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Abstract: For high performeance computing using distributed memory architecture, MPI 1s the de-facto standard.
To achieve high system performance the MPI communication routines have to be optimized. This can be done
by tuming the runtime parameters. But, to find the optimal values for the important runtime parameter is a
challenging task. Several hundred runs are required and the parameter values found are specific to a particular
mput. In this study, certain standard benchmarks are used to overcome this problem so that the optimal values
found for the parameters can be used for other similar applications. Two heuristic algorithms: Genetic algorithm
and Simulated Annealing algorithm are used to find the optimal MPT runtime parameter values. Tt is proved to
have significantly reduced the time and effort in predicting the parameters. A comparison 1s made among two
algorithms and also among variations m Genetic algorithm based on performance gain obtained using optimal
runtime parameter values with respect to default MPT parameter values.
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INTRODUCTION

Message Passing Interface (MPI) is the de-facto
standard for programming on High Performance
Computing (HPC) (Landau, 2013) which runs processes
on different processors of distributed memory systems.
MPT is a standard library based on the consensus
of the MPI forum which has over many participating
organizations including vendors, researchers, software
library developers and users. MPI allows tuning of
parameters to match the underlying cluster architecture.
Usually, vendors do the parameter tuning for production
clusters (Pellegrini et al., 2012) like BlueGene, Tihane and
Cray Titan. But as mid-sized clusters are becoming more
common, parameter tuning has a non-trivial task.

Parameters may be further classified as compile
time and runtime parameters. Compile time parameters are
those which are set when MPT library is compiled and
whose tuning are more related to functionality such as
enabling or disabling the Infiniband support. Runtime
parameters on the other hand, allow the customization of
the MPT environment to better fit the specific needs of the
application, operating system or the hardware. For
example, the semantics of pomt to pomt communication
can be changed by setting a threshold value for the size
of message being transmitted. If the message size is above

threshold value, MPI library uses Rendezvous protocol
requiring acknowledgement or else eager protocol is used
which does not require acknowledgment to be sent.
Although, MPI library provides default values for the
parameters, they may not lead to optimal performance
in all cases and is dependent on underlying cluster
architecture.

Most popular and widely used implementation of
MPT library 18 Open MPI (Grama et af, 2003) which
allows tuning of runtime parameters through Modular
Component  Architecture (MCA) and MVAPICH
(MVAPICH Team, 2014) that does it through environment
variables. Open MPI implements both MPI-1 (Message
Passing Interface Forum, 1995) and MPI-2 (Message
Passing Interface Forum, 1997).

MCA 1s composed of frameworks, compoenents and
modules. Framework manages zero or more components
and is dedicated to a specific task like providing MPIT
collective operation functionality. Component is a specific
implementation of frameworks” interface. An MCA module
1s an instance of a component. If a node runming MPL
application has two Ethernet NICs, then there will be one
TCP MPI point to point component but two TCP point to
point modules. MCA parameters are “key = value” pairs
and are set in a file so that it becomes easy for turng their
values.
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Open Tool for Parameter Optimization (OTPO)
(Chaarawi et al., 2008) 1s a tool used to determine the
optimal parameter combination to minimize the execution
time on a target machine. But, 1t takes lot of time to
determine the combination and is specific to input
program. Machme Learming algorithms (Pelligrini et af.,
2009) have been proposed to predict the optimal value for
runtime parameters but it works efficiently if the nmumber
of parameters is less.

A set of NAS Parallel Benchmarks (INPB)
(Bailey et al., 1994) have been used in this study that are
common i HPC. The idea 1s that optimal values found for
runtime parameters for these benchmarks can be used for
other similar applications. Heuristic algorithms have
been used to determine the optimal values for runtime
parameters. These found an approximmate solution close to
the best one quickly, when classical methods take a lot of
time. Two heuristic algorithms namely Genetic Algorithm
(GA) (Beasley et al, 1993) and Simulated Annealing
(Kirkpatrick et al, 1983) have been used m the
experiments. In GA, we use various selection methods like
Roulette Wheel (RW) selection (Sivanandam and
Deepa, 2008), Fitness Proportionate Solution, Stochastic
Universal Sampling (SUS) (Pencheva ef al, 2009) and
Elitism and reproduction methods like single and
multipoint crossover. GA stops at meximum number
generations. In this research, the maximum number of
generations are kept to 2000 (Agbele et al., 2012). Fmally,
comparisons are made between the heuristic algorithms
and also by changing various operators on GA.

LITRATURE REVIEW

There are few research related to optimization of the
MPI runtime parameters till date. OTPO automates the
process of tuming the runtime parameters by running the
input program several hundred times, considering various
possible runtime parameter combinations for each run. It
is based on Abstract Data and Communication Library
(ADCL) (Gabriel and Huang, 2007) to search for parameter
combination with lowest execution time. ADCL, adopts
two unmique methods, one using brute force approach for
testing all the available combinations and other using a
heuristic approach that relies on parameter values that
characterizes the performance. OTPO not only takes lot of
time to find the optimal runtime parameter values but also
works specific to the input program. Tn contrast to OTPO,
the method used in this research finds optimal parameter
values for a set of more generalised benchmarks, so that
same values can be used for sunilar applications. In
addition, heuristic algorithms like Genetic algorithm and
simulated annealing provide optimal values m lesser
number of iterations.
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Combined Elimination (CE) (Pan and Eigenmann,
2006) is an iterative algorithm which combines both the
Batch Elimination (BE) and Iterative Elimmation (IE). BE
identifies optimization flags having negative effect and
eliminates them in batch whereas in TE, one flag is turned
off at a time having maximum negative effect and thus
takes mteractions among optimizations into consideration.
If the interaction among optimizations is less, CE uses
BE, else it uses IE. The algorithm takes into account
parameters having only binary value whereas MPT runtime
parameters can take a range of values.

Machine learning (Pelligrini et al., 2009) 1s used to
predict the optimal values for the runtime parameters.
First training programs are executed on the targeted
architecture and information 1s collected about the
features and the values of runtime parameters that lead to
minimum execution time. This collected data is utilized
to build a prediction model using Machine Learning
algorithms such as decision tree and neural networks. One
profiled execution of the new program is required to
extract its program features like the amount of data
exchanged in point to point and collective communication,
commumnication graph, etc. Trained model 13 then queried
based on program features to predict the values for
runtime parameters that may yield optimal performance. Tt
is learnt that this approach reduces the number of runs for
the experiments and 1s used more efficiently for smaller
collection of runtime parameters.

In research by Pelligrini et al (2012) optimal
values of runtime parameters are determined for NASA
Advanced Super Computing (NAS) parallel benchmarks
using randomized algorithms in exploration phase. Later,
using statistical method called Analysis of Variance
(ANOVA) (Montgomery, 2005), those parameter which
have highest effect on performance are determined. In
contrast, this research focuses on more than one Heuristic
Method for finding the optimal values for runtime
parameters and comparison among them.

SYSTEM ARCHITECTURE

System architecture is shown in Fig. 1. The User
Interface (UT) layer consists of configuration files where
the user enters the configuration details like No. of
generations, No. of binary valued parameters, population
size, etc.

The next layer 1s the optimization layer. Configuration
file 15 read using file handling functions. Runtime
parameters are chosen and selected benchmarks are run
by setting values to the chosen parameters. Heuristic
algorithm 1s applied to find out the optimal values for
these parameters.
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Fig. 1: System architecture

The third layer is the communication layer. A Beowulf
cluster is rigged up consisting of 2-8 nodes which can be
scaled up as per the requirement. Open MPT is used for
commurmnication between the master and the slave nodes.
For this to happern, same piece of code has to reside on all
the machines. Network File System (NF'S) 1s used to share
the common folder containing the source code. Open MPT
uses SSH to communicate within nodes. So, open SSH
has to be installed and the password authentication has
to be removed on all nodes. TCP/IP protocol 1s used for
the communication.

EXPERIMENTAL SET UP

Table 1 shows the configuration of the cluster used
for experiments which were conducted on 2, 4 and 8
nodes, respectively.

Open MPI runtime parameters are set i the file
‘mca-param.conf” as MCA parameters which are ‘key =
value’ pairs. This 1s followed by execution of benchmark
and recording the execution time.

TESTING PROBLEMS

A set of application benchmarks from NPB Version
3.3 have been selected so that effects of computation on
communication can be efficientlycaptured (Table 2).

Six benchmarks are Conjugate Gradient (CG), Data
Traffic (DT), Embarrassingly Parallel (EP), Fourier
Transform (FT), Integer Sort (I5) and Multi-Grid (MG). CG
is an algorithm for finding the numerical solution for
particular systems of linear equations, namely those
whose matrix is positive-definite and symmetric. Trregular
long distance commumnications are tested by thus
benchmark. DT tests the data traffic between the nodes.
In Embarrassingly Parallel (EP) benchmark, a problem 1s
divided into sub problems with little or no efforts where
dependency between the parallel tasks doesn’t exist.

Table 1: Target architecture

Parameters Values

No. of nodes 2-8

No. of cores per node 4

Memory per node 4 GB

Open MPT version 1.4.2

Make Dell 390 Optiplex
Processor Tntel core i3

0s Ubuntu 12.04 LTS
Clock frequency 2.5GHz

Table 2: Runtime parameters

Parameter name Description

mpi_vield when_idle Decides whether a MPI process must yield the

core to other processes when idle

Controls binding of process to specific processing

resources like cores, sockets, etc.

Determines whether application has to pre-connect

all its processes during MPI_Init

Pre-registers user message buffers

Rize limit on message to determine if it has to

be sent eagerly without waiting for receiver to be

ready

Rize limit of a fragment of large message

btl_sm_num_{fifos Number of FIFOs per receiving process

btl_sm_{fifo_size Size of the FIFO queue

btl sm mdv_eager limit Size (bytes) of "phase 1" fragment sent for all large
messages

mpi_paffinity alone
mpi_precormect. mpi
mpi_leave pinned

btl sm_eager limit

btl sm _mmax send size

Problem of generating Gaussian random deviates
according to a particular scheme is considered in this
benchmark. FT solves a Partial Differential Equation (PDE)
using fourier transform which converts it to a simple
algebraic equation. A solution 15 got for the algebraic
equation on which inverse Fourier transform is applied to
get the solution to the original PDE. IS does sorting
operation on a large set of integers. This benchmark
program tests both commumnication performance and
computation speed. MG is used to find approximate
solution to discrete Poisson problem while testing both
long and short distance communication.

ALGORITHMS USED

GA (Goldberg, 2013) is search algorithm that mimics
the process of biological evolution. It 13 predommantly
used in the optimization problem solving techniques
(Kumar ef af,, 2014). Starting with an mitial population of
candidate solutions, evolution takes place as the fittest
individuals  contribute the offspring to the next
generation. In this research, the chromosome consists of
string of binary values representing the value of runtime
parameters. Parameters that take a range of values can be
represented using more than one bit of the chromosome.
A set of chromosomes form a population and initial
population 1s created randomly. The fitmess value 1s
associated with each of the chromosome. In this case it is
execution time. According to the binary chromosomes,
values are set for runtime parameters in the file
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‘mca-param.conf” and the benchmarlk programs are run.
The execution time 1s recorded as the fitness value of the
chromosome.

Based on this fitness value, parents are selected
using various selection methods and are used to
reproduce the offspring of next generation. Here, in the
implementation, crossover and mutation operations are
used for reproduction process. This cycle continues till
specified number of generations after which approximately
optimal solution is found. General flow chart of a GA is
shown in Fig. 2.

Three selection strategies have been used in this
work namely Roulette Wheel (RW) selection/fitness
proportionate solution, Stochastic Universal Sampling
(SUS) and Elitism. In roulette wheel selection, the fitness
value of each chromosome is used to determine the
probability of getting selected. If f 1s the fitness of
individual i in the population, the selection probability is
given by Eq. 1:

: M)

N
f
1=1"1

i

where, N is the number of individuals in the population.
Necessary, modification has been made so that the
chromosome taking less execution time has high
probability of getting selected.

SUS 15 a slight modification of RW where instead of
a single pointer N equally spaced pointers are used. Here,
N represents the number of selections required N
pointers are generated starting from pointerl and equally
spaced by 1/N. Individuals are selected whose fitness
spans the position of the pointer. SUS does not exhibit
any bias and does mimmal spread. If an individual
occupies 3.5% of the wheel out of 100 mdividuals, then on
an average the individual 1s expected to be selected 3
times or 4 times.

Elitism is a variation of RW where first half of the
population, fittest individuals are carried over to the next
generation. Each new generation will be a combination of
new and old population.

Reproduction consists of crossover between the
selected parents. Two kinds of crossover are used in the
experiment namely single point crossover and multipoint
In single point crossover two mating
chromosomes are cut at a single position and bits next to
the cross-sites are exchanged. Figure 3 illustrates the
process.

CTOSSOVeEr.

In multipomt crossover the bits in even or odd
positions will be exchanged. This produces two new
children with their bits exchanged at multiple positions.
Figure 4 shows multipomt crossover at even positions.
SA is a heuristic algorithm which finds good
approximation to the global optimum. Annealing in
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Fig. 2: Flow chart of GA

Parent1 |[1011011101010100101
Parent2 |1 1101000110001100T11
Child 1 1011011101000110011
Child2 |(1110100011010100101

Fig. 3: Single point crossover
Parent1 |101101110i1010100101
Parent2 |1110100011000110011
Chid1 |1011011101000110011
Child2 [1110100011010100101

Fig. 4: Multipoint crossover where the bits
position (bold) are exchanged

m even
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metallurgy is a technique of heating a material followed by
controlled cooling to increase the size of crystals and
reduce their defects. Sunilarly, m SA algorithm used, there
15 a slow decrease in the probability of accepting worse
solution.

First an initial solution is generated randomly and
execution time 1s recorded. Thern, small change 1s brought
m the values of runtime parameters that form the
neighbour solution. The acceptance is notified when the
neighbour solution takes less time to execute. It is
accepted with a probability given in Eq. 2:

P(i) = min{1,e*™) (2)
Where:
d The difference between the execution times of old

and neighbouring solution
The control parameter

T =

Generate neighbour
solution

O
T[T

Output
execution time

Accept/reject new
solution based on
acceptance probability

Has enough No. of
iterations been
completed?

Print optimized
parameter values

Fig. 5: Flow chart of simulated annealing

Table 3: Execution time of benchmarles run using parameter values found using GA and 34

On slowly reducing the temperature T, algorithm
converges to global minimum. The value of P(i) goes on
reducing as “T° reduces. So mitially, probability of
accepting worse solution will be more which goes on
decreasing as the value of ‘1" decreases. Figure 5 shows
the flow chart of simulated annealing process.

OBSERVATIONS

Benchmark programs were run by setting the runtime
parameter values determined by GA and SA. A sample
observation for 8 nodes 1s shown in Table 3. All the
values are in milliseconds (execution time) except for (%)
gain in performance. Table 4 shows the optimal runtime
parameters for CG benchmark on 2, 4 and 8 nodes.
Similarly, values were found for other benchmarlks as well.

RESULTS

Based on the observations and calculations, a
comparison is made between the two heuristic algorithms
GA and SA used for finding optimal runtime parameter
values on 2, 4 and 8 systems as shown in Fig. 6-8,
respectively.

Figure 9 shows the probability of finding optimal
parameter values using GA and SA. Tt is found that
probability of finding solution using GA 15 72% while that
using SA is 28%.

A comparison was also made among various
selection strategies on basis of their ability to find optimal
parametervalues. Figure 10 shows that roulette wheel has
better probability of finding optimal solution than SUS
and Elitism.

When a comparison was made between single point
and multi point crossover in finding optimal solution, it
was found that multipomt crossover 1s better than single
point crossover. Figure 11 shows the comparison of two
crossover methods.

Performance gam up to 1895% was achieved
using optimized runtime parameter values with respect to

8 nodes-100 g

1000 iterations

Roulette wheel Elitism BUS Gain meeemeemeeseeeeeceeeececeeeees

performance Gain performance
Parameters sSP MP ODD MP EVEN 2P MP ODD MP EVEN 8P MP ODD  MP EVEN Default 45 BA 0]
CG 1521320 1470.860 1478690 1554170 1477420 1478.020 1503.140 1473.950 1470.300 1814.140 18.95 1474930 1845
DT 678870 44124 644063 48101 649565 651.491 42014 647265 630.263 681.759 5.44 666767 218
EP 867,292 866.530 854.959 863681 866.251 876,589 859224 871417 g71.389 903, 664 591 892,330 1.80
FT 1738850 1761760 1738350 1740.950  1733.830  1775.440 1770750 1751390 1759420 1870.300 7.2% 1687.010 9.80
I3 619897 617.262 625672 627762 633,565 627.517 627878 603.399 631.299 639,840 4.83 623.077 262
MG 1305560 1303.680 1303820 1295680 1311910 1299560 1302.650 1308910 1309.670 1353.540 4.27 1267 230 416

3P: 3mngle Pont crossover, MP_ODD: Multipomt crossover at Odd posttions, MP_EVEN: Multipoint crossover at Even postions
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Fig. 6: Comparison of performance gain using runtime
parameter values found with SA and GA for 2
nodes as compared with that of default values
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Fig. 7. Comparison of performance gain using runtime
parameter values found with SA and GA for 4
nodes as compared with that of default values

Table 4: Optimal mntime parameter values for CG benchmark on 2, 4 and

8 nodes
CcG No. of nodes
Parameters name 2 4 8
mpi_yield_when_idle 1 1 0
mpi_paffinity alone 0 1 1
mpi_preconnect mpi 0 1 1
mpi_leave pinned 0 1 0
btl sm_eager limit 16 kb 8kb 16kb
btl sm_max send size 32kb 8kb 32kb
btl sm_rndv_eager limit 16 kb 16 kb 16kb
btl_sm_num_{fifos 4 2 8
btl_sm_fifo_size 8kb 1kb 8kb
default open MPI's parameter settings. Average

performance gain using GA is 8.16% and that using SA is
7.57%. Probability of finding optimal parameter values is
high using GA than SA. Roulette wheel selection proves
to be better in finding optimal solution when compared to

20 1
@ GA
o SA

Performance gain (%)
= vy
1 1

W
1

LYY

CG

Benchmark programs

Fig. 81 Comparison of performance gain using runtime
parameter values found with SA and GA for 8
nodes as compared with that of default values

B Simulated annealing
O Genetic algorithm

Fig. 9: Probability of finding optimal parameter setting
using GA and SA

BRoulette wheel
BElitism
O Stochastic universal sampling

Fig. 10: Probability of finding optimal runtime parameter
setting using different selection methods

m Single point crossover
O Multipoint crossover

Fig. 11: Probability of finding optimal runtime parameter
setting using different crossover methods
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SUS and Elitism. Tt was also found that multipoint
crossover is better than single point crossover as a
reproduction techmque.

CONCLUSION

MPI communication 1s optimized by finding optimal
values for runtime parameters. NAS parallel benchmarks
are used so that the optimal values found for the
parameters can be used for other similar applications. Two
heunstic algorithms GA and SA are used to greatly reduce
the time and effort. Up to 18.95% gain 1s obtamed n
performance with average percentage gain being 8.16%
with respect to MPI’s default parameter setting.

Comparison was made between two heuristic
algorithms and also among various selection and
reproduction strategies in GA. Tt was found that GA used
with Roulette wheel selection and multipoint crossover
gives better chances of finding optimal solution quicker
than any other algorithms.
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