Asian Journal of Information Technology 12 (2): 60-69, 2013

ISSN: 1682-3915
© Medwell Journals, 2013

A Fault Ontology for Managing Run-Time Faults in Web Services

K. Jayashree, Sheila Anand and R. Chithambaramani
Rajalakshmi Engineering College, Chennai, India

Abstract: Detecting faults at run-time is one of the crucial elements in fault management of web services. In this

study, researchers present a generic ontology for describing run-time faults in web services. Ontology
descriptions have been developed to describe the semantics of generic Service Oriented Architecture (SOA)
faults. The fault ontology includes various run-time faults that occur during publishing, discovery, binding,

composition and execution of web services. The ontology can be used to provide semantic error information

to the user to aid them in proper 1dentification and correction of errors that occur at run-time. Researchers have

tested the ontology using a sample web service application and present the results.

Key words: Web service faults, fault ontology, publishing fault, binding fault, discovery fault, composition

fault, execution fault

INTRODUCTION

Web Services (W) are self describing, self contained
and loosely coupled applications that are used across the
Internet using standards such as Simple Object Access
Protocol (SOAP), Web Services Description Language
(WSDL) and Umversal Description Discovery and
Integration (UDDI) (W3C, 2004). A composite web service
imvokes one or more web services and combines their
functionality to offer service to the users (Charfl ef af.,
2009). Consumers of WS want uninterrupted and reliable
service from the service providers. To provide services to
the level expected by the users, it is essential to detect all
faults and failures and take appropriate action to enable
continuity of the services offered (Alam, 2009).

Ontologies have been widely used in many areas
such as knowledge management, content management,
intelligent databases, electromic commerce and the
semantic web (Fensel et al., 2001). Ontology plays a key
role i the semantic web by providing machine
readable vocabularies and the relationships among them
(Mellraith and Martin, 2003). Applications can use these
ontologies to search, merge and intelligently interpret
information. Ontology plays a major part in solving the
problem of interoperability between applications
across different organizations by providing a shared
understanding of common domains (Taye, 2010).
Ontologies enrich web services with expressive and
computer mterpretable languages (Yu et al., 2008). Several
ontologies have been developed for web services and
SOA architecture. In this study, researchers present an
ontology that has been developed specifically to describe

faults that occur during run-time of web services and
provide semantic descriptions to enable appropriate
action.

LITERATURE REVIEW

Service Oriented Architecture consists of three key
components, namely, Service Consumer (3C), Service
Registry (SR) and Service Provider (SP) as shown in
Fig. 1 (Exl, 2005). Service providers register their services
for public use in service registries using the publish
operation. UDDI provides a platform-independent
standard framework for describing and publishing web
services for discovery over the mternet (Curbera et al.,
2002). Web services are expressed in WSDL, an
XMI.-based language for describing web services and
how to access them. WSDL 1s a document written in XML
which describes a web service and specifies the location

Service registry

Service client

Service request

Fig. 1: SOA architecture

Corresponding Author: K. Jayashree, Rajalakshmi Engineering College, Chennai, India

Asian J. Inform. Technol., 12 (2): 60-69, 2013

of the service and the operations (or methods) the service
exposes. A consumer uses find operation to look up the
registry to find an appropriate web service from the
service registry. The service registry returns the Uniform
Resource Locator (URL) for the requested service. The
user service then binds itself to the service provider for
service execution. The service input parameters are sent
to the service provider who executes the service and
returns the results to the consumer. These interactions
happen through the use of SOAP messages. SOAP is a
simple XMIL-based protocol used for accessing a web
service and for message exchanges (Yu et al., 2008). SOA
architecture enables services to be dynamically selected
and mtegrated at runtime thus enabling system flexibility
and adaptability.

Researchers now discuss research related to web
service fault taxonomy and ontology for web service.
While there has been considerable research relating to
web service testing, debugging and fault tolerance, there
has been less research in the area of fault management in
web services and developing ontology for managing
faults in web services.

Delgado et al. (2004) have presented taxonomy for
runtime software fault-monitoring for traditional software.
Monitoring of web services require additional issues
because it is loosely coupled and dynamic in nature.
These additional issues and semantics can be addressed
only by developing ontology specifically for web
services.

Bruning et al. (2007) have proposed fault taxonomy
for possible faults in Service Oriented Architecture (SOA).
Faults discussed include hardware fault, software fault,
network fault and operator fault. The interactions for SOA
architecture have been analyzed and the different possible
faults have been defined and presented in the fault
taxonomy. They have demonstrated the application of the
taxonomy with an example of travel agency. The taxonomy
represents only the class/subclass relationship of faults
and does not represent the relationship between the
different kinds of faults.

Chan et al. (2009) proposed a novel taxonomy that
captures the possible failures that occur in web
service composition and classify the faults that caused
the failures. The taxonomy covers physical, development
and interaction faults. An important use of the taxonomy
is in identifying the faults that can be excluded when a
failure occurs. Mahdian et al. (2009) present an approach
to detect faults in the architecture level of service oriented
systems which extends the formal SOA core meta model
to support fault tolerance. Monitor components present
in the architecture are used to detect three types of faults
namely timeout, no service found and binding denied.

Ardagna et al. (2006) have classified the faults as
infrastructure and middleware level faults, web service
level faults and web application level faults. Infrastructure

&1

and middleware level fault types are node faults, network
faults and generic faults. Web service level fault types are
web service execution faults and web service coordination
faults. Web application fault types are internal data faults,
application coordination faults, actor faults and Quality of
Service (QoS) violation faults. They have classified the
faults and provided a set of strategy. Semantic
approaches have not used by Chan et ol (2009),
Kim et al. (2007) and Ardagna et al. (2006).

Zhou et al. (2004) proposed ontology for description
of quality of service metrics for web services based on
DAMIL.. The ontology contains three definition layers: the
QoS profile layer, the QoS property definition layer and
QoS metrics layer. The ontology 1s designed to help users
to compare web services offerings on basis of QoS
metrics. Kritikos and Plexousakis (2006) and
Tayashree and Anand (2012) developed QoS ontology
to describe the QoS non-functional aspect of web
services. QoS is used to distinguish web services based
on their performance and for refining web service
advertisements.

Qiu and Xiong (2007) have proposed an ontology for
semantic web services to enrich web services description.
The proposed construction of service ontology is used to
identify and maintain the relationships among services. Tt
is also helpful for requesters to find their suitable services
according to their own preferences.

Hai and L1 (201 2) proposed a QoS ontology and BP
neutral network module to choose the qualified web
service from candidates. All these developed ontologies
are based on QoS of web services. Kim et al. (2007) have
presented the framework for Mid-level Ontologies for
Quality (MOQ) representing general quality concepts that
can be used for web services, among other applications.
Mohammad et al. (2011) have presented an Ontology
Based Access Control (OBAC) to support semantic
web service. In this study, security ontologies have
been developed to specify concepts and terms
involved. Faycal et al (2011) have proposed a
development-oriented process for building web service
ontology using the Ontology Web Language for
Services (OWL-3) language. The process was divided
into four phases such as specification of requirements,
conceptualization, implementation and mapping,
evaluation and maintenance. With the earlier proposed
process, they have effectively build a web services
ontology in different domain and this ontology allows
software agents to discover, compose and invoke
automatically a web services without the intervention of
human beings.

In this study, researchers present a generic ontology
for describing run-time faults in web services. Ontology
provides a flexible and easy approach for expressing the
common vocabulary and semantic description for faults
that occur at run time.

Asian J. Inform. Technol., 12 (2): 60-69, 2013

Accou

l

ing

[/ \

|

NS

1 © Parallel

| O transaction [, |

/4

w«\\

Consmtenc Manimum

o=

‘l

| [SDiscovery |

| ows runime |

Se quential

Fig. 2: Fault ontology for web services

PROPOSED FAULT ONTOLOGY FOR
WEB SERVICES

Failures occur during web service execution due to
various causes such as networl faults, server crashes or
application-related errors. Faults include the unavailability
of a requested web service or errors in the orchestration
of choreography of web services. Specific web service
faults may be due to missing data or parameters in an

//'

,s

ServnceNot

62

W(‘

S n chmmzntlon

S| |

execution flow or low Quality of Service (QoS)
(Boumhamdi and Tarir, 2010). These faults need to be
detected and handled appropriately to avoid system
failure and provide the users with meammgful error
messages.

Runtime momitoring of web services enables run-time
faults to be detected. In the earlier research, researchers
had proposed the use of policies and runtime monitoring
to detect faults during execution of web services

Asian J. Inform. Technol., 12 (2): 60-69, 2013

(Tayashree and Anand, 2012). In this study, researchers
present a fault ontology that can be used to provide
semantic error mformation to the user. This would enable
the user to correct the error and use the web service in its
intended manner.

Ontology is the formal and explicit specifications
of a Iknowledge domain and includes critical
concepts, entities and objects of the domain and their
inter-relationships. Ontology can be used to show the
different types of relationship between terms. In this
study, researchers present ontology developed using
the OWL, a semantic markup language that 1s used to
represent ontologies (Taye, 2011). OWL has been
developed as a vocabulary extension of RDF (the
Resource Description Framework) to represent the
meamng of terms and the relationship between the terms
(Brickley and Guha, 2000). Using OWTL,, information is
given explicit meaning so that it makes it easy to develop
applications to automatically process and mtegrate the
mformation on the web. The proposed fault ontology 1s
given in Fig. 2. The fault ontology includes various
run-time faults that occur during publishing, discovery,
binding, composition and execution of web services.

The fault ontology comprises of four main
components: concepts, instances, relations and axioms. A
concept is also known as class and it is collection of
objects. It 13 the base element of the fault domain. A class
1s called as super class when it represents the parent class
and when it represents the child class of the parent class
it is called as a sub class. In the ontology SOA fault is
represented as super class. The subclasses for the SOA
fault are publishing faults, discovery faults, composition
faults, binding faults and execution faults. The inheritance
relationship that exists between the classes 1s shown in
the ontology.

Instance 1s the ground level component of an
ontology which are the things represented by a concept.
Tt is also known as an individual. For example service
description fault 1s an instance of publishing or SOA fault.
If a class publishing fault 1s a subclass of SOA fault then
every instances of publishing fault is also an instance of
the SOA fault.

A relation 1s used to express relationships between
two concepts n given domam. More specifically, it
describes the relationship between the first concept,
represented in the domain and the second, represented in
the range. For example, date format could be represented
as a relationship between the domain date and with the
range YY Y YMMDD.

An axiom is used to impose constraints on the
values of classes or mstances. For example min length
class represents constraints for the input parameter

63

password of a web services. For example it should have a
munirmun length of 8 and maximum length of 20. This axiom
1s represented as policy as:

<xs:element name ="password">
<xs:simpleType>
<xsrrestriction base ="xs:string” >
<xs:minlength value ="8"/>
<xs:maxlength vahie ="20">
fxsrestriction™
</xs:simpleType>
</xs:element>

A CASE STUDY

In this study, researchers illustrate the use of the
fault ontology with a sample case study. Runtime
monitoring enables faults to be detected and fault
ontology can be used to trace and report the source of the
error to the users. The proposed ontology has been
created using the limited free version of altova semantic
worls which supports OWL DI, (Description Logic). A
sample web service application from the railway services
domain has been taken as an example. Simple and
composite sample web services, namely, train enquiry,
ticket availability, ticket reservation, booking details,
ticket payment, reservation status enquiry and ticket
cancellation have been created. The web services and
their descriptions are given in Table 1.

Publishing error: Researchers take an example from the
publishing faults scenario to depict publishing error in the
train enquiry service. The publishing faults depicted in
the ontology description,
deployment fault, network problem and timed out errors.

include service service
service description faults can occur due to format fault
and content fault.

Web service registty has been created using jUDDI
registry. To publish a service in the service registry, the
provider has to give details like publisher name, service
name, business name, WSDL description, etc. The fault
scenario depicted in Fig. 3 shows a fault that has occurred
while trying to publish the service with the name @ PNR
service. Fault has occurred due to the presence of @ in
the service name as special characters are not allowed in
the service name. Invalid service name causes content
fault, a sub class of service description fault which is a
sub class of publishing fault which in turn is a sub class
of SOA fault. This information is obtained as shown in
Fig. 3 by backtracking through the fault ontology.

If the user knows the semantic reason for the fault,
then the user would be able to make the necessary
corrections and get the service successfully published.

Asian J. Inform. Technol., 12 (2): 60-69, 2013

Table 1: List of web services for railway ticketing application

Web services

Description

Train enquiry
Ticket availability

Ticket reservation
Booking details
Ticket payment

Reservation status engquiry
Ticket cancellation

Allows the users to determine the list of trains to the intended destination

Allows users to find out whether seats or berths are available in the train of their choice. They can also obtain information about
the number of seats available in the required class

Reservation service is a composite web service, comprising of the ticket payment and booking details services. The user is
returned a PNR number that is used to uniquely identify the reserved tickets

The user first provides details for booking the tickets which includes date of travel, train number, train name, departing
station, destination station, class, name, age, payment details, etc

Payment service is used to process the payment amount. The user is required to give the credit card details for processing the
payment through an authorized payment gateway

Requires the passenger to key in the PNR number and the reservation status is displayed

Allows the users to cancel their seats of their choice by giving the PNR number

uri: Soarault:servic... b

[uri: spafault:Conne...

b |

| soafault:port Number
ﬂwﬁﬁfsoajault:portNu... 5

soafault:serviceDescriptionFault 1
| soafault:PublishingFault 1

Generated by SemanticWorks ~ www.altova.com

| SodfaltBinding_Fault 1
| Soafault:SOA_FAULT -
#
wi: Sogfault WS_ru... |

Generated by SemanticWorks ~ www.altova.com

Fig. 4: Fault occurrence in binding of train enquiry service

Using the ontology, it 1s possible to report to the Binding error: For mvoking the service from the service
user that the fault m publishing has occurred due to provider the service client has to bind with the service
content fault in the service name that is invalid service provider. Binding faults occur when the service client is

narmne.

unable to access the specific service of the service

&4

Asian J. Inform. Technol.,, 12 (2): 60-69, 2013

provider. The binding faults depicted in the ontology are
authorization denied, authentication failed, accounting
problem, network problem and timed out fault.

To bind to a particular service, the user has to
specify the port number, target namespace, discovery
URL, operation name, port type and service name. The
fault occurrence while trying to bind the train enquiry
service 18 given in Fig. 4. As seen from the Fig. 4, fault
occurs in the port number which has been specified as 25.
Port 25 18 the default port number of Simple Mail Transfer
Protocol (SMTP) service and cannot be used by any other
service. The port number given 1s mvalid for the train
enquiry service and hence the binding is not successful.
Invalid port number causes port number fault, a sub class
of network problem which 1s a sub class of binding fault
which in turn is a sub class of SOA fault.

Discovery error: For discovering a particular service from
the registry, the user searches the web service directory
with appropriate search criteria to locate the required
service. The service URL address is returned to the user.
Discovery faults include faults in the given search criteria
and also m returning the found service. The ontology
includes the various faults like incorrect search criteria,
network problem, service not existing, faulty lookup
service and timed out fault.

To discover the ticket reservation service, the service
client has to provide the details like business name and
service name, etc. The fault occurrence when the service
name given 1s incorrect 18 shown m Fig. 5. The service
name has been given as train reservation mstead of ticket
reservation. Using the fault ontology, it 1s possible to
identify that the error in the given search criteria has
occurred due to mvalid service name.

Execution error: There could be many types of execution
errors. The emrors could be in the input parameters
specified to invoke the service, execution errors or in the
results (output) retumned by the service.

[.
| soafault:servicename

For example, let us consider that data given as input
parameter to the web service has to be numeric. Further,
constraints can be specified in numeric data which
includes total digit, minimum inclusive, minimum
exclusive, maximum inclusive, maximum exclusive and/or
fraction digits. Researchers take an example of PNR
mumber given as an input parameter to invoke the
reservation status enquiry service to explain execution
error. In the sample case study, PNR number is a numeric
with a length of 10 digits, minimum inclusive value of
4000000001 and maximum inclusive value of 4999999999
The constraints in the PNR number given as XML tags
are:

<input>
<element name ="pnrno’>
<simpleType>
<restriction base ="long">
<TotalDigits value ="10"/>
<Minimumlnclusive value ="4000000001"/>
<MaximumlInclusive value ="4999999999"/>
<NonNegative>
<Pattern value ="T4][0-9][0-9][0-9][0-9] [0-9][0-9] [0-9][0-9] [0-9] "/=>
</NonNegative>
</restriction=>
</simpleType>
</element>
</input>

Errors in specifying the PNR number could be in the
total digits or in not giving the data as per the constraints
specified. Some of the common possible errors are listed
in Table 2. The fault occurrence when PNR number is

Table 2: Some emrors in PNR number

PNR number Error

411100111 The length is not 10 digits

3000003555 The number is not valid because it is not in the minimum
inclusive value range

6012345678 The number is not valid because it is not in the maximum
inclusive value range

Al123456789 The number is not numeric as it contains the alphabet A

1041272012 The number is not numeric

-568459345 The number is not valid because it is negative number

1

—Hmru}{: soafault:servic... H =

[_ui:_soafault:InCorr...

[
I
|
|
|
P |
I
|
|
I
|
|
I

(&5

soafault:IncorrectSearchCriteria

| soafault: SOA_FAULT

ui: rdf:type [ui: soafault:Incorr....

Generated by SemanticWorks ~ www.altova.com

Fig. 5: Fault occurrence m discovery of ticket reservation service

65

Asian J. Inform. Technol., 12 (2): 60-69, 2013

given as 411100111 1s given in Fig. 6. The error occurs
because PNR number specified 1s incorrect as it is
not 10 digits in length.

Likewise, errors could occur n the result returned by
the service. For example, the PNR number given may
satisfy the mput parameter criteria as specified. During
execution, the PNR number is matched with the PNR
entries in the database to obtain the status. If the given
PNR number is not available in the database then the error
would be returned as database fault as shown in Fig. 7.

Composition service error: Composition faults occur
when there 1s an error in the execution of any of the

soafault: PnrNumber

U soafault: PrrNu... F

'—| £ 411100111

soafault:Total Digits
soafault:Numeric

o
T

S

[b—Luri: soafatilt:Numeric
T

it rdf:type p—{uri: soafait:Total Di...

services that comprise the composite service. Researchers
take an example of the ticket reservation service which 1s
a composite service comprising of the two services ticket
booking and ticket payment. Ticket booking service 1s
executed first to obtain the ticket and train details and
block the tickets for the specified train. The ticket
payment is automatically invoked to process the payment
for the tickets. Once the payment process is successfully
completed, ticket booking details are updated in the
database and tickets are printed. To the user however it
would appear as one service only. Error can occur in
execution of either of the two services. Two sample
scenarios are considered.

soafault:Input_fault

soafault:Exceution_fault
soafault:SOA_FAULT

[p—{ui: Soafaﬂ({:WS_ru...]
T
b
. 3
(£33 soafaitSOA F...|
[
=k
%I’I
|._«I_J'—' ~{,uri: soafault:Execut...

e}
©h

{, uri: soafaul't::lnput_f...

Generated by SemanticWorks www.altova.com

Fig. 6: Fault occurrence in reservation status enquiry for invalid PNR number

|soafault: DatabaseFault

| |
| |
|
S | |
uri: spafault:Record... } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
|

e

\ [sogfault:Output_feut N

}?oa?auTt :Exceution_faut N
rsogaﬁ tSOA_FAULT o

Generated by SemanticWorks www.altova.com

Fig. 7: Fault occurrence in reservation status enquiry for PNR number not listed in the database

66

Asian J. Inform. Technol., 12 (2): 60-69, 2013

soafault: Trainnumber
~firi: Soafault:Traimn... b—{="263 |

soafault: Total Digits
soafault:Numeric

soafault:Input_fault

(3
=)
& o uri: SOAfault:Numeric |

[urizraf: typel——ri :SQ_afa_u_lti::l_'IfotaIPi__ N

Fig. 8: Fault occurrence in input of booking details service

soafault:Balance
T 1 o
Ui soafault:Balance —i = Rs500

soafault: Atomicity
soafault: TransactionFault

soafault: Sequential CompositionFault
soafault: CompositionFault
soafault:SOA_FAULT :
[h—{uri:soafaul tWS .. |

{,uri-soafault:SOA_F..]

{rizsoafaultnput ..

Generated by SemanticWorks www.altova.com

soafault: Sequential CompositionFault

soafault: CompositionFault
soafault: SOA_FAULT
[(& —{ uri: soafault WS ru... |

E32
g g SRS
[& b, uri: soafault:Comp....

[b—{,ui: soafault:Seque...
l

U vl type {6 soefait Aomic.._|
Fig. 9: Fault occurrence in output of ticket payment service

Case 1 (The booking details service is not successful):
The booking details service would not be successful if the
user gives incorrect travel/ticket details and/or if there is
an execution error in the service. The details provided by
the user includes date of travel, train number, train name,
departing station, destination station, class, name, age
and payment details. For example, if the user gives a train
number which 15 invalid then the booking service will fail
as shown in Fig. 8. In the given example, train number
given as input to the service does not satisfy the input
data length constraint. As the first service in the
composite service 1s not successful, the second service
payment service will not be called.

&7

Generated by SemanticWorks www.altova.com

Case 2 (The ticket payment service is not successful):
The booking details service which is the first service in
the composite service 1s successful. So, the payment
service 18 invoked with payment details from the booking
service. The payment service could fail if the connection
to the payment gateway is not successful. The payment
service could fail if the credit card given 1s mnvalid or does
not have sufficient balance. Using an instance of the
ontology, it would be possible to convey the appropriate
error message to the user,

Transactions should satisfy the ACID
(Atomicity, Consistency, Isolation and Durability)
properties. In an atomic transaction, a series of database

Asian J. Inform. Technol., 12 (2): 60-69, 2013

update operations should either be all successful or
nothing should occur. This prevents partial updates to
the database. In the given example, payment service
failure has been represented as a fault in transaction
atomicity as shown in Fig. 9. For the ticket reservation
service the database is updated with:

* Train seat booking
+ Payment details
¢ Ticket details

The payment of Rs.500/- 13 not successful as there 1s
insufficient balance in the user’s account. Hence, the
payment update does not go through and it 1s represented
as a transaction fault. Train seat booking and ticket details
accepted 1n the booking details service would not be also
updated in the database, thereby ensuring transaction
atomicity.

CONCLUSION

Fault detection 1s the first step in managing faults in
web services. With the commercialization of web service
usage, 1t becomes necessary to detect faults and convey
to the user why and where the fault has occurred. Tn this
study, researchers have presented fault ontology for
run-time faults in web services. Fault ontology can be
used to give meaningful error messages to the user for
fault occurrence during web service publishing, discovery
or execution. Fault ontology defines a common
vocabulary for information sharing and plays an important
role in semantic web services that allow such knowledge
to be transmitted and shared using application systems.
The ontology can also be extended to represent semantic
descriptions of other nm-time faults and faults that may
be specific to particular web services.

REFERENCES

Alam, S., 2009. Fault management of web services.
M.S¢. Thesis, University of Saskatchewan, Canada.

Ardagna, D., C. Cappiello, M. Fugmi, E. Mussi, B. Pernici
and P. Plebani, 2006. Faults and recovery actions for
self healing web services. Proceedings of the World
Wide Web Conference, May 22-26, 2006, Edinburgh,
UK.

Boumhamdi, K. and 7. Jarir, 2010. A flexible approach to
compose web services in dynamic environment. Int.
I. Digital Society, Vol. 1.

Brickley, D. and R.V. Guha, 2000. Resource Description
Framework (RDF) schema specification 1.0. W3C
Candidate Recommendation 27. http:/fwww.w3.
org/TR/2000/CR-rdf-schema-20000327/.

68

Bruning, S., S. Weibleder and M. Malek, 2007. A fault
taxonomy for service-oriented architecture.
Proceedings of the 10th TEEE High Assurance
Systems Engineering Symposium, November 14-16,
2007, TEEE Computer Scciety, Washington, DC.,
USA., pp: 367-368.

Chan, K.S., T. Bishop, J. Steyn, L. Baresi and 5. Guinea,
2009. Fault taxonomy for web service composition.
Lecture Notes Comput. Sci., 4907: 363-375.

Charfi, A., T. Dinkelakery and M. Meziniy, 2009. A plug-in
architecture for self- adaptive web service
compositions. Proceedings of the TEEE International
Conference on Web Services, July 6-10, 2009,
[EEE Computer Society, Washingtor, DC., USA.,
pp: 35-42.

Curbera, F., M. Duftler, R. Khalaf, W. Nagy, N. Mukhi and
S. Weerawarana, 2002. Unraveling the web services
web: An introduction to SOAP, WSDL and UDDI.
TEEE Internet Comput., 6: 86-93.

Delgado, N., A.Q. Gates and S. Roach, 2004. A taxonomy
and catalog of runtime software fault monitoring
tools. TEEE Trans. Soft. Eng., 30: 859-872.

Erl, T., 2005. Service-Oriented Architecture: Concepts,
Technology and Design. Prentice Hall, Upper Saddle
River.

Faycal, 7., K. Lazhar and 7. Mohamed, 2011. A
development-oriented process for building web
services ontology using OWL-S Language:
Application in medical web services. Int. . Comput.
Appli., Vol. 34.

Fensel, D., F. van Harmelen, I. Horrocks, D L. McGuinness
and P.F. Patel-Schenider, 2001. OIL: An ontology
infrastructure for the semantic web. TEEE Intell. Syst.,
16: 38-45.

Hai, Y. and X. L1, 2012, A web service QoS predicting
algorithm based on QoS ontology and BP neutral
networks. Int. J. Adv. Comput. Technol., 4 199-199.

Jayashree, K. and 3. Anand, 2012, Policy based
distributed run time fault diagnoser model for web
services. Lecture Notes Institute Comput. Sci. Social
Informat. Telecommun. Eng., 86: 9-16.

Kim, HM., A. Sengupta and J. Evermann, 2007. MOQ:
Web services ontologies for QoS and general
quality evaluations. Int. I. Metadata Semantics
Ontol., 2: 195-200.

Kntikos, K. and D. Plexousakis, 2006. Semantic QoS metric
matching. Proceedings of the 4th Furopean
Conference on Web Services, December 4-6, 2006,
Zurich, Switzerland, pp: 265-274.

Mahdian, F., V. Rafe, R. Rafeh and M.R. Zand, 2009.
Considering faults in service -oriented architecture:
A graph transformation based approach. Proceedings
of the ICCTD'09 International Conference on
Computer Technology and Development, November
13-15, 2009, Kota Kinabalu, Malaysia.

Asian J. Inform. Technol., 12 (2): 60-69, 2013

Mecllraith, 8. and D. Martin, 2003. Bringing semantics to
web services. IEEE Intell. Syst., 18: 90-93.

Mohammad, A., G. Kanaan, T. Khdour and S. Bani-
Ahmad, 2011.
model for semantic web services. J. Inf. Comput. Sci.,
6:177-194.

Qu, Q. and Q. Xiong, 2007. An ontology for
semantic web services. High Perform. Comput.
Commun., 4782: 776-784.

Taye, M.M., 2010. Understanding semantic web and
ontologies: Theory and applications. J. Comput,
2: 2151-9617.

Ontology-based access control

60

Taye, M.M., 2011. Web-based ontology languages and
its based description logics. Res. Bull. Tordan ACM,
2: 2078-7952.

W3C, 2004, Web services architecture W3C working
group note. http/fwww. w3.org/TR/ws-arch/#
stakeholder using.

Yu, Q., X. Liu, A Bouguettaya and B. Medjahed, 2008.
Deploying and managing Web services: Issues,
solutions and directions. VLDB T, 17: 537-572.

Zhou, C., L.T. Chia and B.S. Lee, 2004. DAML-QoS
ontology for web services. Proceeding of the IEEE
International Conference on Web Services, July 6-9,
San Diego, California, USA., pp: 472-479.

