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Abstract: In mternet computing, swarm intelligence has shown growing interest in study dynamic optimization

problems. Many approaches are developed for SI to enhance the diversity of the population and improve the
performance of the algorithun for DOPs. Out of these approaches, immigrants schemes are found usetful for SIs

in DOPs. In this study, random, elitism based and hybrid based immigrants schemes are applied to Bacteria
Foraging Optimization Algorithm (BFOA) for the Dynamic Shortest Path Routing Problem (DSPRP). The
simulation results show that random immigrants are useful for BFOA i quick changing environments, whereas
elitism-based immigrants are useful for BFOA in gradually ever changing environments. The BFOA algorithm
with a hybrid based immigrants scheme combines the merits of the random and elitism immigrants schemes.

Moreover, the simulation results show that the proposed algorithms outperform in almost all dynamic test cases
and immigrant based BFOA schemes enhance the performance efficiently in DSPRP.
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INTRODUCTION

A Mobile Ad hoc Network (MANET) (Perkins, 2001 )
is a selfrorganizing and self-configuring multi-hop
wireless network, comprised of a set of Mobile Hosts
(MHs) that can move around freely and cooperate in
relaying packets on behalf of each other. In this study,
researchers tend to investigate the Shortest Path (SP)
routing that issues with finding the shortest path from a
specific source to a specific destination in a given
network while mimmizing the total cost associated with
the path. The SP problem has been investigated
comprehensively. It mvolves a classical combinatorial
optimization problem arising in many designs and
planning contexts (Ahn et al., 2001; Ali and Kamoun,
1993).

There are many search algorithms for the SP problem:
the breadth-first, the Dykstra’s search algorithm and the
Bellman-Ford algorithm, etc. All of these algorithms have
polynomial time complexity. Therefore, they are going to
be effective in fixed mfrastructure wireless or wired
networks. But, they exhibit intolerably high computational
complexity of real-time communications involving rapidly
dynamic network topologies (Ali and Kamoun, 1993;
Ahn and Ramakrishna, 2002). Since, the algorithms with
polynomial time complexity are not suitable for the
real-time computation of shortest paths, quite a few

research works have been conducted to solve SP
problems using artificial mtelligence techniques, e.g.,
Artificial Neural Networks (ANNs) (Ahn et al., 2001),
Genetic Algorithms (GA s) (Ahn and Ramakrishna, 2002),
Ant Colony Optimization, Particle Swarm Optimization
(P30O) (Mohemmed et al., 2008) and Bacteria Foraging
Optimization (Kevin, 2010).

However, up to now of these algorithms primarily
address the static SP problem. When the network
topology changes, they're going to regard it as a new
network and restart the solving process over the new
topology. As 1s standard that the topology changes
rapidly in MANETSs due to the characteristics of wireless
networks, e.g., battery exhaustion and mobility of node.
Therefore for the dynamic SP problem in MANETSs, these
algorithms are not smart choices since they require
frequent restart and cannot meet the real-time requirement.
Therefore, for the dynamic SP problem in a changing
network environment, researchers need to employ new
suitable approaches.

In recent years, studymng swarm mtelligence for
DOPs has attracted a growing interest due to its
importance in swarm intelligence real world applications
(Yang and Yao, 2008). In these Dynamic Optimization
Problems (DOPs), the problem-specific fitness evaluation
function and constraints of the problem such as design
variables and environmental conditions may change over
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time. This poses severe challenges to conventional
BFOAs due tothe convergence problem because once
converged BFOAs cannot adapt well to the changing
environment. Several approaches have been developed
mto BFOAs to address dynamic optimization problems
such as maintaining diversity during the mun via
immigrants (Yang, 2008), increasing diversity after a
change (Yang and Yao, 2008) using memory schemes to
reuse old good solutions (Mavrovouniotis and Yang,
2011) and multi-population approaches (Branke et al.,
2000).

In this study, various immigrants schemes are
proposed and applied to solve the dynamic SP problem
for BFOA in dynamically changing environment. With
this approach best solution is obtained by creating
immigrants to replace the worst individuals in the current
population. In this way, not only can diversity be
maintained but it is done more efficiently adapt the BFOA
to the cyclic changing environment. Whenever, the
topology of the network 1s changed, the optimal solutions
in the new environment can be investigated using this
algorithm. By simulation experiments, researchers evaluate
their performance on the dynamic SP problem. The results
show that Hybrid Based Immigrants (HIBFOA)
significantly outperform than the other BFOA Methods
(RIBFOA, EIBFOA).

LITERATURE REVIEW

Several search algorithms were formulated for SP
routing problem. Tn (Ahn and Ramakrishna, 2002) a
Genetic algorithm approach was presented for solving SP
routing problem. Simulation studies show that the
algorithm is indeed intensive to network topologies in
respect of both route optimality and convergence. The
quality of solution found to be better than other
Deterministic algorithms.

Cobb and Grefenstette (1993) several modifications
are applied to the standard GA on track m a changing
environment. An experiment shows that the algorithm
exhibits difficulties in tracking continuously changing
environment. An Ant Colony Optimization (ACO) was
proposed for solving SP routing problem (Kaur and
Mundra, 2012; Guns et al., 2002). Observation shows that
ants can find the shortest path between food sources and
their nest. But it does not always find the optimal
solution. A PSO based algorithm was presented for
solving SP problems (Mohemmed et al., 2008). The PSO
based algorithm is superior to GA (Ali and Kamoun, 1993;
Branke et al, 2000). Hopfield neural network was
proposed (Ahn ef af., 2001). This algorithm produces a
faster convergence and better route optimality than other
HNN based algorithms. However, the above said
algorithms are not suitable alternative for solving
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DSPRP in MANETSs; here researchers implement the
Bacteria Foraging Optimization Algorithm (BFOA) to
obtain the optimal solution for DSPRP in MANETSs.

MODEL FOR DYNAMIC SHORTEST
PATH ROUTING PROBLEM

In this study, let us consider the ad hoc network
model and then devise the DSPRP (Yang et al, 2010).
Researchers model an ad hoc network operating within a
fixed environmental region. Tt can be represented by an
undirected and commected topology graph G, (N, E).
Where, N specifies the set of wireless nodes and E,
specifies the set of its links (edges) connecting two
adjacent nodes falling into the radio transmission range.
If there exists a packet transmission in the link (1, J) then
both nodes i and node j should have a radio interface,
each with a uruversal chanmel. The parameters used in the
study:

G (N, Ey) initial Adhoc networl topology graph

G, (N,, E;) Ad hoc network topolegy after ith chance
S source node

T sink node

P; (s, t) path from s to t in graph G,

C, cost on communication link 1

Ad hoc network can be represented as follows:
initially given a network of wireless nodes, a delay upper
bound, a source node, a smk node, researchers wish to
find a delay bounded least cost loop free path on the
undirected topology graph. In mobile Adhoc networks,
the topology changes from time to time. The objective of
the problem (DSPRP) is discovering the optimal path after
every topology change.

BACTERIA FORAGING OPTIMIZATION
ALGORITHM FOR SP ROUTING PROBLEM

Bacteria Foraging Optimization Algorithm (BFOA),
first introduced by Kevin M. Passion in 2002, 1t 1s one of
the bio-inspired optimization algorithm based on the
principle of social foraging behavior of Escherichia coli
(E. coli) bacteria and the natural selection which has been
quite effective, applied in machine learming and
optimization problems. To solve a problem, a BFOA
maintains a population of bacteria and probabilistically
modifies the population by reproduction and elimination
and dispersal operator with the mtent of seeking a near
optimal solution to the problem. The BFOA design is
govermned by representation of bacteria, chemotaxis,
swarming, reproduction and elimination and dispersal
(Brownlee, 2011).
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Representation of bacteria: In the proposed algorithm,
any path from the source node to destination node is a
feasible solution. The optimal solution is the shortest one.
At the beginning a random population of strings is
generated which represents
solutions. Unfeasible solutions are strings that cannot
reach the destination. A bacterium corresponds to the
possible solution of the problem of the optimization
problem. Thus, each bacteria represent a path which
consists of sequences of positive integers that represent
the IDs of nodes tlrough which a routing path passes
with the source node followed by an mntermediate node
(via nodes) and the last node indicating the destination
which is the goal. The default maximum bacteria length is
equal to the number of nodes.

feasible or unfeasible

Chemotaxis: A chemotaxis step is a set of consequence
swim steps followed by tumble. When the bacterium
meets favorable environment (rich in nutrients and
noxious free), it's continuous swinming in the same
direction. Decrease in the cost function represents
favorable environment while the ncrease m the cost
function represents an unfavorable environment when it
meets unfavorable environment it tumbles (changes
direction). In this algorithm, fitness of bacterium is
evaluated which further decides next movement of the
bacterium. Fitness of ith bacterium is represented by cost
function:

Ali)

P(j+L k1) =P (j k] )Z+C(i)m

(1
Where:

c (1) = The basic swimming length

P (j+1, k, 1) = Bacterium at J-represent chemotatic step

k = Reproduction
1 = Elimination dispersal loop
A(l) = A vector in the arbitrary direction

Swarming: Every bacterium in the population organized
n a group, they travel to the rich nutrition gradient. The
groups 1n the cells have two kinds of behavior, either it
may be attractant or repellant. The attractant behavior
used to swarm with high fitness value when moving to
nutrition gradient. The cell to cell signaling measured
using the following equation:

(PG - S i) O

Where:
)
Tee(P(, j, k, 1)) =

Number of bacteria

ith bacteria, at the jth chemotatic step,
kth reproduction step and Ith
elimination event
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Reproduction: Health status (fitness) of each bacterium is
calculated after each complete chemotaxis process. Tt is
overall sum of the cost fimetion:

T = EJN;“ T{i, k. 1) (3)
Where:
j'ean = The health of the ith bacterium
NC = Thenumber of chemotatic steps

The smaller .44 is the healthier the bacterium. To
simulate the reproduction character in nature and to
accelerate the swarming speed, all the bacteria are sorted
according to their health values in an ascending order and
each of the first bacteria splits into two bacteria. The
characters including position and step length of the
mother bacterium are reproduced to the children bacteria.
Through this selection process, the remaimng unhealthier
bacteria are eliminated and discarded. To simplify the
algorithm, the number of the bacteria keeps constant in
the whole process.

Elimination and dispersal: For the purpose of improving
the global search ability, elimination-dispersal event is
defined after reproductive steps. The bacteria are
elimmated and dispersed to random positions in the
optimization domain according to the elimination-dispersal
probability. This elimination dispersal event helps the
bacterium avoid bemng trapped into local optima.

INVESTIGATED BFOA FOR DSPRP

Traditional BFOA: For the DSPRP, the traditional BFOA
solutions are not precise and also produce infeasible
solutions. In due course of tume, 1t 1s very difficult to find
the solution for DSPRP by traditional BFOA. The results
produced by the traditional BFOA are not accurate due to
changes m the environment.

Random based immigrants BFOA: The Random Based
Immigrants BFOA (RIBFOA) uses an immigrants scheme
where bacterias are generated randomly and replace the
unhealthier bacteria (worst ones) of the current
population for every iteration. Tt is understood that “the
contmuous modification of such algorithms 1s smart only
if environmental changes of a problem are small to
medium” (Kevin, 2010). This may be considered as come
to an end result of specific verified proven fact that the
previous environment has lots of chance to be same as
the new one. After a change occurs, transferring
information from the old environment may provide a good
solution efficiently. Considering this argument, RTIBFOA
may be suitable when changes are not slight since it
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provides diversity without considering any knowledge
from the old environment. Moreover, it may be suitable in
fast changing environments where information from the
past may not be useful, since the algorithm does not have
adequate time to converge onto a high-quality solution in
order to gain knowledge.

The random based immigrants approach i1s a quite
natural and simple way around the convergence problem
(Branke et al., 2000). Tt maintains the diversity level of the
population through substituting some individuals of the
current population with random individuals every
generation. As to which individuals within the population
should be substituted, usually there are two strategies:
replacing random individuals or replacing the worst ones
(Mavrovouniotis and Yang, 2011). In order to avoid that
random 1mmigrants disrupt the ongoing search movement
too much, particularly during the period when the
environment does not change, the ratio i of the number
of random 1mmigrants to the population size n.

Elitism based immigrants BFOA: The Elitism-Based
TImmigrants BFOA (EIBFOA) uses an immigrants scheme
where bacteria are generated by reproducing the best
bacteria of the previous iteration. These immigrants also
replace the unhealthier bacteria (worst ones) for every
iteration as in RTBFOA. This immigrants scheme transfers
knowledge from old enviromments and thus may be
beneficial when changes are small to medmm.
Furthermore, it may be suitable in slowly changing
environments since it needs sufficient time to locate a
good optimum which can be useful to the new
environment for the global optimum may be similar.
Within EIBFOA, for each generation t, after the
reproduction operations, the elite E (t-1) from the previous
generation is used as the base to create immigrants. From
E(t-1), a set of reixn individuals are iteratively generated
by E(t-1) with a probability Ped where n is the population
size and rei is the ratio of the number of elitism-based
mnmigrants to the population size. The generated
individuals then act as new mnmigrants and replace the
worst individuals within the current population. Tt may be
seen that the elitism-based immigrants scheme combines
the 1dea of elitism with the traditional random 1mmigrants
scheme. It uses the elite from previous population to
guide the immigrants toward the current environment
which is expected to improve BFOA performance in
dynamic enviromments.

In this implementation of EIBFOA, if the elimmation
and the dispersal probability Ped is satisfied, the elite
E (t-1) will be used to generate the new immigrants by the
reproduction operation, otherwise E (t-1) itself will be
directly used as the new immigrants.
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Hybrid based immigrants: The Hybrid Immigrant BFOA
(HIBFOA) algorithm uses an immigrant’s scheme that
combines both random and elitism-based immigrants. The
replacing policy 1s the same as in RIBFOA and EIBFOA
algorithms. However, half of the immigrants are randomly
generated and the other half are generated by reproducing
the best bacteria. HIBFOA attempts to combine the merits
of both RIBFOA and EIBFOA where one 13 good on
slowly and slightly changing environments and the other
on fast and significantly changing environments.

Within HIBFOA for each generation, after the
reproduction operations, the elite E (t-1) from previous
generation P (t-1) is taken as the base to create immigrants
in the current generation. From elite, a set of reixn
individuals are iteratively generated by reproducing E (t-1)
bitwise with a elimmation and dispersal probability P,
where rei is the ratio of the number of elitism-based
immigrants and n is the population size and to the
population size. The generated individuals then act as
new unmigrants and replace the worst individuals in the
current population. Tt uses the elite from previous
population to guide the immigrants toward the current
enviromment; this way an extremely fit bacteria 1s never
lost from the bacteria pool which 1s expected to improve
BFOA’s performance in dynamic environments.

In the algorithm implementation, after reproduction is
applied on E (t-1) to generate new immigrants only if the
elimination and dispersal probability is satisfied otherwise
elite from the previous generation itself 1s used as a new
immigrant. Therefore, HIBFOA may possibly be suitable
under all environmental conditions.

Experimental setup: The simulation parameters that have
been used for simulation are shown m the Table 1. The
network model used in the simulation is composed of
mobile nodes and wireless links that are considered
bidirectional. The mobility model uses the Random
Waypoint Model (RWP) to create the movement patterns
of independent nodes for the simulation scenarios
needed. RWP is one of the most widely used
random-based synthetic mobility moedel in performance
analysis of ad hoc networks. In this model, the mobile
nodes start their joumey from a random location and
move to a random destination without any restrictions,
the velocity with which the nodes move 1s randomly

Table 1: Parameters used during simulation

Parameters Values
Transmitter range 250 m
Environmental size 1000=1000 m
Rimulation time 50 sec
Number of nodes 20

Packet rate 2 packets sec™
Maximum speed Smsec”!
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selected from a uniform velocity distribution. After
reaching a random destination the node will pause (wait)
before moving to the next destination. Several scenarios
were obtained from RWP by varying the velocity of the
nodes and the pause times.

Simulation results: In this study, researchers present a
comprehensive simulation based evaluation of routing
metrics using the popular NS2 simulator. For evaluating
the routing performance researchers proposed three
schemes in this study: Random Based Immigrants BFOA
(RIBFOA) and Eltisi Based Immigrants BFOA (EIBFOA)
Hybrid Based Immigrants BFOA (HIBFOA). Researchers
conduct two sets of experiments. In the first set of
simulations, researchers demonstrate the node adaptation
in a dynamic changing environment by considering the
impact of data traffic on different metrics. In the second
set of simulation researchers evaluate the unpact of node
mobility on the overall performance of the proposed
schemes. This enables us to investigate which schemes
contribute to the performance more significantly.
Researchers use a set of metrics to evaluate the impact of
proposed schemes on routing performance. These
mclude: packet delivery ratio, throughput, end to end
delay, jitter, routing overhead and path optimality.

TImpact of data traffic: Researchers first evaluate the
umpact of varying number of connections with different
metrics for the performance of the proposed schemes. The
different node density levels are obtamed by keeping the
area size constant and increasing the number of nodes.
The results presented here are averaged over 20 runs. The
results of these tests are reported in Fig. 1-6. HIBFOA

0.84
081 A
0.80 ‘\A ———%
x 078
& 0764 "+ BFOA
0,74 ] % RIBFOA
/%7 _a— FIBFOA
0.724 -« HIBFOA
0.704 : r . ; )
4 8 12 16 20

Data traffic
Fig. 1: Data traffic vs. PDR

101.09 o BFOA  —A— EIBFOA

100.51 _g RIBFOA —¢ HIBFOA
100.0

99.5
99.0
98.5
98.0
97.5 T T T T 1

End to end delay
&10"° sec)

Data traffic

Fig. 2: Data traffic vs. end to end delay

performs better than RIBFOA and HIBFOA in terms of the
packet delivery ratio, end to end delay, jitter, routing
overhead, throughput and path optimality with increase
the difference with the density. The numbers of
connections indicate the number of nodes between which
the data is transmitted or a data communication has been
set. The number 18 meremented m steps of 4 from 4-20.
The network 1s configured for 20 nodes; the nodes are set
to move at a maximum speed of 5 msec™' pausing for
every 50 sec (pause time 1s set to 50).

Figure 1 shows that the packet delivery ratio of
proposed schemes as a function of the number of nodes.
Itisseen from the graph that HIBFOA achieves better
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packet delivery ratio than all other schemes, due to that
HIBFOA can maintain a more accurate network topologies
for the nodes around routing paths. Note that packet
delivery ratio m BFOA, RIBFOA, EIBFOA and HIBFOA
increases slightly with traffic load. This is because that
the larger number of data packet forwarding which leads
to a more accurate network topology and therefore better
packer delivery ratio. However, it 15 expected that the
packet delivery ratio will fall if the traftic load high encugh
to saturate the network. The packet delivery rate could be
decreased with an increase in the data traffic on the other
hand find the optimal path when a data packet arrives and
thus it was able to deliver the data packets even under
dynamic conditions.

As shown in Fig. 2, the average end-to-end delay has
measured in varying munber of data commections. At the
higher node mobility HIBFOA outperformed than BFOA,
RIBFOA and EIBFOA. HIBFOA showed better results in
case of igher mobile conditions (20 traffic cormections).
As shown in Fig. 2, the delay decreases as the number of
nodes increases particularly in  dynamic changing
environments.

Figure 3 shows the throughput of proposed schemes
as number of nodes. As the number of nodes increases,
the total throughput increases accordingly. The results in
Fig. 3 show that HIBFOA has better throughput than all
other schemes even if in high mobility scenarios. As the
number of nodes increases and the mobility model
applied, HIBFOA has a higher throughput up to
1245 packet sec™' whereas EIBFOA has a maximum
throughput up to 1123 packets sec™' , all other schemes
has minimum throughout as shown n Fig. 7.

Figure 4 plots the variations of routing load with the
number of data traffic connections for the proposed
scheme. As the routing load for proposed algorithm
remains ndependent of the node mobility, data traffic, etc.
The routing load in the HIBFOA has also remains varying
because the network topology changes in this experiment.
As shown in the graphs, HIBFOA has a lower routing
load than all other schemes n this simulation scenario.
However, the routing overhead of HIBFOA is still lower
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Fig. 7: Node speed vs. throughput
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than that of other schemes. For low traffic, the routing
overhead of HIBFOA is lower than that of BFOA,
RIBFOA and EIBFOA. However, when the data traffic 1s
high, HIBFOA outperform than all other schemes.

Figure 5 shows the variation of path optimality with
the number of data traffic connections for the proposed
schemes. As shown m Fig. 8, the path optimality for
HIBFOA 1s better than the all other schemes with increase
of the number of data connections from 16-20. And also
shows that the path optimality of 20 MANET mobile node
network scenario. Path optimality depends on total
number of packets transmitting on the optimal path.
HIBFOA transmits more number of packets, since packets
are more likely to follow optimal paths than all other
schemes.

Figure 6 shows that the jitter varies with the number
of nodes in the network. Tt is seen that the jitter decreases
as the number of nodes increases in the network. This is
because, HIBFOA requires less time for packets arriving
than other schemes. It 15 observed from the graph that the
jitter value decreased from 4-20 (node topology).

Impact of node speed: In the second set of simulation,
researchers evaluate the impact of node speed with
different metrics for the performance of the proposed
schemes. In this experiment, researchers use the same
metrics as mn the first set of simulation. The node mobility
1s changed by mcreasing the maximum node speed in the
random waypoint model. Note that faster the node
moves, the more frequently it changes its mobility
parameters (speed and direction). The speed 1s variable
from 1 m sec™ which corresponds to a leisurely walk to
50 m sec™, the speed of a fast moving car. Increase in
speed of the nodes results in an increase in the complexity
of the network for obvious reasons. The experiment is
carried out with six different node speeds: 1, 2, 5, 10, 20
and 50.

As shown in Fig. 7, the throughput of proposed
algorithms as function of node speed. Recall the fact that
total number of packets successfully received at the
destination. As a result, HIBFOA receives the number of
packets as compared with all other schemes (BFOA,
RIBFOA and EIBFOA). From the outcome of the results,
researchers can see that HIBFOA has better throughput
than all other schemes. The results indicate that HIBFOA
is more suitable than other three schemes to perform
packet routing mn wireless adhoc network environments
with the dynamic nature of the nodes.

Figure & shows that variation of routing overhead as
a function of node mobility (node speed). Despite the fact
that HIBFOA sigmficantly less routing overhead. Recall,
when the network topology of node frequently changes
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with several new neighbors entering the radio range. As
a result, HIBFOA generates less routing overhead in order
to keep up with the frequent changes of topologies.
Researchers observe a similar linear increase with all other
schemes. This 13 expected because the network topology
changes m this experiment.

As shown in Fig. 9, the end-to-end delay is measured
m varying speed of the nodes. At the higher node
mobility HIBFOA outperformed than all other schemes.
Though EIBFOA started out with better results at lower
speeds, HIBFOA finishes with lower delay at higher
speeds. HIBFOA showed better results in case of higher
mobile conditions in this experument.

Figure 10 shows that the packet delivery ratio of
proposed algorithms as a functon of node speed.
Researchers observe that proposed HIBFOA can achieve
comparable packet delivery ratios as the optimal scheme.
However, the routing overhead generated by HIBFOA 1s
considerably lower than that of other scheme (Fig. 8).
Since, in HIBFOA most packets are forwarded along the
optimal path than other schemes, HIBFOA achieves
lowest end to end delay, as seen in Fig. 9. Tn comparison,
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all the other three schemes (BFOA, RTBFOA and ETBFOA)
exhibit a decrease in their packet delivery radio as the
speed of node ncreases (Fig. 10).

Overall, simulation results show that HIBFOA 1s
significantly better at adapting to network topology and
traffic load as compared to BFOA, RIBFOA and ETBFOA.
The fundamental reason for this i1s that the packets
generated i HIBFOA are expected to improve the routing
performance in dynamic environment.

CONCLUSION

Different types of immigrants schemes have been
successfully applied to SIS to address DOPs efficiently.
In this study, apply random based,
elitism-based and hybrid based immigrants schemes
nto BFOA for the DSPRP, resulting in the RIBFOA,
EIBFOA and HIBFOA algorithm, respectively. The
distinction of these algorithms lies within the way

researchers

immigrant bacterias are generated. The immigrant
bacterias are generated randomly for RIBFOA and are
generated by reproducing the best bacteria of the
previous iteration for ETIBFOA, respectively. For HIBFOA,
half of the immigrant bacteria are generated randomly and
the other half are generated using the elitism-based
scheme. All immigrants replace the worst bacterias of the
population on every iteration in order to gain sufficient
diversity within the population which can be useful for
the DSPRP. As compared to HIBFOA, the RIBFOA and
EIBFOA is easy to implement and there are few
parameters to adjust. Therefore, RIBFOA, EIBFOA and
HIFOA have been successfully applied in the areas of
MANETSs. From the cutcome of the results, it 1s shown
that the proposed HIBFOA 1s very effective in giving the
optimal solution for dynamic SP problems in cyclic
dynamic enviromments.

REFERENCES

Ahn, CW. and R.S. Ramakrishna, 2002. A genetic
algorithm for shortest path routing problem and the
sizing of populations. TEEE Trans. Evolut. Comput.,
6: 566-579.

Abhn, CW., R.S. Ramakrishna, C.G. Kang and 1.C. Choi,
2001. Shortest path routing algorithm using Hopfield
neural network. Electron. Lett., 37: 1176-1178.

Ali, MM. and F. Kamoun, 1993. Neural networks for
shortest path computation and routing 1n
computer networks. TEEE Trans. Neural Netw.,
4: 941-954.



Asian J. Inform. Technol., 13 (4): 207-214, 2014

Branke, T., T. Kaussler, C. Schmidth and H. Schmuck,
2000. A multi-population approach to dynamic
optimization problems. Proceedings of the 4th
International Conference on Adaptive Computing in
Design and Manufacture, July 8-12, 2000, Las Vegas,
USA., pp: 299-308.

Brownlee, 1., 2011. Clever Algonithms: Nature-Inspired
Programming Recipes. Jason Brownlee, USA.,
pp: 257-264.

Cobb, H.G. and I.J. Grefenstette, 1993. Genetic algorithms
for tracking changing environments. Proceedings of
5th  International Conference on  Genetic
Algorithms, June 1993, Urbana-Champaign, 1., USA.,
PP 523-530.

Guns, M., U. Sorges and I. Bouazizi, 2002, The ant colony
based routing algorithm for Manets. Proceedings of
the International Conference on Parallel Processing
Workshops, August 2002, Germany, pp: 79-85.

Kaur, D. and P.5. Mundra, 2012. Ant colony optimization:
A technique used in finding shortest path. Int. I. Eng.
Imnovative Technol., 1: 122-124.

Kevin, M.P., 2010. Bacterial Foraging optimization. Tnt. J.
Swarm Intell. Res., 1: 1-16.

Mavrovouniotis, M. and S. Yang, 2011. Memory-based
immigrants for ant colony optimization in changing

Proceedings of the International
Conference on Applications of Evolutionary
Computation, April 27-29, 2011, Torino, Ttaly,
pp: 324-333.

Mchemmed, A.W., N.C. Sahoo and T.K. Geck, 2008.
Solving shortest path problem using particle swarm
optimization. Applied Soft Comput., 8: 1643-1653.

Perkins, C.E., 2001. Ad Hoc Networking. Addison-Wesly,
Boston, MA., USA.

Yang, S. and X Yao, 2008.
incremental learning with associative memory for
dynamic environments. IEEE Trans. Evol. Comput.,
12: 542-561.

Yang, S., 2008. Genetic algorithms with memory and
estimed-based immigrants in dynamic environments.
Evolutionary Computation, 16: 385-416.

Yang, S., C. Hu and F. Wang, 2010. Genetic algorithms
with immigrants and memory schemes for dynamic
shortest path routing problems mn mobile Ad Hoc
network. TEEE Trans. Syst. Man Cybernetics Part C:
Appl Rev., 40: 52-63.

environments.

Population-based

214



	207-214_Page_1
	207-214_Page_2
	207-214_Page_3
	207-214_Page_4
	207-214_Page_5
	207-214_Page_6
	207-214_Page_7
	207-214_Page_8

