload imbalance.
Moreover, many approaches rely on utility functions such
as the researchess by Paton er al. (2009, 2012) they use
utility functions mtegrated with optimization algorithms in
order to maximize utilities for a given workload for certain

and stream

1693

Asian J. Inform. Technol., 15 (11): 1691-1705, 2016

resources. For instance, they present an autonomic
workload mapper that adaptively assigns tasks to
execution sites.

Furthermore, they check the resources assignment by
revising the feedback of the submitted requests progress
during the workload executions. The goal of their
approach is to check the alternative mapping space to
achieve the maximum utilities by applying and computing
the utility function. Other techmques proposed a
workload management system which includes a dynamic
execution orgamizer that leverages fuzzy logic as
Krompass e al. (2007) also other researches suggest
machine learning techniques that use monitored data to
sample the system. They have developed a query
scheduler that considers the query interaction within
workloads as in the research that was presented by
Ahmad et al. (2011b).

As presented in previous workload management
topic researches, there are different techniques for
handling the load during queries execution though
focusing on one techmque such as machine learning to
predict the resource contention, analyzing the query
behavior or revising the feedback on the resources
assignments or exploiting the replicas in re-distributing
the load. In our previous research (Maghawry et al.,
2012), many features on workload management are
presented to recover the resources load such as checking
the resources contention, revising feedback loop about
resources status after allocating the resources and
exploiting the replicas to handle any load that may occur
during the execution.

A SQL query processing algorithm called (ESQP
stands for Efficient SQL Query Processing) is proposed
by Zhao et al. (2010). They used data replicas in c¢loud
storage for processing the SQL queries and they
presented global and random scheduling in query
procedures to reduce the response time for each query. In
this study, the proposed query processing approach was
compared against the ESQP approach which was
proposed by Zhao ef al. (2010). However ESQP, relied on
just their scheduling technique to get the load balance
and didn’t revising the resowrces feedback loop after
resource allocation process.

To overcome the shortage of previous
researchess, this study presents an enhancement to
the query processing performance over c¢loud

environment. It proposes an architecture that
illustrates the main techniques of our research. The next
section explamns this proposed architectimre and its

components.

MATERIALS AND METHODS

Cloud computing platforms contain many of the
heterogeneous hardware that are responsible for data
storage. As a result of the popularty of traditional
Relational Database Management System (RDBMS), the
used data by the majority of enterprisers deal in decision
support and business planning is structured data.
However, most cloud platforms deo not support SQL
queries because they are not designed for structured data
management (Zhao ef al., 2010). On the other hand some
platforms support SQL queries that based on traditional
relational databases. For cloud deployment, the data and
workload characteristics of typical data management
applications are well suited within it (Zhao efal.,
2010).

There are two types of nodes in the proposed
system: Master nodes and worker nodes. Master nodes
store performance and meta data about the total worker
nodes (such as RAM amount, CPUJ speed) while worker
nodes store the data records and theiwr replicas. The
proposed architecture for query processing over cloud
environments 1s represented in Fig. 1. The key immovation
of the proposed architecture is the way of arranging the
processes of the combined modules m an optiunized
manner which highly improves the queries processing
performance over cloud environments. The main
contribution of the proposed architecture is to minimize
the queries response time and maximize the utilization of
cloud resources.

When the master node receives the clients’ queries,
the optimizer module exploits the shared requested data
among the submitted queries. Then the queries are
queued by the scheduler to be ready to start distributing
them on the available and most suitable worker instances.
During the queries execution, the workload manager
module momnitors, diagnoses and recovers any failure or
load imbalance that may occur during the execution
through exploiting the existing replicas. Finally, results are
collected from the distributed virtualized resources and
retummed to the clients. The proposed architecture
involves three key components of the query processing.

Query optimization module: This module is responsible
for optimizing and executing the submitted queries in an
efficient manner. Tt exploits data sharing among the
queries then determines the order of the queries execution
and finally, it allocates the queries to the appropriate
worker nodes.

The output of this module is the list of the worker
nodes that are responsible for executing the queries to
send to the workload manager module and involves the
following processes:

1694

Asian J. Inform. Technol, 15 (11): 1691-1705, 2016

Query Optimization Sub-Syvstem

[Transform Queries to AQT]

l

Optimize Sub Queries Merge Queries
[Traversing the AQTs J [Construct New Merged Queries]

I I
[Check Common Answers J [Record the Pairs of Original Queries

\

}

Schedule Queries \"‘
[Determine the Related Queries]
!
[Consider Resources Utlization]
L
[Make Decisions on Query Queue _]/

|

Resource Allocation

[Locate the Resources

|
Rank the Resources

!

Workload Manager Sub-system

[Observer H Planner]__[Responder]

!

Integrator Sub-syvstem

e

—
R

Resultse—] [Collect the Results]—{ Partition Merged Queries H Integrate the Results]

Fig. 1: Proposed query processing archite

Transform queries to the Abstract Query Tree (AQT) Optimize sub-queries process: Traversing the AQTs to
process: Each query 1s transformed to AQT by a determine which sub-queries will have common answers.
parser which generates a query execution plan as a tree. Tt checks if there are sub-queries selecting data from the
The tree consists of query operations on its internal same table and it also checks specific conditions that
nodes such as; select operation and the relations included must be satisfied then it specifies the list of related
n the query on the tree leaves. sub-queries to be sent to the merge process.

1695

Asian J. Inform. Technol, 15 (11): 1691-1705, 2016

Example: For a given submitted query q: [[, (o, (R)) where
1. is the output attributes list, P is the selection predicate
and R are queried relations. Let us assume the followmng
assumptions:

¢ L.(q) is the list of cutput attributes
* P(q,) 1s the selection predicates of g,
* L.q) 1s the list of attributes that appear in P(g;)

For two queries g and g, let R(gnq) be their
commeon result. Sub queries can be merged n the case of
three conditions that should all be satisfied to make sure
that the two queries can be merged:

+ L.(g)L,{q)
+ Lig)=L,q)
* Lgig)=Lgq)

We also consider different delay times of submitted
queries to only merge the queries that have a positive
impact on the query execution performance. For example,
a short running query and a long running query can be
merged 1if they satisfy the previcus afore mentioned
merging conditions; but in this case, the waiting time of
the short running query will increase because of the
merging step with the long running query, therefore it can
lead to decreasing the performance. Therefore, we
enhanced the merging process (Maghawry ef al., 2010)
through adding another condition to improve the overall
query processing performance.

Our enhancement techmque groups the related
querties based on the number of rows that will be scanned.
The queries can be merged only if their scan ratio is fallen
within the same range of specific thresholds that are
specified experimentally in our previous research
(Maghawry et al., 2010) by applying this enhancement in
the merging process, we can ensure that the merged
queries will have a positive impact on their execution
performance. Therefore, it can lead to mmproving the
queries execution performance and response time.

Merge queries process: The new merged queries set are
reconstructed by the query reconstruction mechanism
(Chen et al, 2011) from the group of optinized sub-
queries that have shared data to eliminate data
redundancy among them and minimize communication
overheads. The answer of the new merged query is used
to compute the answers of the original queries before the
merging step. For example, g, 1s the new merged query of
q, and ¢, by satisfying the previous mentioned merging
conditions, the answer to g, can get all the rows required
by qand g, and also the answers to g, can get all the

&

hisiogram

Execution Time

g 11 12 3

I
™

Fig. 2: Uniform distribution of execution time

columns required by q, and q, and m addition the answers
to g, and g, can be computed since the attributes required
by their predicates are provided in the answer to g,
because the predicates of the two queries are merged in
the new merged query q;. Therefore, the answers to g,
and ¢, can be computed from the answers to ¢ ; Also in
this process, we record all the pairs of queries that can be
merged and the followimng information is recorded: <New
merged query, condition original query > where the
condition is the predicate used to compute the answer to
the original query from the answer to the new merged
query. All the pairs of original queries are recorded to
compute their answers m the partitioning queries process
within the Tntegrator module that will be introduced in this
study. The previous processes were evaluated in our
previous research (Maghawry et al., 2012).

The scheduler technique: Is responsible for constructing
a queue of query executions. Our proposed scheduler
presents an enhancement on the Shepherd technique that
was proposed by Chi ef al. (2013). This enhancement 1s
presented by considering the related queries running in
the system and taking into account the resources
utilization. The Shepherd technique makes decisions
about which query to execute next based on some defined
rules. If query q follows a stored query template, the
distribution of the execution time of this template is
presented in a histogram with multiple buckets (11, r2) as
shown m Fig. 2. As n the preprocessing process, our
scheduler detects if the submitted query has a known
historic template or not. Tt considers the possible values
of the execution time of query ¢ while considering their
SLA missed deadline cost. It relies on the probability
distribution of the query execution time, mstead of relying
on a single point predication for the execution time of a
query.

At a given tune t, it computes the expected cost
reduction between choosing a query q to run now or
choosing another query to run and delay q further.
Therefore the scheduler saves the waiting time of queries
because it doesn’t put the query within the queue unless

169¢

Asian J. Inform. Technol, 15 (11): 1691-1705, 2016

hitogram |

Costc

Execution Time
.

|

0 1 2 d
Fig. 3: Decomposition of query execution time histogram

it will improve the performance of the execution The
expected cost reduction 18 known as the priority score of
g at time t and the query with the highest score starts the
execution. So, our used technique saves the waiting time
of queries because 1t doesn’t put the query within the
queue unless, it will improve the execution performance.
The query q if started at time t, ¢’s finishing time is
uniformly distributed between the buckets assuming that
each query has the SLA cost function with a single
deadline d and the cost of missing the deadlne. The
scheduler computes the priority score for each histogram
bucket at time t as shown in Fig. 3, the overall query
priority score 1s computed by combining the
decomposition of each bucket in the histogram.

Also, it is assumed that the further delay for each
query follows the exponential distribution that’s because
the query execution time 1s not fixed but mstead 1s
changed. Hence, the distribution of the query execution
time can be calculated and the overall Shepherd score P
for each query ¢ at time t can be computed as mentioned
by Maghawry et al (2014a, b). The proposed
enhancement on the Shepherd techmique depends on
considering how much CPU and \O cost will be needed
to complete the queries execution and such mformation 1s
obtained from the query optimizer of the database
management system. The proposed scheduler orders the
queries execution in a queue based on the shared
requested data between the queries.

For example, a given submitted query may do many
1/0s when executing alone, although the same query can
run faster with the existence of another query that reads
the same data, this is achieved because the requested
data is found in the buffer pool which reduces the amount
of necessary I/O’s. Our scheduler efficiency 1s evaluated
and presented by Maghawry et al. (2014a, b).

Resource allocation process: Ts responsible for allocating
each query to the appropriate available resources based
on the ranking functions that are presented by
Maghawry et al. (2012). The ranking function computing
is based on the cloud resources’ information such as:
RAM amounts and CPU speed to select the appropriate

resource for execution. Moreover, it dispatches the
queries to the corresponding worker node and takes into
consideration each worker node’s capability to run the
queries concurrently with minimizing the contention at the
resources. The output of this module is the list of the
assigned resources that are responsible for the queries
execution. In this module, the Merging process and
Allocation processes are combined to exploit the shared
data among the queries then assigns the queries to
suitable resources based on the resources ranking
function to improve the query processing performance as
presented by Maghawry ef al. (2012).

Workload management module: During the queries
execution, the module 1s responsible for controlling the
queries execution across the running worker nodes. Tt
ensures that nodes are used effectively and utilized as
fully as possible without overloading any node. However,
this module has processes that collect information about
the nodes performance to diagnose and handle any failure
or load imbalance that may occur during the execution.
The resources load umbalance 1s handled by generating an
assessment plan that redistributes the queries execution
over the replicated nodes. The main advantages of this
module are the mmprovement of the query processing
performance and overall query response time through
exploiting the database replicas in handling the workload
imbalance. Furthermore, this module considers the
resources contention, revising the feedback loop about
the resources execution after the queries allocation. Tt
holds the following main processes that were presented
and described i our previous research (Maghawry ef al.,
2014a, b).

Observer process: Every 15 sec it dynamically collects
the processor utilization values for each running worlker
during the queries execution which 1s
1deal (Performance Momtoring, https://software. imtel. com/
en-us/articles/use-windows-performance-monitor-for-
infrastructure-health) for benchmarking scenarios. The
performance mformation is the percentage of processing

node

time which each worker node spends on processing
queries. If these values exceed specific thresholds then
this means a failure can oceur with the current execution.
If the load on the processor of any worler node exceeds
80% (Dam and Fritchey, 2009) it indicates that there is a
possible overload on this node. In this case, it generates
a notification containing the updated information of the
loaded worker node and then 1t sends this notification to
the planner process to generate an assessment plan to
handle the failure that may occur during the execution.

1697

Asian J. Inform. Technol, 15 (11): 1691-1705, 2016

Fig. 4: Partition the queries results

Planner process: Initiates when receiving a notification
from the Observer process that contains mnformation
about the loaded node. It collects the performance
information about the available replicas of the loaded
node. In addition, 1t assigns the failure queries on the
loaded node to the most available unloaded replica to
recover the load and contention on the worker’s node.
Therefore, it generates an assessment plan by replacing
the loaded worker node with the appropriate replica to
handle the worker node contention. Furthermore, the plan
contains the queries that are assigned to be executed on
the chosen replica. Finally, the assessment plan is sent to
the Responder process for execution.

Responder process: Receives the assessment plan from
the Planner as a notification. This process uses the
mformation mn the assessment plan to specify the failed
querties on the loaded worker node and the suitable replica
for executing these queries. The main goal of this process
is to recover the nodes contention through applying the
enhanced workload distributon plan, therefore it
dispatches the failed queries to the corresponding replica
and finally kills the most recent queries execution on the

loaded node.

Integrator module: In this study, the mtegrator module
unplementation details are presented. This module 1s
responsible for retrieving the concurrent queries results
from the distributed nodes then returns the queries results
to the users. Moreover, it partitions the results i the case
of merged queries to get the overlappmng data and the
remaining unshared data between the original queries as
presented by Chen ef al. (2011). This partitioning process
15 responsible for constructing the
reconstructed queries from the original queries that are
constructed in the merging process.

For instance if there is data sharing between two
submitted queries q; and g, as shown m Fig. 4. They will
be merged in Merging process then sent to the resources

results of

for execution, after the answers to ¢,*, q;f and q % are
returned, partition the queries q, and g;results to the
queries q,*, g2* and g3* to elimmate overlapping data.

=
q3 2

So, the results of g, can be computed directly from the
results of q,* and gq;*. The result to q gan be obtained
directly from the results to g,* and g,*. Finally, the results
of the finished queries are prepared by collecting the
results of the same queries from the distributed
instances.

The set Q = {q,, ... q 4 is used to represent the
queries submitted and also record all queries that can be
merged in Q* = {<q,, ¢, >, ... <Qs, Qs» ..., Q. >}. For each
merged queries, all the information about their original
queries and their new merged query are recorded as a
group <q*, q,, q,>. For example <<q*, q,, q,>, the following
information 1s recorded:

. <q*, cond,, q,>
. <q*, cond,, q,>

Where cond, 1s the condition used to compute the
result of the original query ¢, from the result to the
merged query q* and cond, is the condition used to
compute the result of the original query q, from the result
to the merged query g*. This condition 1s specified in the
merging process that is based on the queries predicate.

After evaluating queries in Q¥ the results are
returned from the resource to the integrator module, it can
compute the results to the original queries Q, = {qi, ..., g}
by checking the recorded information such as <q*, cond,,
q,> that means the result of g, is a sub-set of the result of
q* and its results can be computed by applying the
condition cond, on g*.

The main goal of this module 1s to collect the results
from running resources then prepare the results to be sent
back to the users, it also takes into the consideration the
results of the merged queries to be partitioned before
sending to the users.

RESULTS

Experimental results and evaluation: We evaluated the
performance of the proposed work on Amazon EC2
(Amazon Elastic Compute Cloud (EC2):
http://aws.amazon.com/ec2/) using standard small and

1698

Asian J. Inform. Technol., 15 (11): 1691-1705, 2016

medium instances in the US-West region. By default, a
small instance (12.micro) has the following hardware
configurations: 1 EC2 Compute Unit (1.e. 1 virtual core), 1
GB of main memory, 30 GB of local mstance storage and
a 64-bit platform. Medium instances (t2.medium) have the
following hardware configurations: 1 EC2 Compute Unit
(1e. 2 virtual core), 4 GB of main memory, 30 GB of local
mstance storage and a 64-bit platform. The experimental
setup consists of 10 machines-1 master node and 9 worker
nodes.

For each worker node mstance type, we used
Microsoft Windows Server 2008 R2 as the operating
system configured with a Microsoft SQL Server 2008 R2
as the database server. The master machine runs on a
Inter Core 7, 2.60GHz CPU, 6GB of main memory and 1TB
hard disk. Different numbers of queries are processed by
the proposed system and the technique is implemented in
Microsoft Visual Studio, 2010. Over the lifetime of the
experiment, varied types of active mstances were used to
evaluate the proposed system, each run was repeated five
times and the average execution time values reported.
After each execution, the database system was restarted
to clean up the bufferpool and to bring the database
system to a steady state.

One of owr contributions in this study is the
evaluation of our proposed query processing approach is
conducted over a real world cloud using the Amazon EC2
mfrastructure provisioning service unlike our previous
research and some researches relied on simulated
environments (Maghawry et al., 2012, 2014a, b).

The TPC-H database (Transaction Processing and
Database Benchmark, http://www.tpc.org/tpch/) 1s used
as a dataset (scale factor 1) to test the proposed work.
The TPC-H database has eight relations: CUSTOMER,
LINEITEM, NATION or DERS, PART, PARTSUPP,
REGION and SUPPLIER. The proposed system supports
several SQL queries in cloud computing systems with the
stored data relations on the worker nodes. Generally, each
table 1s divided horizontally into x parts, each part
replicated v times and are saved m different worker nodes,
v is usually less than the number of worker nodes in a
cluster which y = 2 for most cloud systems (Zhao ef al.,
2010). The master node has the storage mformation about
each replica of each partiton We focus on using a
read-only SQL query, TCPH queries are used with the
form of generalized selection, projection and join.

Each module m our system was previously compared
with other approaches (Chen et al., 2011; Chi et al., 2013)
to evaluate its efficiency. Therefore in this study, we ain
to evaluate the efficiency of the whole system by the
mtegration of the modules within one working
architecture. For comparisons, the SQL query processing

algorithm called ESQP and stands for Efficient SQL Query
Processing proposed by Zhao et al. (2010) has been
chosen. Because they similarly proposed an architecture
that addresses all query processing issues instead of
focusing on only one issue related to the query
processing approach. They used data replicas m cloud
storage for processing the SQL queries. ESQP did not deal
with just single issue such as query optimization or
scheduling as in most of the research.

So 1n this study to the efficiency of the proposed
approach, it was compared with an ESQP (Efficient SQT.
Query Processing) approach that 1s described by
Zhao et al. (2010). Their approach was mspired by the
MapReduce idea, in which a job is divided into several
tasks. When a user submits a query in their approach, a
master node divides a user query mto several sub-
queries; every sub-query has to wait in the queue of the
worker nodes where the query data 1s stored. To balance
the load, their approach relies on the scheduling strategy
in dispatching the sub-query. The idea of thewr query
optimization is to balance all waiting queues on the worker
nodes. Before choosing a sub-query, they calculate the
length of the waiting queue for each of the worler nodes.

The variance of each list 1s computed and the sub-
query corresponding to the smallest variance is assigned
to the worker node but their work has limitations on
executing large scales of concurrent queries which brings
additional scalability problems (Zhao et af., 2010). Their
query processing approach consists of three key
componernts:

» Query transformation: Decomposes each user query
into a set of independent sub-queries that can be
executed in parallel on the nodes

*» Query dispatch: Schedules and assigns the
sub-queries to the worker nodes. The scheduling
technicue is relied on their approach to achieve load
balancing across the nodes

» Sub-query execution: Worker nodes process
sub-queries and return the results to the clients as
soon as possible, even if only one record of all
results 13 ready. They believe that current query
processing can save a lot of time so that they don’t
need to wait for the results to be transferred even if
only one record of all results s ready. But in some
cases, the results of sub-queries are not just the
results of the original query so in this case some
re-treatment 18 required and they stop the mission
timer at the point that the first result is received by
client. Therefore, we consider that the results
of the query cannot be returned to users until all
sub-queries on the worker nodes are completely
executed

1699

Asian J. Inform. Technol., 15 (11): 1691-1705, 2016

=
s B Our Proposed Technigue
—_ Original Technigue
=, m ESQFP Technigque
=2 6
= 5
-
s 4
&
£ 3 -
£ 2
1
o -

S0

150

2

LA
=)
Lad
LA
=)

Number of Queries

Fig. 5: The average queries execution time for different query types

Previous technique addresses several issues in the
query processing topic by handling increasing numbers
of worker nodes and also they depend on their scheduling
techmque to get the load balance which uses a heuristic
method-variance that needs a more accurate measurement
of load balance (Zhao et al., 2010). Our proposed query
processing technique combines the query optimization
and query resource allocation in addition to observing the
concurrent queries execution over the running resources
and responding to any load imbalance by applying the
proposed workload management module on the cloud
environment.

A key goal of the proposed processing technique is
to minimize the query response times and improve
resource utilization i the cloud environment. Response
time 1s used as the metric in the experiments which 1s the
interval between the query started and its results returned
to the user so the experimental results in this section
demonstrate the performance of the proposed approach.
For evaluation, the experiments were set with different
machines capabilities and different numbers and types of
workloads. Each experiment was executed five times and
the average response time 1s calculated by applying the
proposed technique against the ESQP technique. Also, it
was compared against a normal techmque which
dispatches the queries directly for execution.

The results are shown in Fig. 5. Figure 5 shows the
average execution time in minutes for the different
numbers of concurrent queries with short and long
running queries workloads by applying the proposed
technique, ESQP and normal technique. The queries with
select and join types were used m the proposed
experiment. As shown in the results, the average
execution time of the queries by applying the proposed
system can reduce the queries response time over the two
other approaches. This 1s done because query merging

and scheduling techniques are integrated in our proposed
technicque and this integration improves the performance
of the queries execution.

In executing 350 queries, the specific nstance was hit
with 70% of the queries to test the proposed workload
technique. During the execution, the processor utilization
of the corresponding instance exceeds 80% that means
there 1s a load on this instance and this load can lead to
execution failure. Therefore by applying the proposed
Workload Management Module, the latest queries with
failure execution on this instance are assigned to its
suitable replica to continue thewr execution without
overloading the instances. ESQP has issues in handling
a load with an increasing number of queries and worker
nodes because of the computation of the large matrix. In
additiory, it relies on just their scheduling techmques to
get the load balance and does not revise the resources
feedback loop about execution after the resources
allocation as exists in our workload management
processes so as shown i the results, the average
execution time of the queries with handling the load
imbalance can reduce the queries response time over the
ESQP by 40% and over the normal techmques by 28%.

The proposed technique 1s also tested with simple
queries i the select-project query form of m, (o, (R))
where T, is the output attributes list, P is the predicate of
selection and R are the tables that are queried. Different
numbers of queries are submitted and the average
response time 1s computed. As the results shown in
Fig. 6, applying the proposed technicue also improves the
queries execution time over the ESQP by 37% and over
the normal techriques by 35%.

The query optimization time 18 also computed to test
the performance of the proposed technique and ESQP
technique. The query optimization time, is the interval
between the queries submitted, optimized, scheduled and

1700

Asian J. Inform. Technol, 15 (11): 1691-1705, 2016

[J—

2.5 -

IMNommal Technigue

m COur Proposed Technigue

m ESOQF Technigque

Total Response Time (Min)

S0 150
Number of Queries

x50 50

Fig. 6: The average queries execution time for the same query type

10
5 = Cur Proposed Technigue
ESQP Technique
— B
b
e
=7
=
E s©
g’
g
g =
=
=%
=z
1
a

[m []

150

250 350

Number of Queries

Fig. 7: The average queries optimization time

assigned to the workers nodes. The average of the total
query optimization time for different numbers of queries is
shown in Fig. 7. The ESQP technique needs to construct
and compute a matrix to schedule the sub-queries
assignment on worker nodes which takes more time for
the queries optimization so the results show that the time
taken to optimize the submitted queries by applying our
proposed technique is less than applying the ESQP
technique by 70%.

To test the performance of the proposed technique
against the ESQP, we measured the cquery throughput for
each techmque which 1s the number of executed queries
per second. At first, the query throughput was measured
for a single instance to know how it will behave on a
single server and then we used it as a reference in our
comparisons, the same was done using the distributed
optimized techniques. The results retrieved from the
optimized techniques should be equal to or better than the
single instance results.

As noticed from the single nstance graph m Fig. 8,
the database response time was almost constant within a

region but then started to deteriorate so thus will be
marked as the database optimal performance region (30-40
queries). Therefore, the average response time of the
optimal performance region was used to calculate the
single instance throughput. The same approach was
followed with both the proposed technique and the ESQP
technique and the average response time of different
numbers of queries are shown in Fig. 9. From the previous
results, we can conclude 1n Table 1 which calculates the
query throughput. The results show that the proposed
technique has the highest query throughput against the
ESQP technique. This 1s achieved because the proposed
approach has the query merging approach which reduces
the number of queries that will be scheduled and allocated
over the resources so, it improves the query throughput
over the proposed approach.

Fmally, we set different types of instances to test the
proposed system using machines with different
capabilities. Half of the worker nodes are assigned to t2.
micro and the other half to t2. medium. As the proposed
approach mtegrates the query processing techmiques in

1701

Asian J. Inform. Technol, 15 (11): 1691-1705, 2016

60
50 =
T J/
& 40
(-]
£ d
= 30
(7]
E 41”‘___._—-.——‘ffﬂvr
w20
g /
e /
[n]
a 10 20 30 40 50 60 70 20
Number of Queries
Fig. 8: The query throughput for single instance
20 —%— Owr Proposed Technique
18 ESQP Technique —
16 — —
T 14
@
o
g 12
g ——
g g
5 - ———
&
4 /
2
a
a 10 20 a0 40 50 &0 70 &0
NMumber of Queries

Fig. 9: Measuring the query throughput

Response Time (Min)

B Our Proposed Technigque
Normmal Fechnique
m ESQP Technique

350

150 250
Number of Queries

50

Fig. 10: The average queries execution time for different machine capabilities

Table 1: Measuring the query throughput

so as shown in Fig.

Number of Response

Query throughput

an optimized way 10 by
applying the proposed approach it improves the queries

Parameters queries time (sec) (# queriesisec)) ;

Our proposed techique 40 4 54 execution time over the ESQP by 57% and over the normal
ESQP technique 40 15.6 2.5 technique by 38% using different types of instances
Single instance 40 24.7 1.6

capabilities.

1702

Asian J. Inform. Technol., 15 (11): 1691-1705, 2016

DISCUSSION

In this study, we mtroduced a methodology for
performing query processing to enhance the overall
performance of queries executon over cloud
environments. The increasing number of users requests
data from deployed virtual nodes over the cloud can lead

to increased load in data management systems. This can

cause node contention with rapidly changing
computational properties, therefore, the proposed
technique overcomes two significant challenges:

Minimizing queries response times and maximizing the
utilization of cloud resources.

For improving the response time, the query
optimization and scheduling techmques are proposed. In
addition to reducing resources contention, the efficient
workload management techmque 15 proposed by
involving a feedback about the resources execution
performance comprising of observing, planmng and
responding to any overloaded mstance during the queries
execution.

The proposed techmque manages the life cycle of
the client requests, selecting the worker nodes and
balancing the load across these virtual nodes and so 1t is
essential to incorporate a collection of techniques such
as; optimizing, scheduling and load management to
achieve efficient accessing and querying across the
distributed data sources. These techniques are integrated
and evaluated in one working approach of the mtegrated
query processing methodology to improve the query
execution performance.

Experiments have been performed in a real world by
the Amazon EC2 mitastructure provisioning service which
1s considered one of the contributions. The evaluation of
the proposed query processing approach is conducted
using different measures such as; the query response
time, the query throughput and query optimization time.
The measurement is conducted over different query types
and machine capabilities.

The results
processing approach with workload characterization over

prove that the proposed query

the cloud improves the queries execution time over the
ESQP by 37% and over the normal techmques by 35%.
Also using different types of instances, it improves the
queries execution time over the ESQP by 57% and over
the normal techmque by 38%.

In addition, the results prove that the time taken to
optimize the submitted queries by applying the proposed
technique is less than by applying the ESQP technique by
70%.

CONCLUSION

This study proposes an efficient query processing
approach on structured data in cloud to reduce resource
contention and handle the degradation in the query
processing performance. The key innovation in our
approach 1s the efficiency of the processes arrangement
within the combined approach’s modules which highly
improves the cqueries processing performance. Our
proposed approach i3 evaluated by applying a
combination of query optimization, scheduling and
workload management techniques in terms of the query
processing performance. The evaluation is conducted
over a real world cloud using the Amazon EC2
infrastructure provisionming service which considered one
of our contributions in this study. The results prove a
significant benefit against existing approaches with
regards to the overall query processing performance.

REFERENCES

Ahmad, M., A. Aboulnaga, S. Babu and K. Munagala,
2011a. Interaction-aware scheduling of
report-generation workloads. VLDB I. Int. J. Very
Large Data Bases, 20: 589-615.

Ahmad, M., S. Duan, A. Aboulnaga and S. Babu, 201 1b.
Predicting completion times of batch query
workloads usmg interaction-aware models and
simulation. Proceedings of the 14th International
Conference on Extending Database Technology,
March 21-24, 2011, ACM, Uppsala, Sweden, ISBN:
978-1-4503-0528-0, pp: 449-460.

Alkdere, M., U. Cetintemel, M. Riondato, E. Upfal and
SB. Zdomk, 2012, Learming-based query
performance modeling and prediction. Proceedings
of the 2012 IEEE 28th International Conference on
Data Engineering (ICDE), April 1-5, 2012, TEEE,
Washington, DC, USA., ISBN: 978-1-4673-0042-1,

pp: 390-401.
Aviur, R. and JTM. Hellerstein, 2000. Eddies:
Contimously adaptive query processing.

Proceedings of the 2000 ACM SIGMOD Intemational
Conference on Management of Data, May 15-18,
2000, ACM, Dallas, Taxas, ISBN: 1-58113-217-4,
pp: 261-272.

Brandic, I. and S. Dustdar, 2011. Grid vs Cloud-A
technology comparison. Inf. Technol. Methods
Appl. Comput. Sci. Inf. Technol., 53: 173-179.

Chen, G, Y.G. Wu, I. Liu and G.W.M. Yang, 2011.
Optimization of sub-query processing in distributed
data integration systems. J. Network Comput. Appl.,
34: 1035-1042.

1703

Asian J. Inform. Technol., 15 (11): 1691-1705, 2016

Chi, Y., H. Hacigumus, W.P. Hsiung and I.F. Naughton,
2013. Distribution-based query scheduling. Proc.
VLDB. Endowment, 6: 673-684.

Chi, Y., HJ. Moon, H. Hacigumus and J. Tatemura, 2011.
SLA-tree: A framework for efficiently supporting
SLA-based decisions in computing.
Proceedings of the 14th International Conference on
Extending Database Technology, March 21-24, 2011,
ACM, Uppsala, Sweden, TSBN: 978-1-4503-0528-0,
pp: 129-140.

Dam, S. and G. Fritchey, 2009. SQI. Server 2008 Query
Performance Tuning Distilled. 2nd Edn., Apress, New
York, USA., ISBN: 978-1-4302-1902-6, Pages: 497.

Duggan, T., O. Papaemmanouil, U. Cetintemel and E. Upfal,

cloud

2014. Contender: A resource modeling approach for
concurrent query performance prediction. oceedings
of 17th International Conference on Extending
Database Technology, March 24-28, 2014, Athens,
Greece, [SBN: 978-3-89318065-3, pp: 109-120.

Duggan, I., U. Cetintemel, O. Papaemmanouil and E. Upfal,
2011. Performance prediction for concurrent database
workloads. Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data,
June 12-16, 2011, ACM, Athens, Greece, ISBN:
978-1-4503-0661-4, pp: 337-348.

Ganapathi, A., H. Kuno, U. Dayal, T.I.. Wiener and A. Fox
et al., 2009. Predicting multiple metrics for queries:
Better decisions enabled by machine learning.
Proceedings of the IEEE 25th Intemational
Conference on Data Engineering ICDE'09, March
29-April 2, 2009, IEEE, Shanghai, China, ISBN:
978-1-4244-3422-0, pp: 592-603.

Gupta, C., A. Mehta and U. Dayal, 2008. PQR: Predicting
query execution times for autonomous workload
management. Proceedings of the International
Conference on Autonomic Computing ICAC'0g, June
2-6, 2008, TEEE, Chicago, Tlinois, USA., TSBN:
978-0-7695-3175-5, pp: 13-22.

Tarke, M., M. Teusfeld and C. Quix, 2014. Data-centric
intelligent information integration from concepts to
automation. J. Intell. Inf. Syst., 43: 437-462.

Kossmann, D. and T. Kraska, 2010. Data management in
the cloud: Promises, state-of-the-art and open
questions. Database Spectr., 10: 121-129.

Krompass, S., D. Gmach, A. Scholz, S. Seltzsam and
A, Kemper, 2006. Quality of Service Enabled
Database Applications. In: Service-Oriented
Computing-ICSOC 2006, Asit, D. and W. Lamersdorf
(Eds.). Springer Berlin Heidelberg, Berlin, Germany,
ISBN: 978-3-540-68147-2, pp: 215-226.

Krompass, S., H. Kuno, U. Dayal and A. Kemper, 2007.
Dynamic workload management for very large data
warehouses: Juggling feathers and bowling balls.
Proceedings of the 33rd International Conference on
Very Large Data Bases, September 23-28, 2007, VL.DB
Endowment, Umversity of Viemma, Austria, ISBN:
978-1-59593-649-3, pp: 1105-1115.

Lee, R., M. Zhou and H. Liao, 2007. Request window: An
approach to improve throughput of RDBMS-based
data mtegration system by utilizing data sharing
across concurrent distributed queries. Proceedings
of the 33rd Intemational Conference on Very Large
Data Bases, September 23-28, 2007, VLDB
Endowment, University of Vienna, Austria, ISBN:
978-1-59593-649-3, pp: 1219-1230.

L1, T, A.C Komg, V. Narasayya and 3. Chaudhuri, 2012.
Robust estimation of resource consumption for sql
queries using statistical techniques. Proc. VLDB.
Endowment, 5: 1555-1566.

Tuo, G., I.F. Naughton and S.Y. Philip, 2006. Multi-Query
SQL Progress Indicators. In: Advances in Database
Technology-EDBT 2006. Yanms, 1., H.S. Marc, J.W.
Schmidt, F. Matthes and M. Hatzopoulos ef af.,
(Eds.). Springer Berlin Heidelberg, Berlin, Germany,
ISBN: 978-3-540-32960-2, pp: 921.

Maghawry, E.A., R.M. Tsmail, N.I.. Badr and M.F. Tolba,
2012. An Enhanced Resource Allocation Approach
for Optimizing Sub Query on Cloud. In: Advanced
Machine Leaming Teclnologies and Applications.
Hassanien, A.E., A. Badeeh, M. Salem, R. Ramadan
and TH. Kim (Eds.). Springer Berlin
Heidelberg, Berlin, Germany, ISBN:
978-3-642-35325-3, pp: 413-422,

Maghawry, E.A., RM. Ismail, N.L. Badr and M.F. Tolba,
2014a. An enhanced queries scheduler for query
processing over a cloud environment. Proceedings
of the 2014 9th International Conference on
Computer Engineering & Systems (ICCES),
December 22-23, 2014, TEEE, Cairo, Egypt, ISBN:
978-1-4799-6593-9, pp: 409-414.

Maghawry, E.A., RM. Ismail, N.L. Badr and M.F. Tolba,
2014b. Queries Based Workload Management
System for the Cloud Environment. Tn: Advanced
Machine Learning Technologies and Applications.
Hassanien, A.E., A BM. Salem, R. Ramadan and T.H.
Kim (Eds.). Springer International Publishing, Cham,
Germany, ISBN: 978-3-319-13460-4, pp: 77-86.

Maghawry, E.A., RM. Ismail, N.L. Badr and M.F. Tolba,
2016. Enhancing query optimization technique by
conditional merging over cloud computing.
Proceedings of the 1st International Conference on
Advanced Intelligent System and Informatics
(AISI2015), November 28-30, 2015, Springer
International Publishing, Bemi Suef, Egypt, ISBN:
978-3-319-26688-6, pp: 347-356.

1704

Asian J. Inform. Technol., 15 (11): 1691-1705, 2016

Paton, N., M.A.D. Aragao, K. Lee, AA. Fernandes
and R. Sakellariou, 2009a. Optimizing utility in cloud
computing through autonomic workload execution.
Bull. Tech. Committee Data Eng., 32: 51-58.

Paton, NW., C.J. Buenabad, M. Chen, V. Raman and
G. Swart et al, 2009b. Autonomic query
parallelization using non-dedicated computers: An
evaluation of adaptivity options. VLDB. T, 1&:
119-140.

Paton, N.W., D.M.A. Aragao and A.A. Fernandes, 2012.
Utility-driven adaptive cquery workload execution.
Future Gener. Comput. Syst., 28: 1070-1079.

Schroeder, B., H-M. Balter, A. Tyengar and E. Nahum,
2006. Achieving class-based QoS for transactional
workloads. Proceedings of the 22nd International
Conference on Data Engineering ICDE'06, April 3-7,
2006, TEER, Carnegie Mellon University, Pittsburgh,
Pennsylvania, ISBN: 0-7695-2570-9, pp: 153-153.

Sheikh, M.B., UL.F. Minhas, O.7. Khan, A. Aboulnaga and
P. Poupart et al., 2011. A bayesian approach to
online performance modeling for database appliances
using gaussian models. Proceedings of the 8th ACM
International Conference on Autonomic Computing,
Tune 14-18. 2011, ACM, Karlsruhe, Germany, TSBN:
978-1-4503-0607-2, pp: 121-130.

Subramanian, I., C. McCarthy and M. Murphy, 2000.

with the HP-UX
workload manager. Proceedings of the 1st Workshop
on Industrial Experiences with Systems Software
WIESS, October 79-80, 2000, Ibrarian, San Diego,
California, pp: 79-80.

Tiar, F. and D.J. DeWitt, 2003. Tuple routing strategies for
distributed eddies. Proceedings of the 29th
International Conference on Very Large Data Bases,
September 9-12, 2003, VLDB Endowment, Berlin,
Germany, ISBN: 0-12-722442-4, pp: 333-344,

Tozer, S., T. Brecht and A. Aboulnaga, 2010. Q-Cop:
Avoiding bad query mixes to mimimize client timeouts
under heavy loads. Proceedings of the 2010 TEEE
26th International Conference on Data Engmneering
(ICDE), March 1-6, 2010, TEEE, Long Beach,
California, ISBN: 978-1-4244-5445-7, pp: 397-408.

Zhao, T., X. Hu and X. Meng, 2010. ESQP: An efficient
SQL query processing for cloud data management.

Meeting performance goals

Proceedings of the second international Workshop
on Cloud Data Management, October 26-30, 2010,
ACM, Toronto, Omntario, Canada, ISBN:
978-1-4503-0380-4, pp: 1-8.

1705

	1691-1705_Page_01
	1691-1705_Page_02
	1691-1705_Page_03
	1691-1705_Page_04
	1691-1705_Page_05
	1691-1705_Page_06
	1691-1705_Page_07
	1691-1705_Page_08
	1691-1705_Page_09
	1691-1705_Page_10
	1691-1705_Page_11
	1691-1705_Page_12
	1691-1705_Page_13
	1691-1705_Page_14
	1691-1705_Page_15

