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Abstract: Public sector decision making typically involves complex problems that are riddled with competing
performance objectives and possess design requirements which are difficult to capture at the time that
supporting decision models are constructed. Environmental policy formulation can prove additionally
complicated because the various system components often contain considerable stochastic uncertainty and
frequently there are also numerous stakeholders holding incompatible perspectives. Consequently, there are
invariably unmodelled performance design issues not apparent at the time of the problem formulation which
can greatly impact the acceptability of any proposed solutions. While a mathematically optimal solution might
provide the best solution to a modelled problem, normally this will not be the best solution to the underlying
real problem. Therefore, in public environmental policy formulation, it is generally preferable to be able to create
several quantifiably good alternatives that provide very different approaches and perspectives to the problem.
This study shows how Simulation-Optimization (30) modelling can be combined with niching operators to
efficiently generate multiple policy alternatives that satisfy required system performance criteria in
stochastically uncertain environments and yet are maximally different from each other in the decision space.
This new stochastic approach is very computationally efficient, since it permits the simultaneous generation
of good solution altematives in a single computational run of the SO algorithm. The efficacy and efficiency of
this modelling to generate alternatives method 1s specifically demonstrated using a waste management case
from the Municipality of Hamilton-Wentworth, Ontario.
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INTRODUCTION

While mathematically optimal solutions can provide
the best results to modelled problems, they are frequently
not the best solutions to the underlying real problems as
there are mvariably unquantified 1ssues and unmodelled
objectives not apparent at the time the models were
constructed. This 1s a common occurrence n situations
where the final decisions are constructed based not only
upon clearly stated and modelled objectives but also
upon environmental, political and socio-economic
goals and  stakeholder preferences that are
fundamentally subjective (Baugh ef al., 1997, Brill et al,,
1981; Huang et al., 2011, Zechman and Ranjithan, 2004).
It 15 often not possible to express these subjective
considerations clearly and therefore, impossible to

capture them quantitatively i any optimization model.

Public sector decision making typically involves
complex problems that are riddled with competing
performance objectives and contain performance design
requirements which are very difficult to capture at the time
that any supporting decision models must be constructed.
Environmental policy formulation can prove even more
complicated because the various system components
normally possess considerable degrees of stochastic
uncertainty. Moreover, it may never be possible to
explicitly express all of the subjective considerations in
environmental public policy formulation because there are
generally numerous incompatible, competing, adversarial
stakeholder groups. Therefore, these subjective aspects
remain unquantified and unmodelled in the construction
of any corresponding decision models. Consequently,
public sector environmental policy formulation proves to
be an extremely complicated and challenging task.
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Therefore, from an environmental policy formulation
standpoint, it is often preferable to be able to generate
several alternatives that provide multiple, disparate
perspectives to the particular problem (Huang et af,
1996). Preferably these alternatives should all possess
good (i.e, near-optimal) objective measures with
respect to the modelled objective (s) but be
fundamentally different from each other in terms of the
system structures characterized by their decision
variables.

To illustrate the implications of an unmodelled
objective on a decision process assume that the optimal
solution for a quantified, single-objective, maximization
decision problem is X* with corresponding objective
value Z1*. Now suppose that there exists a second,
unmodelled, maximization objective Z2 that reflects
environmental/political acceptability. Let the solution 3*
belonging to the noninferior, 2-objective set, represent a
potential best compromise solution if both objectives
could somehow have been simultaneously evaluated by
the decision-maker. While 3* might be viewed as the best
compromise solution to the real problem, it would clearly
appear mferior to the solution X* in the quantified model
since it must be the case that Z1°<Z1*. This observation
implies that when unmodelled objectives are factored
into decision making processes, mathematically inferior
solutions for the modelled problem can potentially be
optimal for the real problem. Therefore, when unmodelled
objectives and unquantified issues exist, different
approaches are required in order to not only search the
decision space for the noninferior set of solutions but
also to explore the decision space for inferior alternative
solutions to the modelled problem.

In response to this option creation requirement,
several approaches collectively referred to as Modelling
to Generate Altermatives (MGA) have been developed
(Baetz et al., 1990; Baugh et al., 1997, Brill et al, 1981;
Loughlin et al., 2001; Zechman and Ranjithan, 2004). The
primary motivation behind MGA 1s to produce a
manageably small set of alternatives that are good with
respect to modelled objectives yet as different as possible
from each other in the decision space. In so doing, the
resulting alternative solution set 13 likely to provide truly
different choices that all perform somewhat similarly with
respect to the modelled objectives, yet very differently
with respect to the unmodelled issues.

Yeomans ef al. (2003) showed how to incorporate
data uncertainty directly into environmental planming
using an approach referred to as Simulation Optimization
(SO). 8O is a family of optimization techniques that
mcorporates inherent system uncertainties expressed as
probability distributions into its computational procedure
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(Fu, 2002). Linton et al. (2002) and Yeomans (2008) have
shown that SO can be considered an effective, though
very computationally intensive, MGA technique for
envirormental policy formulation. However, none of these
SO MGA approaches have been able to provide
guarantees to ensure that the created alternatives are
sufficiently different in decision vanable structure from
one another (Huang ef af., 2011).

In this study, it is shown how to efficiently generate
maximally different solution alternatives for public
envirommental policy planning situations contamning
considerable stochastic uncertainty by using a version of
the niching technique of Loughlin ef al. (2001) that has
been specifically modified for implementation with SO.
This novel stochastic techmique employs specialized
MGA operators and a niching scheme within the SO
procedure to identify a set of alternatives then screens
these solutions to select a small number that are both
good and very different from each other. The inmovative
approach is very computationally efficient, since it permits
the generation of multiple, good but very different
solution alternatives in only a single computational run of
the SO algorithm rather than the multiple implementations
required in most other MGA procedures. This study
illustrates the efficacy of the MGA capabilities of this new
SO procedure to construct very different, good solutions
by testing it on a Mumnicipal Solid Waste (MSW)
management optimization study taken from Yeomans ef al.
(2003).

SIMULATION-OPTIMIZATION FOR
FUNCTION OPTIMIZATION

Determining optimal seolutions to large stochastic
problems proves to be very complicated when system
uncertainties have to be accounted for and mcorporated
directly into the solution procedure (Fu, 2002). When
stochastic conditions exist, values for the constraints and
objectives can only ever be efficiently estimated by
simulation. 3O 1s a broadly defined family of solution
approaches that combines simulation with some type of
optimization method for stochastic optimization (Fu, 1994,
2002). In SO, all unknown objective functions, constraints
and parameters are replaced by one or more discrete event
simulation models in which the decision variables provide
the settings under which the simulation is performed.
Since all measures of system performance are stochastic,
any potential solution, X, needs to be evaluated via
simulation. As simulation is computationally intensive, an
optimization component is used to guide the search for
solutions through the problem’s feasible region using as
few simulation runs as necessary. Evolutionary algorithms
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are conducive to these extensive searches because the
complete set of candidate solutions maintained in their
populations permits concurrent searches to be undertaken
throughout multiple sections of the feasible region.
Evolutionary SO consists of two alternating
computational phases; an evolutionary module and a
simulation module. Evolutionary SO maintains a set or
population of candidate solutions throughout its
execution. The quality or fitness of each solution in this
population is found by having its performance criterion,
F, evaluated by simulation. After simulating each
candidate solution, the respective fitness values become
inputs to the evolutionary module for the creation of the
next generation of solutions. The fitness of each solution
within the population is ranked in comparison to every
other candidate solution. These ranked fitness measures
are the inputs to the evolutionary module where the next
solution population is created using the evolutionary
algorithm. The driving force underlying evolutionary
procedures is that fitter solutions in a current population
possess a greater likelihood for swrvival and progression
into the subsequent generations. After generating a new
candidate solution set, the evolutionary module returns
the new population to the simulation module for
comparative evaluation. This alternating, two-phase
search process terminates when an appropriately stable
system state has been attained (Yeomans, 2008). The
optimal solution produced by the procedure is the single
best solution found over the course of the entire search.

MODELLING TO GENERATE POLICY
ALTERNATIVES WITH SIMULATION-
OPTIMIZATION

In this study, an MGA procedure that is capable of
incorporating uncertainty directly into its generated
alternatives via SO i3 developed using a modified
adaptation of Loughlin et al (2001). Tn order to properly
motivate this procedure, it is necessary to provide a more
formal defimition of the goals of an MGA process
(Brill et al., 1981; Loughlin et al., 2001; Zechman and
Ramjithan, 2004). Suppose the optimal solution to an
original mathematical model is X* with objective value
Z* =F (X*). The following model can then be solved to
generate an alternative solution that is maximally different
in decision space from X*:

MaxA = 5, | X -X*|

s.t. XeD
F(X)- 2% < T
Where:
A = A difference function and

T A target specified in relation to the original

optimal function value Z*
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T is a A user-supplied value that represents how
much of the inferior region is to be explored for alternative
solutions.

The new stochastic SO based MGA procedure is
designed to generate a small number of good but
maximally different alternatives and is based upon
specialized MGA operators and a miching scheme. In this
algorithm, subpopulations within  the
evolutionary  algorithm’s population  are
established to collectively evolve toward a specific
mumber of very different alternatives in the solution

or miches

overall

space. Each desired solution alternative undergoes the
common evolutionary search procedure and the search
can be structured based upon any standard evolutionary
procedure contaming appropriate  encodings  and
operators appropriate to the problem being solved. The
survival of solutions depends upon how well the
solutions perform with respect to the modelled objective
(s) and by how far away they are from all of the other
niches in the decision space. Thus the evolution of
solutions in the population is influenced by those
solutions contamed m the other miches, forcing the
evolution of each niche-subpopulation towards good but
distant regions of the decision space.

In general, the goal of niching schemes is to speciate
maintain and converge a population to a small set of
different solutions where the difference between solutions
can be genotypic (based on decision variable values) or
phenotypic  (based characteristics)
{(Loughlin ef al. (2001). In mching schemes, the decision
space 18 treated as a resource for which solutions m the
evolutionary population must compete. Solutions that are
very similar to each other are considered to reside within

on solution

the same niche. If too many solutions inhabit the same
niche, the resources of that niche are considered
overexploited and all the individuals in the niche are
subsequently penalized in the evolutionary operations.
As the number of mdividuals m lower-populated
niches grows, the population achieves a state of
pseudo-equilibrium which  relatively  stable

subpopulations are simultaneously maintained in multiple

n

niches. The number of individuals within each niche 1s
generally proportional to the relative fitness of its
individuals those residing other
Traditionally, a sharing parameter, 0, needs to be used to
characterize the distance separating adjacent niches in

to in niches.

decision space. In this study, an alternative procedure 1s
employed that creates new niching operators that more
comprehensively direct the goals of MGA in obtaining a
small mumber of very different, good solutions.
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The main steps within the new SO MGA procedure
using the niching operators are as follows:

Step 1: Create an imitial population. The goal of the
procedure 1s to generate P+1 solutions where P represents
the desired number of maximally different alternatives
within a prescribed target deviation from the overall
optimal solution that must be generated.

Step 2: Evaluate the entire population using sunulation
and 1dentify the best solution, 3, with respect to the
modelled objective, together with a set of K other
solutions possessing modelled objective values that are
within a specified deviation from the objective value of ;.
This set of solutions is referred to as the pool of
candidate alternative solutions. If K<P then add the next
P-K best solutions with respect to the modelled objective
to the candidate pool.

Step 3: Determine the decision space centroid, C,, for each
of the N decision variables X, T = 1,..., N, in solution
k=0,.,K, G =1/(K+1)*E, ¥, This centroid represents
the N-dimensional centre of mass for the solutions m the
candidate pool. In the calculation shown each dimension
of the centroid 1s computed as the average value of that
decision variable over all of the values for that vanable
within the candidate pool. Alternatively, the centroid
could be calculated as a fitness-weighted average or by
some other appropriately defined measure.

Step 4: For each solutionk = 1,..., K, in the candidate pool
calculate D,, a distance measure between that solution
and all other solutions. D, = Min { | X, - C/|;1=1,... N}.
This distance represents the minimum distance between
solution k in the candidate pool and the centroid.

Step 5: The goal of maximal difference is to force
solutions as far apart as possible in the decision space
from the other. Hence, apply an appropriate elitism
operator to preserve the P best sclution alternatives, S,
p=1, ..., P within the candidate pool. Any two solutions,
8. and 5, are ordered such that a<b implies D,>D,. The
best solution alternatives are those with distance
measures most distant in the decision space from the
other solutions.

Step 6: Stop the algonthm if the termination criteria (such
as maximum number of iterations or some measure of
solution convergence) are met.

Step 7: The fitness measures of the maximally different
are boosted to make them the most fit
solutions in the population. These solutions are then
placed far apart from each other in the population.

alternatives
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Step 8: Apply recombination operators to the solutions.
A restrictive mating scheme is employed to encourage the
growth of subpopulations around the MGA solutions.

Step 9: Retumn to Step 2. The strategic placement (Step 7)
and restrictive mating (Step 8)
implemented in a number of ways. In one approach, the
population is divided mto P + 1 finite subpopulations with
each of the P + 1 solutions, S, p=0,..., P placed into one
of the subpopulations. Subsequent mating is confined
with possibly exceptions to occur within the respective
subpopulations. In another approach, the solution
alternatives can be distributed throughout the population
such that the most different solutions are farthest apart
from each other. A neighborhood restrictive mating
scheme can be employed to ensure that selection and
mating occur only between solutions within the same
approximate vicinity in the population. Since the MGA
alternatives have the lghest fitnesses m the population,
their genes will tend to propagate within their respective
subpopulations. Some recombination between adjacent
subpopulations may allow sharing of genetic information
that might benefit either subpopulation if 1t becomes too
homogenous. By adopting this approach to MGA,
multiple maximally different design options can be created
that meet established system criteria while simultaneously
remaimng acceptable and implementable in practice.

schemes can be

CASE STUDY OF SO USED IN MGA
FOR MUNICIPAL SOLID WASTE
MANAGEMENT PLANNING

The application of the new SO MGA procedure with
niching will be illustrated using the mumcipal solid waste
management planning study of Hamilton-Wentworth
taken from Yeomans et al. (2003). While tlhis section
briefly outlines the case, more extensive details and
background descriptions can be found in both
Yeomans et al. (2003) and Yeomans (2008). Located at the
western-most edge of Lake Ontario, the mumicipality of
Hamilton-Wentworth covers an area of 1,100 km’® and
includes six towns and cities. The municipality is
considered the industrial centre of Canada although, it
simultaneously incorporates diverse areas of heavy
industrial production with densely populated urban
space, regions of significant suburban development and
large proportions of rural/agricultural environments. The
MSW system within Hamilton-Wentworth must satisfy
the waste disposal requirements of its half-million
residents who collectively, produce >300,000 tons of
waste per year with a budget of 322 million. The region
had constructed a system to manage these wastes
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composed of: a waste-to-energy incinerator referred to as
the Solid Waste Reduction Unit (or SWARU); a 550 acre
landfill site; three waste transfer stations; a household
recycling program; a household/hazardous waste depot
and a backyard composting program.

The three transfer stations have been strategically
located to receive wastes from the disparate municipal
(and individual) sources and to subsequently transfer
them to the waste management facilities for final disposal
either to SWARU for mncineration or to the landfill.
Wastes received at the transfer stations are compacted
into large trucks prior to being hauled to the landfill site.
These transfer stations provide many advantages in
waste transportation and menagement; these include
reducing traffic going to and from the landfill providing an
effective control mechanism for dumping at the landfill,
offering an inspection area where wastes can be viewed
and unacceptable materials removed and contributing to
a reduction of waste volume because of the compaction
process. The SWARTU incinerator burns up to 450 tons of
waste per day and by doing so, generates about
14 million kwh year™" of electricity which can be either
used within the plant itself or sold to the provincial
electrical utility. SWARU also produces a residual waste
ash which must subsequently be transported to the
landfill for disposal.

Within this MSW system, decisions have to be made
regarding whether waste materials would be recycled,
landfilled or incinerated and additional determinations
have to be made as to which specific facilities would
process the discarded materials. Included within these
decisions 18 a determination of which one of the multiple
possible pathways that the waste would flow through in
reaching the facilities. Conversely, specific pathways
selected for waste material flows determine which facilities
process the waste. It 1s possible to subdivide the various
waste streams with each resulting substream sent to a
different facility. Since cost differences from operating the
facilities at different capacity levels produced economies
of scale, decisions have to be made to determine how
much waste should be sent along each flow pathway to
each facility. Therefore, any single MSW planning option
is composed of a combination of many decisions
regarding which facilities received waste material and
what quantities of waste are sent to each facility. All of
these decisions are compounded by numerous overriding
system uncertainties.

The complete mathematical model used for MSW
planmng can be found in Yeomans et al. (2003). This
mathematical formulation was used not only to examine
the existing municipal MSW system but also to prepare
the municipality for several potentially enforced future
changes to its operating conditions. Yeomans et al. (2003)
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examined three likely future scenarios with each scenario
involving potential incinerator operations. Scenario 1
considered the existing MSW management system and
corresponded to a status quo case. Scenario 2 examined
what would occur should the incmerator operate at its
upper design capacity; corresponding to a situation in
which the municipality would landfill as little waste as
possible. Scenario 3 permitted the incinerator to operate
any where in its design capacity range from being closed
completely to operating up to its maximum capacity.
Yeomans ef al. (2003) ran SO for a 24 h peried to
determime best solutions for each scenario. For the
existing system (Scenario 1), a solution that would never
cost more than $20.6 million was constructed. For
Scenarios 2 and 3, Yeomans ef al. (2003) produced optimal
solutions costing no more than 22.1 and $18.7 maillion,
respectively. In all of these scenarios, SO was used
exclusively as a fimction optimizer with the goal being to
produce only single best solutions.

As outlined earlier when public policy planners are
faced with difficult and potentially controversial choices,
they generally prefer to be able to select from a set of
near-optimal alternatives that differ significantly from each
other in terms of the system structures characterized by
their decision variables. In order to create these
alternative planming options, it would be possible to place
extra target constraints into the original model which
would force the generation of solutions that were different
from their respective, mitial optimal solutions. Suppose for
example that ten additional planning alternative options
were created through the inclusion of a techmnical
constraint on the objective function that increased the
total system cost of the original model from 1.5% up to
15% i increments of 1.5%. By adding these incremental
target constramts to the original SO model and
sequentially resolving the problem 10 times for each
scenario (i.e., 30 additional runs of the SO procedure), it
would be possible to create the requisite number of
desired alternative policies for MSW planning.

However, to improve upon the process of runmng
thurty separate additional instances of the computationally
intensive SO algorithm to generate these solutions, the
MGA procedure with miching described in the previous
section need be run exactly once for each scenario. The
evolutionary parameters used in this computational
experiment were a population size of 150, a maximum
number of iterations of 300 (together with an additional
check for solution convergence), a crossover parameter of
40% and a mutation rate of 5%. At the beginning of the
evolutionary search, all solutions in the population with
modelled objective values within 50% of the best solution
were permitted entry into the candidate pool. This
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criterion was incrementally tightened with increasing
generation number. In this implementation, the relaxation
fraction was tightened at a linear rate from 50-15% over
the first 50 generations. After generation 50, this fraction
was held constant at 15%. In each generation, the
subpopulation was screened to identify eleven maximally
(the best
alternatives to it). These solutions were then strategically
placed

different alternatives soluion and ten
into the population and a neighbourhood
tournament selection scheme was employed to encourage
the formation of niches around these alternatives. In this
selection scheme each mdividual was given an index
number that identified its placement position in the
population. Each individual solution was restricted to
mating only with mdividuals whose mdices lay within a
specified neighbourhood size of 10 (5 in either direction)
from it. This experimentation produced 30 additional,
maximally different alternatives and their respective
objective values are shown in Table 1. Each column of the
table shows the overall system costs for the 3 optimal
solutions plus the 10 maximally different options
generated for each of the three scenarios.

As described earlier, public sector, environmental
policy problems are typically riddled with mcongruent
performance requirements that significant
stochastic uncertainty that are also very difficult to
quantify. Consequently, it is preferable to create several

contain

quantifiably good alternatives that concurrently provide
very different perspectives to the potentially unmodelled
performance design issues during the policy formulation
stage. The unique performance features captured within
these dissimilar alternatives can result in very different
system performance with respect to the unmodelled
issues, thereby incorporating the unmodelled issues into
the actual solution process. This example has
demonstrated how the SO MGA modelling approach can
be used to efficiently generate multiple, good policy
alternatives that satisfy required system performance
criteria according to prespecified bounds within highly
uncertain environments and yet remam as maximally
different from each other as possible in the decision
space.

Given the performance bounds established for the
objective in each problem instance, the decision-makers
can feel reassured by the stated performance for each of
these aware that the
perspectives provided by the set of dissimilar decision

options while also being
variable structures are as maximally different from each
other as 1s feasibly possible. Hence, if there are

stakeholders with incompatible standpoints holding
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Table 1: Annual MSW Costs ($ millions) for 11 maximally different
altematives for scenario 1-3

MSW system costs Scenario 1 Scenario 2 Scenario 3
Optimal solution 206 221 187
Altemative #1 209 22.5 18.9
Altemative #2 21.3 22.8 194
Altemative #3 21.4 22.9 19.6
Altemative #4 22.1 23.2 19.9
Altemative #5 22.4 23.5 20.4
Altemative #6 22.6 23.8 206
Altemative #7 22.7 241 20.8
Altemative #8 231 24.4 21.0
Altemative #9 23.3 24.9 21.3
Altemative #10 23.8 25.7 21.5

diametrically opposing viewpoints, the policy-makers can
perform an assessment of these different options without
being myopically constrained by a single overriding
perspective based solely upon the objective value. In
addition to its alternative generating capabilities, the SO
MGA  procedure  has  simultaneously performed
exceedingly well with respect to its role mn function
optimization. Although, a mathematically optimal solution
may not provide the best approach to the real problem, it
can be observed that the MGA procedure with niching
has indeed produced a very good solution value for the
originally modelled optimization problem, itself. Namely,
1t should be explicitly noted that the cost of the overall
best solutions produced by the MGA procedure (1.e., the
solutions S;) are indistinguishable from the ones
determined in the function optimization process of
Yeomans ef al. (2003).

In totality, the results of this section underscore
several important findings with respect to the use of SO
within this MGA procedure:

SO can be used to generate more good alternatives
than planners would be able to create using other
MGA approaches because of the evolving nature of
its population-based solution searches

All of the solutions produced by SO incorporate
system uncertainties directly into their structure
during their creation unlike all of the earlier
determimistic MGA methods

The alternatives generated are good for planning
purposes since their structures are all as maximally
different from one another as possible (i.e., these
differences are not just simply from the overall
optimal solution)

The MGA procedure 1s computationally very efficient
since 1t need only be run once to generate its entire
set of multiple, good solution alternatives (1.e., to
generate n solution altematives, MGA needs to run
exactly the same number of times that SO would need
to be run for function optimization purposes alone,
irrespective of the value of n)
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The best overall solutions produced by the MGA
procedure will be very similar if not identical to the
best overall solutions that would be produced by SO
for function optimization alone

CONCLUSION

Public environmental policy formulation is a very
complicated process that can be impacted by many
uncertain factors, unquantified ssues and unmodelled
objectives. This combination of uncertainties and
unknowns together with the competing mterests of
various stakeholders obligates public policy-makers to
mtegrate many conflicting sources of input into their
decision process prior to final policy adoption. In this
study, a computational procedure was presented that
showed how SO could be used to efficiently generate
multiple, maximally different, near-best policy alternatives
for difficult, stochastic, environmental problems and the
effectiveness of this MGA approach was illustrated using
a case study of municipal solid waste management
planning.

In this stochastic MGA capacity, SO was shown to
efficiently produce numerous solutions possessing the
requisite characteristics of the system with each
generated alternative providing a very different planning
perspective. Because an evolutionary method guides the
search, SO actually provides a formalized, population
based mechanism for considering many more solution
options than would be created by other MGA
approaches. However, unlike the deterministic MGA
methods, SO incorporates system uncertainties directly
into the generation of these alternatives. MSW systems
provide an 1deal testing environment for illustrating the
wide variety of modelling techniques used to support
public policy formulation, since they possess all of the
prevalent incongruencies and system uncertainties that
so often exist in complex planning processes. Since SO
techniques can be adapted to model a wide variety of
problem types m which system components are
stochastic, the practicality of this co-evolutionary MGA
approach can clearly be extended mto numerous disparate
operational and strategic planning applications containing
significant sources of uncertainty.
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