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Abstract: The growing number of traffic accidents in resent years has become a serious concern to society.
Accidents caused by driver’s drowsiness behind the steering wheel have a high fatality rate because of the
marked decline in the driver’s abilities of perception, recogmtion and vehicle control abilities while sleepy.
Preventing accidents caused by drowsiness belind the steering wheel 15 highly deswrable but requires
technicues for continuously estimating driver’s abilities of perception, recognition and vehicle control abilities;
this study proposes methods for drowsiness estimation that combine the Electroencephalogram (EEG) log sub
band power spectrum, correlation analysis, principal component analysis, Autoregressive (AR) Model and Liner
Regression Models to indirectly estimate driver’s drowsiness level in a virtual-reality-based driving simulator.
Results show that it is feasible to quantitatively monitor driver’s alertness with concurrent changes in driving

performance in a realistic driving simulator.
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INTRODUCTION

Accidents caused by drowsiness at the wheel have
a high fatality rate because of the marked decline in the
driver’s abilities of perception, recognition and vehicle
control abilities while sleepy. Driver’s fatigue has been
implicated as a causal factor in many accidents, e.g., the
National Transportation Safety Board found that 58% of
107 single-vehicle roadway departure crashes were fatigue
related m 1995. Preventing such accidents is thus a major
focus of efforts i the field of active safety research
(French, 2002, Wierwille et al., 1994; Amditis et al., 2002,
Ueno et al., 1994; Pilutti and Ulsoy, 1999). A number of
methods have been proposed to detect vigilance changes
i the past. One focuses on physical changes during
fatigue such as the inclination of the driver’s head.
Sagging posture and decline in gripping force on steering
wheel (Smith et af., 2000, Perez et al., 2001; Popieul et al.,
2003). The others focuses on measuring physiological
changes of drivers such as eye activity measures, heart
beat rate, skin electric potential and particularly,
Electroencephalographic (EEG) activities as a means of
detecting the cognitive states (Makeig and Inlow, 1993;
Makeig and Tung, 1996; Matousek and Petersen, 1983;

Roberts et al, 2000, Wilson and Bracewell, 2000).
Although, the eye blink duration and blink rate typically
increase while blink amplitude decreases as function of
the cumulative time on tasks, those eye-activity based
methods require a relatively long moving averaged
window aiming to track slow changes m vigilance
whereas the EEG-Based Method can use a shorter one to
track second fluctuations in the subject performance
(Roberts et al., 2000, Van Orden et al., 2001; Jung ef al.,
1997). While approaches based on EEG signals have the
advantages for making accurate and quantitative
judgments of alertness levels, most recent psycho
physiological studies have focused on using the same
estimator for all subjects (Roberts ef af., 2000, Wilson and
Bracewell, 2000). These methods did not account for large
individual variability in EEG dynamics accompanying loss
of alertness and thus could not accurately estimate or
predict individual changes m alertness and performance.

Oscillatory signal activities are ubiquitous m the
biomedical signal (Buzsaki, 2006). Multi electrode
recordings provide the opportunity to study signal
oscillations from a network perspective. To assess signal
interactions in the frequency domain, one often applies
methods such as ordinary coherence and granger
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causality spectra (Chen et al., 2006) that are formulated
within the frame work of liner stochastic process.
Electroencephalogram (EEG) 1s one of the most important
electrophysiological techniques used m human clinical
and basic sleep research. Barlow (1979) proposed liner
modeling system which has a long lasting lustory in EEG
analysis. The models are mainly considered as a
mathematical description of the signal and less as a
Biophysical Model of the underlying neuronal
mechanisms.

Franaszczuk and Blinowska (1985) proposed a model
to interpret liner models as damped harmonic oscillators
generating EEG activity based on the equivalence
between stochastically driven harmonic oscillators and
Autoregressive (AR) Models. There 18 a umque
transformation between the AR coefficients and the
frequencies and damping of the
corresponding oscillators. In particular at times when the
EEG 1s dominated by a certain rhythmic activity, on might
expect that this activity will be rejected by a pole with a
corresponding frequency and low damping. This idea was
the starting point of the analysis (Olbrich and Achermann,
2004).

The sleep EEG is always not stationary, However,
demonstrated that the effects of non
stationary become relevant only with scales >1s
(Olbrich et al. 2003). Therefore, short segments with
duration of around 1s are sufficiently described by linear
models. The non stationary in longer time scales might be
rejected by the variation of the AR-coefficient and thus
by the comresponding frequencies and damping
coefficients. Based on the considerations,
researchers propose an easy way to define oscillatory
events. They are detected, whenever the damping of one
of the poles of a 1s AR Model is below a predefined
threshold.

In this research, the scope of the current study is to

coefficients

researchers

above

examine neural activity correlates of fatigue/drowsiness.
The research mvestigates the feasibility of usmg multi
chammel EEG power spectrum and liner regression models
to estimate non-invasively the contmuous fluctuations n
individual operators’ changing level of alertness indirectly
by measuring the driver’s dniving performance expressed
as deviation between the center of the vehicle and the
center of the cruising lane in a very realistic driving task.

MATERIALS AND METHODS

VR-based highway driving simulator: In this study,
researchers developed a Virtual-Reality (VR) based
mteractive highway scene. The continued construction of
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Fig. 1. VR based lughway scene

highway and monotonous operation of driving make it
easy for drivers to feel drowsy within hours. Figure 1
shows the VR-based lughway scene displayed on a color
XVGA 15" monitor including four lanes from left to right
to simulate the view of the driver. The highway scene
changes interactively as the driver is driving the car at a
fixed velocity of 100 km h™ on the highway. The car is
constantly and randomly drifted away from the center of
the cruising lane, mimicking the consequences of a
non-idea road surface.

Subjects: Statistical reports (Ueno et al., 1994) showed
that the best time for domg the highway-drowsiess
simulation 1s the early afternoon hours after lunch
because drivers usually get drowsy within 1 h of
continuous driving, a total of 16 subjects participated in
the VR-based highway driving sessions on 2 separated
days. On the 1st day, these participants started with
a 15-45 min practice to keep the car at the center of the
cruising with the steering wheel. After practicing, subjects
began a 45 min lane-keeping driving task. The driver’s
EEG signals and driving performance defined as
deviations of the center of the car from the center of the
third lane of the road were simultaneously recorded.
Participants returned on a different day to complete the
other 45 mm driving Participants who
demonstrated waves of drowsiness contamning two or
more micro-sleep m both sessions were selected for
further analysis.

$ESS101L

Data collection During each driving session, participants
were fitted with 33 EEG/EOG channels using sintered
Ag/AgCl electrodes with an unipolar reference at right
earlobe based on a modified international 10-20 system
and 2 ECG channels using bipolar connection placed on
the chest.
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An EEG amplifier measures voltage differences
between points on the scalp. This implies that each
channel 1s comnected to two electrodes. Usually,
measurement 18 “umpolar” rather than “bipolar” which
means that the second electrode is identical for all
channels and called “reference” (Ref). Also, amplifier
mputs must be kept within a small voltage range relative
to the amplifier’s zero (ground) voltage level. This 1s
achieved by connecting yet ancther electrode, a “ground”
(Gnd) electrode, to the subject’s scalp.

EEG electrodes are small metal plates that are
attached to the scalp using a conducting electrode gel.
They can be made from various materials. Most
frequently, tin (Sn) and silver/silver-chloride (Ag/AgCl)
electrodes are used but there are gold (Au) and platinum
(Pt) electrodes as well.

While Sn electrodes have the advantage of being
cheap, they introduce a large amount of low-frequency
noise (“drifting”™) below 1 Hz For low-frequency
recordings such as slow cortical potential measurements
or low-noise ERP recordings, Ag/AgCl electrodes are
typically used.

Important but often neglected: using electrodes made
from different materials in the same recording waill
result in DC voltage offsets between electrodes due
to electrochemical contact potentials. Such contact
potentials are generally larger than what a typical amplifier
tolerates. The result will be a zero or much diminished
signal amplitude and a bad signal to noise ratio. This
applies to all amplifier inputs, i.e., channels, reference and
ground electrodes must all be made from the same
material.

The driving performance and EEG/EOG/ECK signals
are sunultaneously recorded. Before data acquisition, the
contact impedance between EEG electrodes and cortex
was calibrated to be <5 kQ. The EEG data were recorded
with 16 bit quantization level at sampling rate of 500 Hz
and then re-sampled down to 250 Hz for the simplicity of
data processing. Researchers also defined a subject's
driving performance as the deviation between the center
of the vehicle and the center of the deviation between
the center of the vehicle and the center of the cruising
lane to indirectly quantify the level of the subject’s
alertness. When the subject 1s drowsy, the car deviation
increases and vice The recorded driving
performance time series were then smoothed using

Versa.

driving performance time series were then smoothed
using a causal 90 sec square moving-averaged filter
advancing at 2 sec steps to eliminate variance at cycle
lengths <1-2 min since the cycle lengths of drowsiness
level with fluctuates were >4 min (Makeig and Inlow, 1993;
Jung et al., 1997).
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AR Model: The parametric description of the EEG signal
by means of the AR Model makes possible estimation of
the transfer function of the system in the straight forward
way. From the transfer function it is easy to find the
differential equation describing the investigated process.
The detection algorithm 1s based on modeling 1 sec
segments of the EEG time using Autoregressive (AR)
models of order p. From the AR (p) Model:

(1)

Where:

a, = Coefficients of the model (a,= 1)

The value of the sampled signal at the moment n
Zero mean uncorrelated white noise process

X, =
Sn
Applying the z transform to Eq. 1 we obtam:

Al2)X(z) = E(z) 2)
Where:

Alz)= iajz” (3)

¥ (z) = The 7 transform of the signal x
E (z) = The 7 transform of the noise

If the system is stable, there exists A™'(z) and
researchers get:
X(z)= AN (2)E() (4
In the z domain, this filter is expressed by the Hq. 4
where A™' (z) is the transfer function. Denoting it by H(z)
and writing if explicitly, researchers obtain:

1
— Al =
H(z)=A"(z)= o (5)
Saz!
j=0
Multiplying numerator and denominator 2%,
researchers get:
Zp
H(z)=— (6)
Zajzpfj
1=0
Factorizing the denommator gives equatiopmn:
ZP
H(z) = (7

H:‘:l (Z_ZJ )
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where, 7 =1, . Using the above equation to estimate the
frequencies f, = @/(2nA) and damping coefficients y,=
A7 'lnr, (A denotes the sampling interval). Researchers
assume that there are only single poles of H(Z) which can
be written in the form:

|

For the single pole coefficients ¢; can be found
according to the equation:

(8)

1 2

H(z)—z[ ZZ

- {(z—7,H(z)
¢ = lim —————

Z—E;

@)

z

By means of the inverse transform —z' from the
Eq. 8 the impulse response of the system: h (n) can be
found. Since, from the properties of the z™' transform we
know that z~'(z/z-z) =exp (n.Inz), researchers obtain:

h(ny=z"'(H(z)) = Zil ¢ exp(nlnz,) (10)

If the sampling interval At was chosen according to
the Nyquist theorem we can express the inpulse response
as continuous function and write it in the form:

]an

t
h(t)= Zl < exp(ﬁ

= Zil o, exp(at)

(1

Where:

Inz
t=At<na, = A—t]

Laplace transform of the Eq. 11 which corresponds to
the transfer function H(s) of the continuous system is
given by the equation:

1

()

H(s):ZlecJ (12)

The above expression can obtained directly from
Eq. 8 by means of the integral transform z. Equation 12 can
be written as a ratio of two polynomials of the order p-1
and p:

b
H(s)=—22
cps‘”r .....

s+ 4D s+h,

(13)

The polynomial coefficients can be readily calculated
from ¢, and a,. This form of the transfer was found also by
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Freeman. Tt leads directly to the differential equations

describing the system. The transfer function 1is the ratio of

the Laplace transform of mput y(t) and output x(t)

functions:

| X(s) _ Lx()
Y(s) L{y(t)

His) 14

Since, variable s corresponds to the operator d/dt,
from Eq. 13 and 14, researchers get:

p-1 1

d d
Wy(t)#ﬁh @y(t}buy(t)
(15)

dr d'
—x(tH...f¢ @x(t)ﬂzux(tk

% gt°

In this way, researchers have obtained the differential
equation describing the system which is free of the
arbitrary parameters. Tts order is determined by the
characteristic of the signal and may be found from the
criteria based on the principal of the maximum of entropy.

BLOCK DIAGRAM OF EEG SIGNALS

The flowchart of data analysis for estimating the level
of alertness based on the EEG power spectrum 1s shown
inFig. 2. For each subject, after collecting 33-charmel EEG
signals and driving deviations in a 45 min simulated
driving session, the EEG data were first preprocessed
using a simple low-pass filter with a cut-of frequency of
50 Hz to remove the line noise and other high-frequency
noise. Then, researchers calculate the moving-averaged
log power spectra of all 33 EEG channels by using a
750-point Henning window with 250 point overlap. The
windowed 750 point epochs were further sub-divided into
several 125 point sub windows using Hanmng window
was extended to 256 points by zero padding for a
256 point FFT. A moving median filter was the used to
average and mimimize the presence of artifacts in the EEG
records of all sub-windows. The moving averaged EEG
power spectra were further converted to a logarithmic
scale for spectral correlation and driving performance
estimation. Thus, the time series of EEG log power

EEG log
power
@ Noise . Moving average| spectra Correlation
removal spectral analysis| >| analysis
Selected Selected PCA
EEG components|  Lj . .
channel near Subject's driving
PCA — | Regression [———>
Model performance

Fig. 2: Block diagram of driving performance of sleep
stages for monitoring control system
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spectrum for each session consisted of 33 channel EEG
power spectrum estimated across 40 frequencies stepping
at 2 sec time 1ntervals.

Then, researchers calculate the correlation
coefficients between the smoothed subjects’ driving
performance and the log power spectra of all EEG
channels at each frequency band to from a correlation
spectrum. The log power spectra of 2 EEG chamels with
the highest correlation coefficients are selected.
Researchers further applied the Principal Component
Analysis (PCA) to decompose the selected 2 channel EEG
log power spectrum and extract the directions of largest
variance for each session. Projection of the EEG log
spectral data on the subspace formed by the eigenvectors
corresponding to the largest 50 eigen values were then
used as inputs to tran mdividual Limear Regression
Model for each subject which used a 50 order liner
polynomial with a least-square-error cost function to
estimate the time course of the driving performance. Each
model was tramned using the features extracted from the
training session and only tested on a separated testing
session from the same subject.

RESULTS AND DISCUSSION

Relationship between the EEG spectrum and subject
alertness: To investigate the fluctuations in driving
performance to concurrent changes in the EEG spectrum,
researchers measured correlations between changes in the
EEG power spectrum and driving performances to from a
correlation spectrum. Researchers investigated the spatial
distributions of these positive correlation spectra on the
scalp at dominant frequency bins, 7, 12, 16 and 20 Hz,
separately as shown i Fig. 3. The comrelations are

SS00
SRS

S50
S5

Q
[}

Fig. 3: Scalp topographies for the correlations between
EEG power and driving performance at dommant
frequencies 7, 12, 16 and 20 Hz, computed
separately for 40 EEG frequencies between 1 and
40 Hz

622

particularly strong at central and posterior channels which
are similar to the results of previous studies in the drowsy
experiments (Makeig and Tnlow, 1993; Makeig and Tung,
1996). The relatively high correlation coefficients of EEG
log power spectrum with driving performance suggests
that using EEG log power spectrum may suitable for
drowsiness (micro-sleep) estimation where the subject’s
cogmitive state might fall into the first stage of the
Non Rapid Eye Movement (NREM) sleep. To be practical
for routine use during driving or in other occupations,
EEG-based cogmtive assessment systems should use as
few EEG sensors as possible to reduce the preparation
time for wiring drivers and the computational load for
estimating continuously the level of alertness in near real
time. According to the correlations shown in Fig. 3,
researchers believe it 1s adequate to use 2-channel EEG
signals having the highest correlation coefficients to
assess the alertness level of drivers.

Next, researchers compared correlation spectra for
individual sessions to examine the stability of this
relationship over time and subjects. The time nterval
between the ftraining and testing sessions of the
lane-keeping experiments distributes over 1 day to 1 week
long for the selected five subjects. Figure 4 plots
correlations spectra at cites Fz, Cz Pz and Oz, of two
separate driving sessions with respect to subjects A. The
relationship between EEG power spectrum and driving
performance 1s stable within the subjects, especially the
spectrum below 20 Hz. These analyses provided strong
and converging evidence that changes m subject
alertness level indexed by dniving performance during a
driving task are strongly correlated with the changes in
the EEG power spectrum at several frequencies at central
and posterior cites. This relationship is relatively variable
between subjects but stable within subjects. It 1s
consistent with the findings from a simple auditory target
detection task reported by Makeig and Inlow (1993) and
Jung et al. (1997). These finding suggest that mformation
available in the EEG can be used for real-time estimation
of changes in alertness of human operators. However, to
achieve maximal accuracy, the estimation algorithm should
be cable of adapting to individual differences in the
mapping between EEG and alertness.

EEG-based driving performance estimation/prediction:
In order to estimate/predict the subject’s driving
performance based on the information available in the EEG
power spectrum, a 50 order liner regression models with a
least square error cost function is used. Researchers used
only two EEG chamnels with the highest correlation
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Fig. 4 Correlation spectra between the EEG power spectrum and the driving performance ata) Fz, b) Cz, ¢) Pzand d) Oz
channels in two separate driving sessions with respect to subject A. Note that relationship between EEG power
spectrum and driving performance is stable within this subject
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Time
Fig. 5. Driving performance estimates for a session with
respect to subject A, based on liner regression
(red line) of PCA-reduced EEG log spectra at two
scalp sites, over plotted against actual driving
performance time series for the session (solid line).
The correlation coefficient between the two time
series is r=0.91

coefficients in place of using all 33 channels to avoid
introducing more unexpected noise. Figure 5 plots the
estimated and actual driving performance of session. The
liner regression model in Fig. 5 1s trained with and tested
against the same session, 1.e., within-session testing. As
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can been seery, the estimated driving performance
matched extremely well with the driving performance
(r=1091).

When the model was tested against a separate test
session with respect to the same subject, the correlation
between the actual and estimated driving performance
though decreased but remained high (r = 0.87) as shown
mn Fig. 6. Across 10 sessions, the mean correlation
coefficient between actual driving performance tume series
for within session estimation is 0.85+0.11 whereas the
mean correlation coefficient for cross-session estimation
is 0.82+0.07. These results suggest that continuous
EEG-based driving performance estimation using a small
number of data chanmnels is feasible and can give accurate
information about minute-to-minute changes in operator
alertness.

Electrode locations and names are specified by the
international 10-20 system for most climcal and research
applications. This system ensures that the naming of
electrodes In most
clinical applications, 19 recording electrodes are used. The
brain machines use 2 or 4 channels and they monitor the
frontal lobe at positions Fpl and Fp2 (left and right above
each eyebrow). Figure 7 and 8 show that the EEG
spectrum performance of FP1 and FP2 electrodes.
Figure 9 and 10 show that the EEG spectrum performance

18 consistent across laboratories.
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Fig. 6 Driving performance estimates for a test session based on a linear regression (red line) of PCA- reduced
EEG log spectra trained from a separate training session with respect to the same subject, over plotted agamst
actual dniving performance time series of the test session (solid line). The correlation coefficient between the
two time series is r = 0.87. Note that the training and testing data in this study were completely

disjoined
259 40 -
201 301
154 20
g 104 :i; 10
2 5 2 o
g 0 5-10-
-5 =20
-10 -30
-15 T T T T T 1 -40 T T T T T |
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (sec) Time (sec)

Fig. 7: BEEG performance of FPlelectrode Fig. 9 BEG performance of F7 electrode
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Fig. 8: EEG performance of FP2 electrode Fig. 10: EEG performance of F electrode
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Fig. 12: EEG performance of AF2 electrode

of F7 and F8 electrodes. The recording of EEG spectrum
performance of another electrode AF1 and AF2 are shown
mn Fig. 10-12.

CONCLUSION

In this study, researchers demonstrated a close
relationship between minute-scale changes in driving
performance and the EEG power spectrum. This
relationship appears stable with in individuals across
section but i1s some what variable between subjects.
Researchers also combined EEG spectrum estimation, Pz,
Cz, Tz Oz FP1, FP2, F7, F& AF1 and AF2 estimation. AR
Model analysis and linear regression to contmuously
estimate/predict fluctuations m human alertness level
mndexed by driving performance measurement, deviation
between the center of the vehicle and the centre of the
cruising lane. The results demonstrated that it is feasible
to accurately estimate driving errors and Principal
Component Analysis algorithm. Once an estimator has
been developed for a driver, based on limited pilot testing,
the method uses only spontaneous EEG signals obtained
from the mndividual without requiring further collection or
analysis of operator performance. The proposed methods
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thus might be practicable for applying to an online
portable embedded system to perform a real-time alertness
monitoring system.
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