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Abstract: Since, extraction of frequent itemsets from transaction database is crucial to several data mining task
such as association rule generation, so frequent itemset mimng 1s one of the most important concepts m data
mining. Frequent pattern mining has been widely used for discovering association and correlation among real
data sets. However, discovering interesting correlation among frequent periodic patterns is more complicated
and majority of them are unnecessary or uninformative. Researchers designed an algorithm that uses FP-tree
for finding periodicity and correlation among multiple longest common substrings m time series data.
Researchers introduce a parallel version of the algorithm called Frequent Correlated Periodic Pattern Mining
algorithm which takes O(N) for finding periodicity and tested on a coarse-grained multi-computer (BSP/CGM)
Model with synthetic and real data sets. The experiment results show that algorithm is noise resilient, efficient

and scalable than existing techmiques.
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INTRODUCTION

Identifying repeating (periodic) patterns could reveal
important observations about the behavior and future
trends of the case represented by the time series (Hansen,
1994) and hence would lead to more effective decision
making. The Multiple Longest Common Subsequences
(MLCS) are an NP-hard problem (Maier, 1978) with vital
application in bioinformatics and computational biology,
mostly in DNA and protein sequence analysis. With the
increase volume of biological data, researchers expect that
MLCS algorithm will have a significant impact on
computational biology methods and their applications.
The association rule mming (Han and Pei, 2000),
sequential pattemn mimng (Pei and Han, 2002), graph
pattern mining (Yan and Han, 2002) etc. are the few
common approaches used in it. The real complication
occurs in terms of real data sets. The real challenge is
gather sumilar useful pattemn collected from a large volume
of information that catches the researcher concentration
(Al Hasan et al., 2007, Chen et al., 2008).

A tune series 15 said to have three type of periodic
pattern: symbol periodicity, sequence periodicity or partial
periodic pattern and segment or full-cycle periodicity

(Rasheed et al, 2011). Many Existing algorithms
(Elfeky et al., 2005a, b; Han et al., 1998, Indyk ef al., 2000)
detects periods that span through entire time series. Some
algorithms detect all the above mentioned three type of
periodicity, along with noise within subsection of time
series, separately for each patterns (Rasheed et af., 2011).
To find the periodic pattern in time series data,
researchers propose a mnew and efficient pattern
enumeration approach based on the ideas of frequent
pattern mming techmques. First, researchers have
developed an efficient parallel version of Frequent
Correlated Periodic Pattern (FCPP) Mining algorithm for
BSP/CGM Model with a near-linear speedup. A novel,
compact Frequent Pattern tree (FP-tree) like TRIE data
structure, called consensus tree 1s constructed which
enables a highly parallelized search along the tree
branches. The construction of consensus tree detects
symbol, sequence and segment pattemns
periodicity within subsection of the series. The growth of
the tree is restrained by providing additional mining
constraints. Using the strategy of Constraint-Based
Mining (Lu and Lin, 1994; Han ef al., 1999a, b, Ng et af .,
1998; Lee and De Raedt, 2004), researchers restrant
growth of FP-tree using user-specified constraints

without
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(Ng et al, 1998) such as level constraint (Han et al.,
1999a, b) and rule constraint (Lee and De Raedt, 2004).
Secondly, the algorithm loolks for all periods starting from
all positions available in a particular node of consensus
tree. All the node of the consensus tree exists based on
confidence greater than or equal to the user-specified
periodicity threshold In time series, there are three types
of periodic patterns (symbol/sequence/segment) can be
detected (Rasheed et al., 2011).

Thirdly, to mine item pairs of a particular node,
represent a periodic pattern and determine the correlated
relationship among item pairs. Researchers select
appropriate measure to mine the task and demonstrate the
outstanding performance of the algorithm based on
correlated relationship in terms of both efficiency and
effectiveness on datasets. The concept of Frequent
Correlated Periodic Pattern mining (FCPP) used with time
series data was handled efficiently in this study.

LITERATURE REVIEW

Wang et al. (2011) have given basic definition of
MLCS problem which is fixed parameter traceable with
respect to the length of sequences. Existing techniques
widely used dominant point approaches, applied to a case
of two sequences (Apostolico et al, 1992; Chin and
Poon, 1991). Algorithm A uses three input sequence
(Hakata and Tmai, 1998). FAST-L.CS (Chen et al., 2006),
Halkata and Tmai (1998)’s algorithm and Wang et al.
(2011)’s Quick DP algorithm works for arbitrary number of
strings. To speed up the computation, parallel MLCS
algorithms are developed (Wang et al., 2011). PRAM
algorithms for I.CS and are presented by Wang et al.
(2011) for two input strings. Lu and Lin (1994) proposed
parallel algorithm with O{logm-+logn) time complexity with
mi/logn processors when log'mlog logmelogn. Xu
algorithm takes O(mn/p) time where 1<p<max (m, n).
Wang et al. (2011) take |Y |log’n time complexity where d
represents number of input strings.

The algorithms specified by Elfeky et al. (20054, b),
Indyk e# ad. (2000) and Rasheed ez al. (2011), looks for all
possible periods by considering the range. COVN
(Elfeky et al., 2005a) fails to perform well when the time
series contains insertion and deletion noise. WARP
(Elfely et al., 2005b) can detect segment periodicity; it
cannot find symbol or sequence periodicity. Sheng et al.
(2006) developed algorithm based on Han et al. (1999b).
ParPer to detect periodic patterns in a section of the time
series; their algorithm requires the user to provide the
expected period value. COVN, WARP and ParPer are
augmented to look for all possible periods and which last
till the very end of the time series. Cheung et al. (2005)
used suffix tree similar to sSTNR (Rasheed et al, 2011)
which is not beneficial in terms of growth of tree.
Huang and Chang (2005) and STNR (Rasheed et al., 2011)
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presented their algorithm for finding periodic patterns
with allowable range along the time axis. Both finds all
type of periodicity by utilizing the time tolerance window
and could function when noise is present. STNR
(Rasheed et al, 2011) can detect patterns which are
periodic only in a subsection of the time series. Periodic
check in STNR last for all the positions of a particular
pattern which in the algorithm is been reduced.

The study of correlation pattern mining focused on
two important aspects. The first aspect is the significance
of the patterns. More specifically, it is relevant to provide
significance measures for the correlation of attribute sets
and the correlation patterns. The second aspect is
related to the computational cost of the proposed
task. Fp-Growth Mining algorithm presented by Han and
Kamber (2006), offers the better performance in mining
nmull transactions for subsequent scanning of conditional
databases. Omiecinski (2003) and Kim et al. (2004) which
used to find correlated patterns satisfying gave minimum
all-confidence. The concept of independent and
correlated pattern was addressed to get the exact time
correlated data from the time series data’s was handled by
Luand Lin (1994) and Maier (1978).

PARALLEL FCPP MINING ALGORITHM

FP tree construct: Researchers will now present a parallel
computing version of FCPP algorithm for MLCS problem.
For simplicity, researchers consider the number of
processors p to be a power of 2 and m to be a multiple of
p. in which p-1 (slave/local) processor used for
constructing consensus tree and one processor
(master/global) used to find longest common
subsequence. The parallel FCPP algorithm divides the
number of input sequence into p-1 subsets of size | m/p-1 |
that do not overload. In each p; processor construct their
own consensus free T, with given mumber of input
sequences. All generated subsequence of T, from each
processor given to p, (master) to find the longest common
subsequence and periodicity among them. Each processor
construct consensus tree based on user specified rule
and level constraints. FCPP algorithm uses the TRIE
like structure (called consensus tree) for shared
representation of all subsequence.

FCPP finds all subsequence S, with any length 1,
0<d<1<I. such that for each S, there are at least g
sequences of S containing an x-mutated copy (x<d) along
with their instances. Each subsequence is mapped to
sequence represent by a path from root to particular node
(leaf/nonleaft node). Each node contains pointers to all
subsequences mapped to st, where a pointer (j, k, &)
points to a subsequence are starting at the k th position
of the jth sequence and node containing pointers
pointing to less than g input sequences with level of
mutation e<d.
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Algorithm 1 (FP-tree construction):

1. For each string j of given input sequence N do

For each symbol k of input string j of length L do

If the kth symbol ith sequence is by} do

Put (G, k, ) innew node 8, , find (j, k, 1) substring is in all s, for

b'y#b; andjin T, for each b"e} if and only if sup(by=threshold

For each ith sequence from 1 to L do

Loop(l):

For each substring’s conf(b;, b, bs, ...

Loop(2):

9. Foreach entry (j. k, €) ineachnodes s, , . where k<L-i+1do

10, Loop(3):

11. If'thek+ith element of the jth sequence is b€} and sup(by)<q do

12, Begin(l):

13, putG.ke)ing , ..

14.  if e<dthen for all by #byy,

15. put(,k, etl)in 5, , ...

16. End begin 4;

17.  If conf(by)<1 then Remove §, ;

18  End loop 3;

19.  Foreachnode &,, ,,, =¢ do

20.  For each node in next level s, .. .. with distance (b;, bp<d do

21. For each s,,. .. #@ and conf(, ,. ,.)zq along with
distance (b, b)) <d do

22.  Loop(5):

23, Tf conf{b")<1 then Remove 5,

24, Create anew level in consensus tree with -‘Elbz ’b;<_'1;., 0 :b}u%b} .

Rl

,bu=1 do

80 -1 Ov LA

if and only if confib,, by, by, ..., bu)=1;

25. Ifnonodeexistsin T,. . .. then
26, Increment i; end loop2 =
27 Else

28, Print the output sequence (i g ),

29, EndLoop 5; ’

30. Ifal s, ., ..., .,, areremoved then stop the program else output all
pairs (by, by, ..., by; Svhz""’h:b.a)

31 Removeall § ., ,oorysy, a0d T, s

32, EndLoop 2;

33, i=itl;

34, EndLoop1;

Each node has |} | branches only if nodes satisfy
prescribed support and confidence value. The consensus
tree’s growth i1s restrained using rule and level
constraints. The number of levels in the consensus tree is
at most L = max{L,, L;, ..., L} of the sequences. Nodes
with confidence value as:

conils, ) = (N-sup(s, )} <1
N-q

will be pruned, used as antimonotonic constraint
(Lee and De Raedt, 2004). The support value (s,) of
subsequence, stand for number of pointers in each input
sequences. A node in the consensus tree will not branch
out if a support value 13 <g, used similar to monotonic
constraint (Lee and De Raedt, 2004). Each mstance in a
consensus node has to satisfy degree of mutation e<d
otherwise that particular instance is dropped and
researchers used it like succinet constraint.

FCPP algonthm performs many compansons between
the subsequence using Hamming distance. Researchers
use bitwise comparison with complexity O((In, |} | <i)/w.

Bitwise comparison is better than Hamming distance
calculation when N>2. In worst case the number of
developed nodes is N(L-i+1) where each node can
produce >y variations with mismatched. This
malkes space complexity O(N=<Lxf(d, 1)) which is roughly
bound by O(NxL).

Periodicity Detection algorithm: The algorithm 1s
linear-distance-based; researchers take the difference
between any two successive position pomters leading to
Difference vector, represented in Difference matrix
(Diff matrix). Diff matrix 1s not kept in the memory but
this is considered only for the sake of explanation.
Figure 1 presents how the Diff matrix is derived from the
position pointers of a particular node.

Algorithm 2 (Difference Matrix (Diff_matrix):

. Input: a time series (S) of size N contains position pointers Pos;
. Output: Difference Matrix (A) containing Difference vector;
1. Fori=1toN-1

2. Beginloop 1:

3. Assignj=1

4. if (j<N-i)

5. AG D =8-S

6. if G+1 = j+)

7. Then

8. t=jtl;

9. While (t<j+i-1)

10. Begin loop 2:

11, A, i) = 8183

12. T=t+i

13. End Loop 2;

14. Endif;

15 j=j*;

16. Endif;

17. End Loop 1;

From the matrix the periodicity is represented by S, K,
StPos, EndPos and ¢ denoting the pattern, period value,

Iteration

wh

Fig. 1: a, b) Difference matrix calculation for ‘ab’ time
series pattern from FP-tree node pointers
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starting position and ending position and number of
occurrences respectively for a particular consensus node
(which denote a pattern). The idea is that periodic
occurrence can be drifted within a specified limit called
time tolerance (denoted as tt) which is utilized in CBPM
algorithm. The algorithm can also find the periodic
patterns within a sub section of the time series. FP-tree
node which containg pointers (pos) accessed as a
continuous pattern for Diff matrix calculation. The
existing algorithms (Kim et al., 2004) do not prune or
prohibit the calculation of redundant periods; the
immediate drawback is reporting a huge number of periods
which makes it more challenging to find the few useful
and meamngful periodic pattemns within the large pool of
reported periods.

In Algorithm 2, researchers empowered to use p
periods only one time for each and every position
pointers from that Diff matrix is calculated. Diff matrix is
able to assist in finding periodicity for every starting
position with different p periods. The algorithm not only
saves the time of the users observing the produces
results but also saves the time for computing the
periodicity by the mining algorithm itself.

Finding correlation in periodic patterns: Discrete Fourier
Transform (DFT) is used to identify correlated item pairs
in consensus node. The correlation coefficient of two item
x and y can be reduced to the Euclidean distance between
their normalized series such as corr (x, y) = 1/2md*(x’, y'),
where d(x’, y’) is the Fuclidean distance between x” and
v’. By reducing the correlation coefficient to Huclidean
distance, applying the technique (Zhu and Shasha, 2003)
to report the correlation between the item pairs exists in
consensus node which is higher than a specific
threshold. Few item pairs can be ignored for which
d,=(X,Y)>2m1-T), since they cannot have correlation
above a given threshold T. By ignoring such pairs,
algorithm will get a set of likely correlated signal pairs.
Conceptually, the algorithm produces a matrix like one
shown in Fig. 2 where all pairs with correlation above a
threshold and some pairs with correlation below the
threshold are marked as 1 and all other pairs are marked as
0. Algorithm can call this a pruning matrix P and use it in
subsecquent steps.

In the technique, the pattern occurrence of item in a
node is partition based on the capacity of cache. If the
cache does not fit with all instance of the node, partition
the instance of the node is done. Thus, computing
correlation between signals in different batches incurs
additional costs. Hence, existing F-M partitioning
algorithm is chosen for partitioning instances of a node
into equal size.

In the correlated output R, every non-zero element
represents the total number of occurrences of the symbol
starting from that position. In that, the first element
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Fig. 2: Computing a threshold correlation matrix

represents the total number of occurrences of the symbol.
The index positions of the non-zero elements are derived
from the matrix. From that index position, the perfect and
imperfect periodic rates are computed. The equation used
is as:

R.(D=2 %%
Where:
R = The discrete autocorrelation
7 = The lag for a discrete signal X

EXPERIMENTAL RESULTS

Researchers designed and implemented the parallel
version of FCPP algorithm for finding correlated periodic
pattern in time series. The algorithm was implemented on
the Message-Passing Interface (MPT) System and run on
local IBM SP3 machine. Researchers have used Scalasca
parallel processing tool which runs in Dell NVIDTA Linux
Cluster System and aids in testing the parallel FCPP in
Massively Parallel Processing (MPP) systems. The
algorithms were tested on set of strings similar to the
length of nucleotide and protein sequences ranging
between 100 and 5000 with [Y | =4 and |} | = 20.

Analysis of FCPP algorithm to find MLCS: The parallel
FCPP algorithm was implemented using Scalasca
parallel processing tool. The reason is it supports MPP
environment which provides efficient performance. The
FCPP algorithm consist of master thread which runs on
master processor and FP tree creation by slave thread
which runs mn other slave processors. Master thread
divides the number of input sequence based on available
slave processor and assigns the mput sequence along
with constraints to each slave processor. After all slave
processor complete consensus tree creation, they
generate all subsequence and report it to master
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processor. Then, the master thread performs bitwise
comparison among the all reported subsequence and
report the longest subsequence with/without mutation
value. FCPP algorithm 15 compared with Hakata and
Tmai (1998)’s A and C algorithms, Quick-DP algorithm
(Wang et al., 2011). The A algorithm is designed for three
sequence and C algorithm work with any number of
sequence 5. Quick-DP has consistent speed up than
Halcata and Tmai’s algorithm.

The algorithm takes more time than both Halata
and Imai’s algorithm and Quick-DP because the
implementation generates all subsequence of three
random DNA sequences of various lengths. Figure 3
shows that FCPP compared with Quick-DP, Hakata and
Imai’s and FAST-LCS (Chen et al., 2006) for more than
three random sequence of time series. From Table 1, it is
clear Quick-DP has benchmark result than Hakata and
Imai’s algorithm and FAST-LCS algorithm for both
alphabet size |} | = 4 and |} | =20. FCPP algorithm has

1800+

= FASTLCS
1600 —& FCPP
—¢ Hataka
1400 _ 0 ouick-Dp
. 12004
‘% 10001
£ 800-
[
600
400
200 % . - —
0 T T T T 1
100 120 140 160 180 200
No. of processor

Sequence length (= 4)

Fig. 3: The average rurming time of FCPP, Hataka and
Imai’s C algorithm, Quick-DP and FAST-LCS on
MLCS protein of five random strings of different

moderate running time on long sequences. FAST-LCS is
fast enough than Hataka and Tmai (1998)’s algorithm but
compared to Quick-DP less time efficient. The FCPP
algorithm’s performance is far better than other existing
techmque. Tine performance of FCPP remains same as it
checks for all possible subsequence irrespective of the
data set.

For data experunents,
supermarket data which contains sanitized data of timed

real researchers used
sales transactions for Wal-Mart stores over a period
of 15 months. Synthetic data talen from machine learning
repository (Hettich et al, 1998) were also used.
Researchers tested how FCPP satisfies this on both
synthetic and real data. The algorithm can find all periodic
patterns 100% along with their correlation coefficient.

Researchers test the algorithm for various period
sizes, distribution and time series length. The data
contains the record of around 15 months of data with
expected period value of 24. FCPP algorithm with
periodicity threshold values ranging from 0.8-0.4 and
observed: the number of periods captured by algorithm,
StPos and EndPos of the sequence, confidence value and
the Pattern shown in Table 2. The expected period 24 is
captured at the threshold value 0.8.

The representation of FCPP and Par Per algorithm
and its impact over time series was shown in Fig. 4 and 5.
The performance comparison of FCPP and ParPer was
checked with the data size between 1 and 10 lakhs. As the
result the FCPP shown better performance compared with
WARP and STNR and projects less impact compared with
CONYV based on runtime. FCPP maximizes its performance
over a period of time as there is persistent progress in
data and period size were such combination affects the
performance of ParPer (Han et al., 1999, b) and WARP

lengths (Elfeky et al., 2005b) n terms of its data size.
Table 1: Average running time (seconds) of FCPP, FAST-1.CS, Quick-DP and Hataka and Imai’s C algorithm for random five sequence of different length
Quick-DP Hataka and Tmai*s C algorithm FAST-L.CS FCPP

SEQUENCE  mrmmemeemmmmemmemmmmmemmeemmes s e

length =4 [¥ =20 =4 [¥ =20 y|=4 =4 [¥ =20

100 0.2 0.0 3.9 1.7 46.8 36 26

120 0.6 0.1 15.8 12.2 266.0 184 150

140 09 0.4 54.9 26.2 1430.0 1014 890

160 1.4 0.5 149.9 71.5 4801.0 2891 1450

180 22 0.8 426.0 203.0 17143.0 6434 2350

200 2.6 1.1 896.0 560.0 40262.0 9832 3122

Table 2: FCPP algorithmn output for Wal-Mart data

Data Periodicity threshold ~ No. of periods  StPos EndPos Conf’ Pattern Time correlated

Store 1 0.8 4 109968 145081 0.42 A A A A sl bk A A AAATEEEAAN
0.7 9 134887 161412 0.40 AAABBBCCC* bt hutubhh g gk AABBCCH**AA
0.6 11 151141 194123 0.30 AABBBRCCCT) #fissfistist 4 A A A st AABBBBCCCD
0.5 16 213476 263129 0.32 AAAABBCCD** ¥ AADD* # bk AABBCCDD*A
0.4 25 234980 280673 0.40 AAATEEA A AN bbb A A A AAHREEFRBAA
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Fig. 4: Time performance of FCPP with ParPer algorithm
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Fig. 5: Time performance of FCPP algorithm with STNR,
CONV and WARP; a) time performance of FCPP
Mimng algorithm; b) time performance comparison
of FCPP

Estimation of time correlation: To estimate the
correlation and threshold based on wall mart data in
Table 2 used to create the correlation matrices as shown
in the Fig. & of several load balanced Wal-Mart cluster
machines. To perform experiments on massive data
sets,algorithm generates equal number of data sets with
small amount of noise i Fig. 7. The data sets contain day
to day transaction established by 10 servers in real data
center. One measurement containg minimum 450
transactions, each dataset contains 1000 items sold
details. Using FCPP mimng algorithm to compute each leaf

675

Fig. 6: Correlation matrix CT

Fig. 7: Thresheld correlation matrix CT

node in consensus tree in each node contains all pair
exact correlated items with threshold correlation matrix C”.
For different algorithms, the speedup factors are reported.

To compute CT for given threshold, discrete fourier
transform coefficients 1s used. The graph show that even
with small error is significantly faster than existing
algorithms for all real datasets. The small error above
comes with significant benefits of speedup. Figure 8
shows the speedup performance of the algorithm to
compute C" than BRAID (Sakurai e al., 2005) which is the
state of the art algorithm for computing correlation. the
algorithm optimal performance when compared to BRAID
for different lagged correlation. Figure 8 shows that the
algorithm 18 slower than BRAID (Sakurai et al., 2005) for
different data sets. This huge speedup comes because the
algorithm works in finding all correlated patterns among
domain and reusing DFT coefficients across different
lags. Figure 9 shows the algorithm performance n terms
of threshold value with it periods also by considering
the factors of starting and ending position with its
occurrence. The performance measures of proposed
algorithm proven to be effective in terms of its threshold
value towards its time series correlation.
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Fig. 8: Speedup performance of FCPP and BRAIT for
lagged correlation (Wal-Mart dataset)
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Fig. 9: FCPP comaraison with thresholds and periods

CONCLUSION

In FCPP, a highly parallel TRIE-like structure, the
consensus tree and fast level-wise search strategy based
on downward closure property help to mcrease the
efficiency. In this research, it addresses the impact of time
correlation over time series data. Researchers tested the
algorithm on both real and synthetic data in order to test
its accuracy, effectiveness of reported results and the
noise resilience characteristics. The algorithm was
implemented on the Message-Passing Interface (MPT)
system and nmn on local IBM SP3 machine. The parallel
version of FCPP algorithm was implemented in Scalasca
parallel processing tool. The comparison between the
threshold and the period provides maximum versatile
result compared with the existing algorithm that addresses
time series data. The comrelation approach which was
addressed in the research gives the result for periodic
threshold at par with threshold and correlation all
together. A Novel algorithm 1s proposed based on
discrete fourier transform, to reduce the time in finding
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all-pair correlation patterns. The algorithm has strict error
guarantees which make them as useful as corresponding
exact solution for many real time applications.
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