Asian Journal of Information Technology 11 (2): 65-70, 2012

ISSN: 1682-3915
© Medwell Journals, 2012

A Comparative Analysis of Modern Day Network Simulators

Debajyoti Pal
Department of Information Technology,
Camellia Institute of Technology, 700129 Kolkata, India

Abstract: Tt is a very common practice to use network simulators for testing different network performance

parameters before the real-life deployment of such a network. Siumulation results across different sunulators
should be in close agreement with each other and must be dependable. Apart from ns-2, few other recent
network simulators have come into existence today and are gaining in more popularity. Thus, it is evident that

a qualitative comparison should be made about which simulator should be used. In this study, researchers
swrvey some of the widespread network simulators that are in use today and try to evaluate their performance

over certamn parameters by setting up identical network simulation scenarios. The results that are obtained from

the experiments conducted are analyzed in detail.

Key words: Network simulators, simulation, scalability, network-loss, topology, India

INTRODUCTION

Network simulators help us to reduce the cost,
overhead and time that is involved with setting up a real
test-bed containing multiple computers, routers and
data-links. They allow researchers to implement practical
test scenarios that otherwise might be difficult or
expensive to emulate in real hardware for example whle
experimenting with a new routing protocol. In fact they are
particularly useful in allowing researchers to test new
network protocols or modify an existing protocol in a
controlled and reproducible environment. Majority of the
network simulators that are available are based upon the
discrete event-based simulation type (Fisherman, 1978) in
which a list of pending events 1s stored and those events
are processed in order with some events triggering future
events-such as the event of arrival of a packet at one
node triggering the event of the arrival of that packet at a
downstream node.

The first mstance where discrete event-based
simulation was applied towards simulating a computer
network was published by Dupuy et @l (1990) and
Keshav (1998). ns-2 was a direct successor of all those
early efforts. In fact ns-2 i1s so widely popular that
virtually it has become a benchmark for network
simulations. The popularity of ns-2 amongst the research
fraternity 1s primarily due to its ability to support a wide
variety of protocol models and its support for both wired
and wireless networks. However, studies (Xue et al.,
2007; Henderson et al., 2006) reveal that with the growing
mumber of nodes in a given simulated network ns-2

65

suffers from scalability problems. Under extreme
conditions the problem of efficient memory usage and
simulation run time become prominent. New research
domains like Wireless Sensor Networks (WSN), Wireless
Multimedia Sensor Networks (WMSN), grid architectures,
etc. require simulating a large number of nodes where
in the limitations of ns-2 become prominent. Some
modifications have already been incorporated in the latest
version of ns-2 (ns-2.35 released on 4th November, 2011)
like the meclusion of parallelization. Other network
specific features are still due that has ultimately paved its
way to the next generation of the ns-2 simulator,
namely ns-3 (Henderson et al., 2006). In fact, the main
goal behind mtroducing ns-3 1is to provide a newer and
wider sunulation platform that supports the latest
networking technologies (both wired as
wireless) and to mmprove the overall
performance when the number of network nodes
becomes large.

Although, sinulators model the real world but the

way they simulate the realty varies significantly across

well as

simulation

different simulators. Thus, the only way to judge which
simulator is the best is to go for a comparative analysis of
the different available simulators which is the basic theme
of this study. Apart from ns-2 and ns-3 several other
network simulators are available in the market targeted
both towards the research fratemity and commercial
customers. Prominent among them are OMNeT++
(Varga and Hornig, 2008) Java mn Simulation Time (J1ST)
(Barr et al., 2005) GloMoSim (Bagrodia ef al., 1998) and
TOSSIM (Levis et al., 2003).

Asian J. Inform. Technol, 11 (2): 65-70, 2012

COMPARISON OF DIFFERENT
NETWORK SIMULATORS

In this study, researchers review the network
simulators under consideration. ns-2 is included in the
comparison list because it has been popular among all
sections of academics and industry for a very long period
of time and hence serves as the basis for the comparison.
ns-3, OMNeT++ and JiST are gaining in popularity these
days and have their own advantages and disadvantages.

ns-2: ns-2 18 a discreet event simulator that supports a
wide variety of protocols and can be used for both wired
as well as wireless networks. Tt was built in C++ and
provides a simulation interface through OTcl (an object
oriented dialect of Tcl). Users describe a network
topology by writing Otcl scripts and then the main
ns-2 program simulates that topology with specified
parameters. However, the problems those are associated
with ns-2 while runming a large sumulation s well known
with the main constraints being that of start-up time,
memory and CPU usage (Huang and Heidemann, 2001).
This problem is of prime mmportance these days because
the simulations are often run for a scalable network size.

ns-3: Like its predecessor, ns-3 also uses C++ for the
inplementation of the simulation models. However,
mstead of using OTcl as the scripting language, ns-3 uses
Python. Tt should be noted that ns-3 is not an extension
of ns-2. ns-3 integrates architectural concepts and code
from GTNetS (Riley, 2003) a simulator that has good
scalability characteristics. The design decisions for ns-3
were made at the expense of compatibility. In fact, ns-2
models have to be ported to ns-3 in a manual way. ns-3 1s
a new software development effort focused on improving
upen the core architecture, software mtegration, models
and educational components of ns-2. Tt provides support
for the integration of code by providing standard APT’s,
like Berkley sockets or POSIX threads which can be easily
mapped to the sumulation

OMNeT++: In contrast to ns-2 and ns-3 which primarily
focuses on simulation of computer networks, OMNeT++
can be used for simulating any general network. In fact it
is an extensible, modular, component-based CH+
simulation library and frameworle, primarily for building
network simulators. Network 1s meant in a broader
sense that mcludes wired and wireless commumcation
networks, on-chip networks, queuing networks and so
on. Domain-specific functionality such as support for
sensor networks, wireless ad-hoc networks, Internet
protocols, performance modeling, photonic networks, etc.

66

is provided by model frameworks, developed as
independent projects. For example, packages such as
OMNeT++ Mobility Framework and Castalia (Pham ef af.,
2007) facilitate the simulation of mobile ad-hoc networks
and wireless sensor networks. OMNeT++ offers an
Eclipse-based TDE, a graphical runtime environment and
a host of other tools. There are extensions for real-time
simulation, network emulation, alternative programming
languages (Java, C#), database integration, SystemC
integration and several other functions.

OMNeT++ simulations use the so-called simple
modules. Modules can be cormected with each other via
gates and combined to form compound modules. Modules
communicate through message passing where messages
may carry arbitrary data structures. Modules may have
parameters that can be used to customize module
behavior and/or to parameterize the model’s topology.

Like ns-2 and ns-3 OMNeT++ rests upon CH+ for
the implementation of simple modules. However, the
combmation of simple modules mto compound modules
and hence, the setup of the entire network topology takes
place in a language called Network Descriptor (NED). NED
enables us to assign values to the various network
parameters for example the total number of nodes n a
network in a dynamic fashion or can later be configured
during run-time. In fact OMNeT++ follows a strict
object-oriented design philosophy.

JiST: JiST is a high-performance discrete event
simulation engine that runs over a standard Java virtual
machine. It 15 a prototype of a new general-purpose
approach to building discrete event simulators, called

virtual machine-based simulation that unifies the
traditional systems and language-based simulator
designs.

Simulation in JiST 18 made up of entities that actually
represent the network elements for example the nodes
while the simulation events being invoked by some
method calls among those entitties. Embedding the
simulation semantics within the Java language enables
TIiST to inherit all the properties and libraries of java
including the existing compilers. JiST benefits from the
automatic garbage collection, type-safety, reflection and
many other properties of the Java language. The use
of a standard virtual machine provides an efficient,
highly-optimized and portable execution platform and
allows for important cross-layer optimization between the
simulation kemel and running simulation.

Unfortunately, the official development of TiST has
stalled and it is no longer maintained by its researcher,
Rimon Barr. Still, researchers include it in the study due to
the numerous advantages that it provides.

Asian J. Inform. Technol, 11 (2): 65-70, 2012

METHODOLOGY AND
EXPERIMENTAL TEST BED

In this study, researchers define the experunental test
bed that is used to conduct the simulation experiments
across the four different simulators under consideration.
The results that are obtained are analyzed there after and
conclusions are drawn based upon the same.

With the aim to compare the performance of the
different simulator tool kits, researchers implemented the
same network simulation model in all of them. The
simulation does not depend on any particular simulation
model tied down to a specific simulator but is generic in
nature that is applicable to all the simulators under
consideration. Creating the own network model to
evaluate the performance comparatives was preferred
because researchers did not want to be tied down to the
already existing network specific models as they tend to
mfluence the efficiency and complexity of the entire
simulation scenario in general.

The simulation models a very basic network which
consists of different nodes that are arranged in a square
topology as shown m Fig. 1. It should be clearly noted
that researchers show 4 nodes for illustration purposes
only. In reality while carrying out the experiment, the
actual number of nodes is varied from a minimum of
16-2048. The commurication process starts at the sending
node which generates one packet every second that 1s
broadcasted to all its immediate neighbors. The
neighboring nodes in turn broadcast the unprocessed
packets after a delay of 1 sec, to their immediate neighbors
respectively, thereby flooding the entire network.

The propagation delay of 1 sec is implemented
directly by delaymng the simulation event’s execution.
Also researchers assume that the nodes do not implement
any specific quewng policy. The probability of packet
drop is assumed to be the same across every link.
Researchers chose this model due to its simplicity without
going into different network specific details.

The simulations were carried on a Intel core-13-2310M
CPU based system having 4 GB RAM, 500 GB hard disk
and running dual operating systems (Windows 7 Ultimate

Sender —» ‘ ¢ » G

Fig. 1: Different nodes arranged in a square topelogy

Receiver

&7

and Ubuntu 10.04 LTS). The different observations
were done on the latest simulator Versions viz
ns-2.35, ns-3.12.1, OMNeT++ 4.1 and JiST-1.0.6. Java
version 6.0.290 provides the run time environment for
OMNeT++ and TiST.

The above mentioned network topology along with
the constramts are run m the four simulators under
consideration for network loss ranging between 0-1. The
simulation is carried out for 800 sec in all the cases. The
total number of network nodes is increased from
0-1400 gradually.

Figure 2a-c¢ show the graph of the total number of
packets that are dropped in the network v/s the total
number of network nodes for network loss corresponding

t0 0.2, 0.5 and 1.0, respectively.

1.0

(@ _—e—ns2
—&— ns-3
0.8 —&— JiSt
o —%— OMNeT++
19
S 0.6
% Network loss = 0.20
£ 04
0.2 é
1.0 T T T T T T T 1
1.0+ (b)
Network loss = 0.50
0.8
&
T 0.6+
2
3
0.4
0.2
0.0 T T T T T T T 1
Network loss = 1.00
1.0 (©)
0.8
&
5 0.6
B
]
& 0.4+
0.2
0.0 1 1 T 1 1 T T 1
0 200 400 600 800 1000 1200 1400 1600

Network size

Fig. 2: Total number of packets dropped in the network;
a) network loss = 0.20; b) network loss = 0.5; ¢)
network loss = 1.0

Asian J. Inform. Technol, 11 (2): 65-70, 2012

From the Fig. 2a-c, it is evident that keeping the
network loss constant with increasing the number of
network nodes, the total number of packets dropped also
mcreases. This 1s quite obvious and as seen with increase
probability of network loss, the number of packets
dropped also increases. In fact, corresponding to network
loss = 1.0, almost 100% of the packets are dropped 1n all
the simulation scenarios.

The percentage of packet dropped for different
values of network loss is consistent across all the
simulation platforms although, ns-2 m particular is more
prone to the effect however, still within the safe limits of
tolerance. Thus, it can be concluded that the reference
simulation scenario that researchers use in all the four
cases produce almost equivalent results.

Now, researchers compare the different simulation
tools with respect to three very important performance
metrics, namely, simulation run-time, memory usage and
computation time. For this purpose researchers consider
2 cases:

Case 1: The network loss is kept constant at 0.02 and the
total mumber of nodes 1s gradually increased from 0-3000.

Case 2: The network loss is varied from 0.0-1.0 keeping
the total number of nodes constant at 3000.

In both the cases, the sunulation time 1s fixed to
800 sec. Figure 3 shows the graph for simulation run-time
v/s the network size. Tt is evident that for simulating the
same number of nodes the time taken by ns-2 is maximum
while that taken by JiST 1s mimmum. For a network
size of 3000 nodes while the average time taken by ns-2 1s
about 440 sec that taken by TiST is about 80 sec. Hence,
the simulation run-time for JiST 1s about 5.5 times faster as
compared to ns-2. In fact it is quite surprising that JiST
despite being based on a Java platform outperforms all
other simulation tools. Primarily, this is due to the JiST
architecture. Apart from parallel execution of different
entities, J1ST also has provisions of various run-time
optimizations based upon the analysis of the executed
byte-code (Zygmunt, 2004). Thus, the slowness of Tava is
purely a myth as compared to a Ct++ platform. The
simulation run-time for ns-3 (about 110 sec) 1s also far
better as compared to ns-2. This 15 primarily due to the
abolishment of oTCL/C++ duality in ns-3. The
performance of OMNeT++ is more or less similar to
that of ns-3. Thus, apart from ns-3 all the other 3
simulators are equally scalable with respect to the
simulation run-time.

Figure 4 shows the graph for different values of
network loss v/3 the simulation run-time keeping the total
number of nodes fixed at 3000.

68

160

—e—ns-2
—a— ns-3
—4— JiSt
—»— OMNeT++

140-
120-
100-
80-
60-
40-

Computation time (sec)

20

T T T 1
1500 2000 2500 3000

Network size

T T
0 500 1000

Fig. 3: Graph for simulation run-time v/s the network size

—e—ns-2
—a— ns-3
—a— JiSt
—%— OMNeT++

Computation time (sec)

T T
0.4 0.6

Drop probability

Fig. 4: Graph for different values of network loss v/s the
simulation run-time

160-
—e—ns-2

1401 —m—ns3
g 1y ——ist
2 T —— OMNeT++
2 100-
[
Z 80
=
o .
: 60
2 401

207

T T T 1
0 1000 2000 3000 4000

Network size

Fig. 5: Graph between network size v/s memory usage

As it is evident from the figure withan increase in
network loss, the simulation run-time also decreases. This
1s quite obvious because as researchers increase the
network loss, more and more number of packets are
removed from the simulation scenario thereby causing the
simulation run-time to drop. For lower order range of
network loss, the computation time for ns-2 is maximum
while that of JiST is minimum.

Similar to the analysis of the simulation run-time
researchers also investigate the memory usage of the
different network simulator tools. Figure 5 shows the

Asian J. Inform. Technol, 11 (2): 65-70, 2012

600+

1 —e—ns-2
= —a— ns-3
s —— JiSt
by 4004 —— OMNeT++
g
=
g\
£ 200
L
=

0 T T T T
0 0.2 0.4 0.6 0.8 1.0

Drop probability
Fig. 6: Graph between network loss and memory usage

graph between network size v/s memory usages keeping
the network loss constant. For network size up to 500 the
memory usage of the different simulator tools are
comparable but thereafter and especially as the number of
network nodes becomes large the memory consumption
of JiST increases to a great deal. In fact it exhibits the
worst performance with respect to memory usage. This is
quite surprising due to the fact that Java supports
automatic garbage collection mechamsm. Memory usage
of the remaimng simulator tools exhibit more or less the
same pattern (increasing m a linear fashion with the
number of network nodes) with ns-3 being the most
efficient amongst all of them in this regard.

Figure 6 shows the same memory usage for case 2,
ie., a graph between network loss and memory usage
keeping the total, number of nodes fixed at 3000.

As expected with an increase in network loss since,
more and more packets are being removed from the
simulation scenario hence the memory utilization of the
simulator tools also keeps on decreasing. Again JiST
shows the worst memory usage characteristics among all
the others. It should also be noted that even for network
loss equal to 100% some residual memory 1s used by all
the simulators. This can be attributed to the simulator
process itself that keeps on rurming in the background at
all pomts of time.

CONCLUSION

A few papers have been found on performance
comparison of networl simulators. One example is the
research provided by Nicol (2003) where the performance
of a TCP-based simulation 1s implemented n ns-2, SSFNet
and J-Sim. Similarly, another study (Albeseder and
Fuegger, 2005) analyzes the run time performance of
ns-2, OMNeT++ and SimPy commg to the same
conclusion as researchers. Another example 1s that of
which uses some more network simulators.

60

After conducting an in depth studies of the different
network simulators researchers come to a conclusion that
ns-3, OMNeT++ and TiST are all capable of carrying out
large scale sumulation scenarios. In fact the execution
speed of TiST is the best although it is worst with respect
to memory utilization. Thus, a tradeoff has to be done
between simulation run-time and memory usage and often
it depends upon the circumstances and the environment
in which researchers are going to run the simulation. Also
the official development and maintenance of TiST has
been stopped. The overall performance of ns-2 is worst
among all.

Thus, researchers can conclude that the answer to
the question which simulator 13 the best 1s a very difficult
one to be answered and is heavily dependent upon the
specific use case. However, if memory requirement 1s not
a constraint and scalability is the primary issue then ns-3,
OMNeT++ and J1ST are the obvious choices.

REFERENCES

Albeseder, D. and M. Fuegger, 2005. Small PC-network
simulation a comprehensive performance case study.
Research Report 77/2005, TU Wien, Institute of
Technology Computer Science, http:/www.vmars.
tuwien.ac.at/php/pserver/extern/docdetail php?DID=
1847 &viewmode=paper&year=2005.

Bagrodia, R, R. Meyer, M. Takai, Y.A. Chen and
X. Zeng et al., 1998. Parsec: A parallel simulation
environmernt
31: 77-85.

Barr, R., Z.J. Haas and R.V. Renesse, 2005. JiST: An
efficient approach to simulation using wvirtual
machines. J. Software Pract. Experience, 35: 539-576.

Dupuy, A., I. Schwartz, Y. Yemim and D. Bacon, 1990.
NEST: A network simulation and prototyping test
bed. Communication, 33: 63-74.

Fisherman, G.S., 1978 Principles of Discrete Event
Simulation. John Wiley and Sons Inc., New York.

Henderson, T.R., S. Roy, 3. Floyd and G.F. Riley,
2006. #us-3 project goals. Proceedingas of the
Workshop on ms-2 The IP Network Simulator,
October 10, 2006, ACM Press, New York, USA.,
pp:13-13.

Huang, P. and I. Heidemann, 2001. Mimmizing routing
state light-weight
Proceedings of the International Symposium on
Modeling, Analysis and Simulation of Computer
and Telecommunication Systems Cincinnati,
August 15-18, 2001, Ohio, USA.

for complex systems. Computer,

for network simulation.

Asian J. Inform. Technol, 11 (2): 65-70, 2012

Keshav, S., 1998. Real: A network simulator. Technical Riley, G.F., 2003. Large scale network simulations with

Report, University of California at Berkley, CA, TTSA. GTNetS. Proc. Winter Simul. Conf., 1: 676-684.
Levis, P., N. Lee, M. Welsh and D. Culler, 2003. TOSSIM: Varga, A. and R. Homig, 2008. An overview of the
Accurate and scalable simulation of entire TinyOS OMNeT++ simulation environment. Proceedings of

applications. Proceedings of the 1st International
Conference on HEmbedded WNetworked Sensor
Systermns, November 5-7, 2003, Los Angeles, CA.,
USA., pp: 126-137.

Nicol, D.M., 2003. Scalability of network simulators
revisited. Proceedings of the Communication
Networks and Distributed Systems Modelling and

the 1st Intermational Conference on Simulation
Tools and Techniques for Communications,
Networks and Systems, March 3-7, 2008, Marseille,
France.

Xue, Y., HS. Lee, M. Yang, P. Kumarawadu,
HH Ghemiwa and W. Shen, 2007. Performance

Simulation Conference, February, 2003, Orlando, FL, evaluation of ns-2 simulator for wireless sensor

TUSA. networks. Proceedingas of the Canadian Conference
Pham, HN., D. Pediaditakis and A. Boulis, 2007. From on Electrical and Computer Engineering, April 22-26,

simulation to real deployments in WSN and back. 2007, Canada, pp: 1372-1375.

Proceedings of the &th TEEE International Symposium Zygmunt, R.B., 2004. An efficient, umfying approach to

on a World of Wireless, Mobile and Multmedia simulation using virtual machines. Ph.D. Thesis,

Networks, June 18-21, 2007, Espoo, Finland, pp: 1-6. Cornell University, Tthaca, New York, TUSA.

70

	65-70_Page_1
	65-70_Page_2
	65-70_Page_3
	65-70_Page_4
	65-70_Page_5
	65-70_Page_6

