Asian Journal of Tnformation Technology 10 (6): 249-258, 2011

ISSN: 1682-3915
© Medwell Journals, 2011

Block-Based Approach for End-User Software Development

Abdullah Mohd Zin
Programming and Software Technology Research Group,
Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia

Abstract: End-user programming refers to programming activities carried out by end users. These end-users

can include teachers, accountants, scientists, engineers, parents and all other people who are not trained as

programmers. End-user programming 1s now getting more popular. It was projected that the number of end-user
programmers in the 175 is about 55 million compared to 2.75 million professional programmers. In order to

support end-user programming, a number of programming systems have been developed which can be divided

mto the following categories: Application-specific languages, programming by example, visual programming

and natural programming. This study discusses the concept of a new programming system to support end-user
programming called the block-based programming system. In this programming environment, end-users can

develop applications by integrated programming blocks that have been developed by block developers.

Key words: End-user programming, component-based software development, block-based programming,

super-enduser, Malaysia

INTRODUCTION

Computers mn the old days were not as accessible as
they are today. Software at that time was not built for the
general public. Now a days however, software is being
used by people from all walks of life. Various kinds of
application software are presently available to do most
tasks imaginable such as listening to music, writing
professional documents, scheduling projects and so on.

In an effort to meet the needs of diverse users,
software developers normally mclude myriads of features
which often results in bloated software. End-users usually
have little choice but to accept what 15 offered even
though they will probably never use most of the provided
features. Some software however, provide features
whereby end-users are able to write programs in order to
extend, modify or customize certain aspects like
appearance or behaviour. This type of programming
activities are called end-user programming.

End-user programming is a term that refers to
computer programming carried out by end users who do
not necessarily have a background in writing programs in
conventional programming languages (Goodell, 1998).
Tnitially, the first group of end-user programmers were
engineers and scientists who used some programming
languages such as FORTRAN to write small programs.
Nowadays, end-users programmers wmclude teachers
(Wiedenbeck, 2005), children (Petre and Blackwell, 2007),
interaction designers (Myers et al., 2008) and scientists
(Segal, 2007). It 1s also possible for this list to be expanded
to mclude accountants, parents and all other people who

249

are not trained as programmers. There is much interest
amongst end-users to be able to write their own programs.
For example, it 13 estimated that there are 55 million
end-user programmers in the UJS, compared to 2.75 million
professional programmers (Paterno et al., 2003).

There are various end-user programming techniques
from simple but limited metaphors to more complex and
powerful techmques for advanced end-user programmers.
One of the earliest attempt for end-user programming 1s
spreadsheet macro that enables end-users to write some
simple programs to do some specific numerical calculation
tasks. Now a days, there are a lot of end-user
programming techniques and tools that have been
developed.

Problem formulation and solution: Most of the end-user
programming tools are developed by different group of
people and for different purposes. Each of these tools
employs different method and programming style.
Therefore, 1t 13 not easy for users to move from one
application to another.

Furthermore, many of these tools still require a small
amount of coding. Although, this type of coding may be
very simple and straight forward for professional
programmers, it can still be a difficult task for end-users.
Small errors n coding can cause a huge amount of errors.
For example, 1t was reported that in 1980s mistakes made
in writing macros for Lotus 123 spreadsheet by some
Florida contractors to prepare for tenders has caused
them to lose a large amount of money (Harrisson, 2004).

In order to solve this problem, the researchers are
proposing a general purpose, adaptive and programiming-

Asian J. Inform. Technol., 10 (6): 249-258, 2011

less end-user programming system. By having this
system, all end-users applications can be developed by
using a single programming system. In this programming
system, all facilities and functions needed by end-users
will be provided in the form of programming blocks. End-
users will be able to develop an application simply by
mtegrating relevant programming blocks. Thus, the
researchers propose that this programming system to be
called Block-Based Programming System (BBPS).

RELATED WORK

The idea of BBPS approach is derived from the
combination of Component-Based Software Development
approach (CBSD) and End-User Programming (EUP)
approach.

Component-based software development: Since, the early
1990°s, Component-Based software technology has
become an increasingly popular approach to facilitate the
development of evolving systems as it promised to
address some of the problems of object-oriented
development technologies (Harrisson, 2004).

A component can be defined as a software module
with a published interface which offers a set of related
services; it must be delivered in a ready to use form.
Missed schedules, exceeded budgets and defective
products are the major crises in current software
development. CBSD is a hopeful solution to the current
software crisis and has gamned considerable attention in
the software mdustry.

The objective of this technology is to take elements
from a collection of reusable software components and
build applications by simply plugging them together.
Hence, the main aim of this technology 1s to produce
high-quality software systems with shorter and more
cost-effective development cycles. By reconfiguring
components, adapting existing components or
mtroducing new compoenents it 1s hoped that applications
could be adapted to changing requirements of real-world
software systems more easily and address the problems
of object-oriented development approaches (Cheung,
2004).

In order to support CBSD, a number of component
models have been proposed such as CORBA (OMG,
1996), COM (Rogerson, 1997), JavaBeans and more
recently Enterprise JavaBeans (Monson-Haefel, 2000)
and the CORBA Component Model. Furthermore, a
number of component-based development environments
have been made available such as Delphi, Visual Studio,
Visual Age and Eclipse.

250

End-user development: End-User Development (EUD)
means the active participation of end-users in the
software development process. According to
Costabile et al. (2004) it has been argued that EUUD can
help to develop a software that meets the actual
requirement of the user.

The range of active user participation in the software
development process range from providing
information about requirements, use cases and tasks
including participatory design to end-user programming.
Terms such as mutual development, co-development and
participatory design refer to activities in which end-users
are involved m a system design but may or may not be
involved in the actual coding (Costabile e al. 2009).

Extreme Programming (XP) is an example of a software
development methodology that supports active end-users
participation. In XP, requirements are expressed as
scenarios or user stories. Once the scenarios have been
developed, they are implemented as a series of tasks.
Programmers work closely with users to develop and test
the task (Beck, 1999).

End-user programming 1implies that some
programming tasks that are traditionally performed by
professional programmers are transferred to the users.
The phrase end-user programming was first popularized
by Nardi (1993) in her investigations into spreadsheet use
in office workplaces.

End-user software engineering (Ko et al., 2008) is a
new concept that mvolves systematic and disciplined
software engineering activities that address software
quality issues but these activities are secondary to the
goal that the program is helping to achieve. Current
research in end-user software engineering is to develop a
software engineering methodology that incorporate
software engineering activities into users’ existing
workflow without requiring people to substantially
change the nature of thewr work or their priorities. For
example, rather than expecting end-users to do thorough
testing, tools can be used to provide feedback about
software quality as edits the program.
Approaches like these allow users to stay focused on
their primary goals while still achieving software quality.

carl

the user

End user programming systems: End-user programming
1s made possible by the availability of new programming
systems. Generally, these systems fall into the following
categories: application-specific languages, programming
by example, visual programming and natural programming.
Application specific language 1s a type of language that
can be used by end-users in a very specific domain. An
example of this type of system was developed by
Prahofer et af. (2006) to be used in automotion domain. In

Asian J. Inform. Technol., 10 (6): 249-258, 2011

this system, a new domain-specific language called
Monaco (Modelling Notation for Automation Control)
serves as a basis for building control flow programs. The
language 1s similar to Statecharts but adopts an imperative
notation that is much closer to the perception of the
domain experts. A compiler-generator produces the
Monaco compiler to read Monaco source code programs
and generate parse tree object models, Monaco
CodeDOM. A Monaco CodeDOM is then executed by the
Monaco virtual machine (Monaco VM). End-users of the
automation software system 1s the mdividual machine
operators whose basic task 1s handling and supervising
the machine operations, usually with the help of an
electronic control panel. Providing all the machine
parameter settings and defining an operation sequence for
a very specific manufacturing task usually requires deep
knowledge of the domain and due to its complexity, still
represents a great programming challenge. Tn this system,
end-users do the programming task by interacting with an
Eclipse-based
(Monaco TDE).
Other application specific end-user programming
systems mclude LabVIEW and Mathematica. LabVIEW 1s
an end-users graphical programming enviromment used by
engineers and scientists to develop sophisticated
measurement, test and control systems. Tt provides
mtegration with hardware devices and provides hundreds
of built-in libraries for advanced analysis and data
visualization. The programming environment provided by
LabVIEW is known as graphical dataflow programming
environment. End-user programmers need to define

mtegrated development environment

execution flow in code by creating diagrams that show
how data moves between functions (known as Virtual
Instruments or VIs). Mathematica i1s an end-user
computational software that enables scientists and
engineers to write programs to solve problems related to
mathematical computing. The programming language
provided by Mathematica is simple and easy to be used
by end-users since, Mathematica 13 supported by some
mathematical function libraries and tools such as matrix
and data manipulation tools, symbolic computation tool,
2D and 3D data and function visualization and animation
tools, solvers for systems of equations, numeric and
symbolic tools for discrete and continuous calculus and
multivariate statistical libraries.

Programming by Example (PBE) or Programming by
Demonstration (PBD) 1s a programming system that allow
a user to demonstrate the deswed program by gomg
through the steps. The simplest form of PBD is macros
such as those found in Microsoft Office. Macros allow
the user to record a sequence of fixed actions and replay
these actions by using a single mouse click. A more

251

powerful PBD systems may contain conditional
constructs, variables and iteration that can combine the
ease of use of macros with the expressiveness of
programming (Lau and Weld, 1999). Some of the
programming systems use Al techniques to try to
automatically generalize the program from the user’s
examples. Examples of this type of systems are
SMARTedit (Lau et al., 2003), Sheepdog (Lau et al., 2004)
and GoScripter (Little et al., 2007). SMARTedit is a text
editor that uses PBD to automate repetitive text-editing
tasks. For example, when reformatting text copied and
pasted from the web mte a document, one can
demonstrate how to reformat the first line or two of text
and the system learns how to reformat the remaining lines.
Sheepdog 1s a PBD system for leamimng to automate
Windows-based system admimistration tasks. For
example, based on several demonstrations of experts
fixing the configuration of a windows laptop in different
network environments, the system produces a procedure
that could apply the correct settings. CoScripter 1s a PBD
system for capturing and sharing scripts to automate
comimon web tasks.

Visual programming focus on using graphics to make
the process of programming easier. One of the popular
tools for visual programming is the Microsoft Visual
Basic. Research are currently carried out to develop
simpler visual programming tools for end-users. One
example of the system 15 Kodu (Maclaurin, 2011) that 1s a
designed specifically for young children to learn through
independent exploration. The simplified programming
model provided by Kodu lowers the barrier of entry for
new programmers. To make 1t more nteresting, Kodu 1s
integrated in a real-time 3D gaming environment with
intuitive user interface and graphical production values.

Natural programming is a type of programming
systems that faithfully representing nature or life which
implies it worlks in the way people would expect. Current
research in natural programming aims towards developing
general principles, methods and programming languages
and environment designs that will sigmficantly reduce the
amount of learning and effort needed to write programs
for people who are not professional programmers. An
example of a natural programming system i1s called
HANDS (Myers et al., 2004) that uses an event-based
language that features a new model of computation,
provides queries and aggregate operators that match the
way non-programiners express problem solutions. HAND
also has high visibility of program data and mcludes
domain-specific features for the creation of interactive
animations and simulations. A study that was carried out
shows that 10 vears old children were able to leamn the
HANDS system during a 3 h session and then, used it to

Asian J. Inform. Technol., 10 (6): 249-258, 2011

solve programming problems. The study also found that
children using the full-featuwred version of HANDS
performed significantly better than their peers who used
a version modified to be more like typical programming
systems.

End-users programming behaviours: A number of
empirical studies of end-user programming behaviour
have been reported Several studies have made uses of
the EUSES spreadsheet corpus (Fisher and Rothermel,
2005) the behaviors of
spreadsheet developers; this corpus contains 4, 498
artifacts. Bogart ef al. (2008) studied the CoScripter web
scripting environment. The most interesting study so far

to examine end-user

was carried out by Dinmore and Boylls (2010) about the
end-user programming behaviour when using Yahoo!
Pipes. Yahoo! Pipes 1s a web-based, visual programming
environment introduced by Yahoo! in the year 2007 to
enable users to rewire the web. Pipes 1s a dataflow system
i which the data is sourced from the web (RSS feeds, web
pages, raw data) and flows through an interconnected set
of modules that act upon it, ultimately producing some
result. The result of the study shows that end-users
employ only a small number of the programming options
that Pipes offers to them and typically compose them in
pipes consisting of only three or four modules. Further,
while they are able to create more complex, multi-branch
pipelines, they strongly favor simple, straight-through
Pplpes.

Another study was carried out by Blackwell and
Morrisen (2010} to compare the behaviour of end-user
programmers and professional programmers. This study
involved monitoring the programming behaviour of an
end-user who was a healthcare professional in
customizing an electronic patient record system for a
hospital. In order to explore and contrast the different
ways that the same situation was conceived by an end-
user programmer and by a professional programmer, a
professional programmer was also employed as a quasi-
experimental participant.

The mam theme of the findings 1s that end-users have
users too. The end-user programmer receives feature
requests from the other hospital staff with proposals or
recommendations for further customisation. Thus end-
user programmer’s job is not confined to programming
alone but also in business process analysis, user interface
design and many other aspects of software engineering.
Another finding indicates that software tools that are
normally used by professional programmers may not be
suitable for end-user programmers. The third finding is

252

that end-user programmers are not intrested in the
technical programming details but more concern with
ensuring that the system works. Thus it 18 mmportant that
any end-user programming systems to make a clear
distinction between the system model that must be
understood by end-users and the underlying technical
behaviour of the system. In the psychology of
programming community, this has been described as the

black box inside the glass box.
BLOCK-BASED PROGRAMMING

Block-based programming system has been proposed
as a general purpose, adaptive and programming-less
end-user programming system. The 1dea of tlus
programming system 1s derived from the following
objectives:

The programming system must be general purpose
which implies that it 1s not limited to a specific
programming domain

Tt must be programming-less which implies that end-
user programmers are not required to write
programming codes 1 order to develop applications
Tt must support the idea of end-user software
engineering which implies that it must address the
software quality issue

Similar to most of other end-user programming
system, application development must be based on
components or modules

The components or modules must be simple to be
used. It should also must be adaptive and
custemizable

Itmustmake a clear distinction between tasks of end-
user programmers and tasks of professional
programimers

In order to achieve these objective, the block-based
programming system can be described as follows:

It should support software development in many
problem domain

Many blocks will be made available for each problem
domain

Each block supports a certan task or function
End-users are allowed to customize blocks and to
build applications adapting to their needs
Application software development can be done by
integrating these blocks

In this study, the concept of block-based
programming system have been shown in Fig. 1.

Fig. 1: Block description

Asian J. Inform. Technol., 10 (6): 249-258, 2011

0

[®=+0)

Product

Attributes

Country

Product block

Name - Make o Type ke Color -
abe abc abc abe Delete
abe abe abec abe Delete

Page: of 2 Ga [P PUIE=0
Add
Change
“igw
Mesxt
T 1 T \

Product name Add product information

Product images Edit product information

Product video Upload product image

Product sounds Upload product video

Product weight Upload product sounds

Product height Delete product

Product color Add product ingredient

Product brand Edit product ingredient

Product type Add product nutrition composition

Product price Edit product nutrition composition

Product country made Add product description

Product material Edit product description

Product flavour

Product ingredient

Product nutrition composition
Product authorize

Product description

Product manufacturing date
Product expired date

Blocks: The term programming block (or sunply, a block)
refers to a software component which 15 easy to reuse,
highly composable, customizable and configurable. Block
attributes, GUI elements,
behaviors or methods and interfacing (Pin in/Pin out).

Each block 13 designed and created to support a
specific task. Blocks can be divided mnto two categories:
domam specific blocks and general-purpose blocks.
Domain specific blocks refer to blocks that are developed
for a specific application domain.

General purpose blocks can be used for any type of
applications. Figure 1 is an example of a block called
Product block which is a block that being use to develop
an e-commerce application. Users
customize this block by changing fonts, colors, attributes

contains four elements:

are allowed to

and behaviors and even can make minor change on
GUL

Software developers: Software developers are persons
responsible to design the software as well as writing the
programs. In BBSD, there are two types of software
developers. They are known as:

¢ The block developers are professional programmers
who are responsible for blocks development. The
block developers need to have a very strong
technical expertise in order to be able to produce a
very high quality and reliable blocks

¢ The application developers are the end-users (such
as parents, teachers, managers administrators,
engineers and scientists) who are responsible for
selecting suitable blocks, customizing them and
integrate them to develop an application. The
application developer need to focus more on the
application domain as well as the system model of the
proposed application

253

Asian J. Inform. Technol., 10 (6): 249-258, 2011

Analysis

Jd

Design

Jd

Implementation

J

Unit test

d

Integration test

d

System test

Fig. 2: Conventional process model

Analysis

4

Component acquisition

4

Component-oriented design

4

Component composition

4

Integration

Fig. 3: Component-based software process model

Process model: Comparison between conventional
process model, component-based software process model
and BBP process model is shown in Fig. 2.

In the conventional approach (Fig. 2), a programmer
or a programming team will be given the task to do the
requirement analysis. Based on the analysis, researcher
will continue to do the design, coding and testing.

In component-based software process
(Fig. 3), a programmer or a programming team needs to do
the requirement analysis. Based on this analysis, software
components are acquired. If any of the components are
not available, they must be developed in-house. The
programmer then proceed to combine these components

model

mnto a complete application, followed by a system testing.
In block-based programming system (Fig. 4), there will be
two groups of people working independently.

254

Domain analysis Requirement

bI

Block Software design
identification
4 Block acquisition
Block
implementation

Block integration

Block testing

IbIbIhIhI

System test

Publish blocks

I(::I{::

Application developer

Block developer

Fig. 4: Block based programming system process model

Block developers develop the blocks for a specific
domain and publish these blocks. Application developers
are end-users who will acquire blocks and will integrate
these blocks to form an application.

Block identification methodology: This methodology
helps block developers to 1dentify blocks that are needed
for a specific domain The researchers propose a Block
Modeling Language (BML) which 1s basically based on
UML. Similar to UML, use cases will be used for domain
analysis. As an example, Fig. 5 shows the use case
diagram for the domain of online shopping.

From the analysis, several different types of blocks
for online-shop had been identified as shown in Fig. 6.
These blocks are product block, shoppingecart block,
payment block, shipping block, advertisement block, blog
block, email block, manage product block, database block,
serverconnection block and websetup block.

Blocks implementation: The implementation refers to the
process of designing, coding and testing a block. Tdeally
blocks could be implemented by using any programming
languages.

However, in the real world, some programming
languages are better suited for implementing blocks than
the other. The researchers found that Tava is currently the
best programming language for mmplementing blocks
since, it is based on virtual machine that is supported by
most of the computing platforms.

Blocks customization: An application developer can
customize blocks according to the requirement of the
application. This customization can be done by changing
the value of the attributes of the blocks. Some blocks may
allow application developers to customize some of the
behaviour of the blocks.

Asian J. Inform. Technol., 10 (6): 249-258, 2011

Create check list O

Manage product

Browse product

O Manage invento

Create new customer

/ Add to shopping cart << Exfend >>

Online customer View shopping cart Manage customer

<<Includ% .
Login
O O

Check o\ Process order
\ Process payment

Shop owner

illnclude >> O

Delivery order

View order status O

X X Varify and accept
Send confirmation mail ., siomer payment

Online-shopping
Fig. 5: Domain analysis for online shopping

Check list block

Shopping block

Create check list
=3 Manage product

7

Browse product - ‘\
. Manage \-\

Create new customer inventory
/ Add to shopping cart \
< Extend /> %—%

Manage customer

Online customer View shopping cart - Shop owner
_'. Login block
<<Include>>

)

ogin

3
=

O
7
Check out \ Process order
‘ Payment block
Process payment
Y‘<lnclude>> -
. . Delivery order

View order status Varify and accept customer
Send confirmation mail payment

.h’

Block identification based on online-shopping

Fig. 6: Blocks identification

255

Asian J. Inform. Technol., 10 (6): 249-258, 2011

Block A > Block B
Fig. 7: Block integration environment (Sequential
ordering)
Block B1
PO
Block A _< X Block B2
N
Block B3

Fig. 8: Block integration environment (Deterministic
selection)

Blocks integration: Block integration is the process of
mtegrating blocks into applications. Blocks can be
mtegrated by using selectors or combinators. The
researchers proposed that there should be four types of
selectors for integrating blocks.

Sequential ordering: Sequential ordering implies that
after block-A has been executed, block-B will be executed.

Deterministic selection: After block-A 1s executed,
block-Bn will be executed based on the condition 3.

Random selection: After block-A 15 executed, one of
block-Bn will be selected at random. This type of selection
is important in order to ensure that a certain degree of
non-determimsm can be provided.

Repeat: Block A will be repeated if condition X.
Tool support: There are a number of software tools

support block-based programming
The researchers identified two

needed to
environment. have

important tools:

Blocks creation tools: Blocks can be developed by using
any of the curently available programming tool. One
possible tool Netbeans IDE 5.0 written completely by
using Java Beans concept and methodology. However,
there 1s a need for special purpose block creation tool to
be provided to help block developers to create blocks
properly. This tool will also be provided with a suitable
testing mechanism to ensure that the created blocks can
worl together with other blocks.

256

Block B1

Block A Block B2

Block B3

Fig. 9: Block mtegration environment (Random selection)

N\

_.<X}.

N

Block A

Fig. 10: Block mtegration environment (Repeat)

Blocks integration tools: There are a number of ways that
blocks can be mtegrated. One approach 1s to use a similar
approach to visual programming where blocks can be
integrated by using drag-and-drop mechanism as shown
in Fig. 7-10. Another approach for blocks integration is
the story telling approach. While visual IDE may be
considered easier to use by most programmers, story-
telling approach may be more afttractive to non-
programmers.

CONCLUSION

This study describes a general purpose, adaptive and
programming-less end-user programming system. This
system 18 called block-based programming system since,
it is based on the concept of programming blocks.
Through this system, end-user programmers will be able
to compose, adapt or customize applications to meet their
specific requirements. Tt is hoped that the availability of

this programming system will enable end-user
programmers to develop Thigh quality software
applications.

A number of the research need to be carried out in
order to support block-based programming system. Some
of the researches are in progress and will be reported later.
The researchers can divide the research into three main
areas. The first area 15 to develop methodologies that can
support the use and implementation of block-based
programming. One of the important methodologies is the
block identification methodology that will ensure that all
of the blocks that are needed for a particular domain can

Asian J. Inform. Technol., 10 (6): 249-258, 2011

be identified and developed. The second area is to
develop blocks for some application domains. Two
particular domaing are the development of blocks for
developing e-commerce applications and blocks for
developing courseware. The third one is to develop some
software tools to support this programming approach.
Both tools that have been identified are currently being
developed.

REFERENCES

Beck, K., 1999. Extreme Programming Explained: Embrace
Change. Addison-Wesley, Boston.

Blackwell, A.F. and C. Morrison, 2010. A logical mind, not
a programming mind: Psychology of a professional
end-user. Proceedings of the 22nd Annual Workshop
of Psychology of Programming Interset Group, Sept.
19-21, University Carlos TTT of Madrid.

Bogart, C., M. Burnett, A. Cypher and C. Scaffidi, 2008.
End-user programming in the wild: A field study of
CoScripter scripts. Proceedings of the IEEE
Symposium on Visual Languages and Human Centric
Computing, Sept. 15-19, Herrsching am Ammersee,
Germany, pp: 39-46.

Cheung, HW., 2004, The impact of component-based
technology on the role of user in traditional software
development. 21st Comput. Sci. Seminar.

Costabile, M.F., D. Fogli, P. Mussio and A. Piccinno,
2004, Software environments for end-user
development and tailoring. Psychnol. T., 2: 99-122.

Costabille, MF., P. Mussio,
A, Piccinno, 2009. Supporting end users to
be co-designers of thewr tools. End User Dev.,
5735: 70-85.

Dinmore, M.D. and C.C. Boylls, 2010. Empirically-
observed end-user programming behaviors in Yahoo!
pipes. Proceedings of the 22nd Annual Workshop of
Psychology of Programming, Sept. 19-21, Madrid.

Fisher, M. and G. Rothermel, 2005. The EUSES
spreadsheet corpus: A shared
supporting experimentation with spreadsheet
dependability mechanisms. Proceedings of the 1st

LP. Provenza and

resource for

Workshop on End-User Software Engineering, May
21st, Saint Louis, Missourl, USA.

Goodell, H., 1998. End user programming. Proceedings of
the IEEE Symposium on Visual Languages and
Human-Centric Computing, September 1998, Dallas,
Texas, pp: 215-222.

Harrisson, W., 2004, The dangers
programming. TEEE Software, 21: 5-7.

of end-user

257

Ko, AJ, R Abraham, .. Beclkwith, A. Blackwell and
M. Burnett et al., 2008. The state of the art in end-
user software engineering. ACM Comput. Surveys,
43: 1-44.

Lau, T., L. Bergman, V. Castelli and D. Oblinger, 2004.
Sheepdog: Leaming procedures for techmnical
support. Proceedings of the IUL, Jan. 13, ACM Press.

Lau, T., S.A. Wolfman, P. Domingos and D.S. Weld, 2003.
Programming by demonstration using version space
algebra. Mach. Learn., 53: 111-136.

Lau, T.A. and D.S. Weld, 1999. Programming by
demonstration: An inductive learning formulation.
Proceedings of the 4th International Conference on
Intelligent User Interface, Oct. 8, Redondo Beach,
CA.

Little, G., T.A. Lau, A. Cypher, J. Lin, EM. Haber and
E. Kandogan, 2007. Koala: Capture, share,
automate, personalize busmess processes on the
web. Proceedings of the CHI 2007 Collaboration at
Work, April 28-May 3, San Jose, CA, TUSA.,
pp: 943-946.

Maclaurin, M., 2011. The design of kodu: A tiny visual
programming language for children on the Xbox 360.
Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, Jan. 26-28, San, Diego, CA, USA.

Monson-Haefel, R., 2000. Enterprise JavaBeans. 2nd Edn.,
O'Reilly and Associates, California, Pages: 472.

Myers, B., 3.Y. Park, Y. Nakano, G. Mueller and A. Ko,
2008. How designers design and program interactive
behaviors. Proceedings of the IEEE Symposium On
Visual Languages and Human-Centric Computing,
Sept. 15-18, Herrsching Am Ammersee, Germany,
pp: 177-184.

Myers, B.A., IF. Pane and A. Ko, 2004, Natural
programming languages and environments. Commun.
ACM, Special Tssue End-User Dev., 47: 47-52.

Nardi, B.A., 1993, A Small Matter of Programming:
Perspectives on End User Computing. MA:The Mit
Press, Cambridge, USA.

OMG, 1996. The Common Object Request Broker:
Architecture and Specification. Object Management
Group, Salt Lake City, UT, USA ., Pages: 177.

Paterno, F., M. Klann and V. Wulf, 2003. Research agenda
and roadmap for EUD. IST-2001-37470, EUD-Net
Network of Excellence.

Petre, M. and A.F. Blackwell, 2007. Children as unwitting
end-user programmers. Proceedings of the TEEE
Symposium on Visual Languages and Human-Centric
Computing, Sept. 23-27, I[EEE Computer Society,
pp: 239-242.

Prahofer,

Asian J. Inform. Technol., 10 (6): 249-258, 2011

H., D. Hummaus and H. Mossenbock,
2006. Building programming systems
based on a domain-specific language.
Proceedings of the 6th OOPSLA Workshop on
Domam-Specific Modeling, Oct. 22, Portland, Oregon,
USA.

end-user

Rogerson, D., 1997. Inside COM: Microsoft's Component

Object Model. Microsoft Press, DBellevue,

Washington, Pages: 376.

Segal, I., 2007. Some problems of professional end user

developers. Proceedings of the TEEE Symposium on
Visual Languages and Human-Centric Computing,
Sept. 23-27, Idaho, USA., pp: 111-118.

Wiedenbeck, S., 2005. Facilitators and mhibitors of

258

end-user development by teachers m a school
environment. Proceedings of the Visual Languages
and Human-Centric Computing, Sept. 20-24,
TEEE Computer Society Washington, DC, TJSA.,
pp: 215-222

