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Abstract: This study presents models of a K-out-of N: G system subject to multiple failure modes. Times
between failures are exponentially distributed and repair times follow general distribution. Solutions for point
wise and steady state reliability parameters are derived for two distinct repair policies.
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INTRODUCTION

The mathematical models of system reliability on the
basis of a Poisson process of single failures cannot
reflect integrally the real behaviouwr of the system
(El-Damcese and Temraz, 2010, Hajeeh, 2004a; Moustafa,
1996, 1998). A continuous time Markov chamn model meant
for analysis of the reliability parameters of an N-unit
parallel system with 3 different time varying failure rates
and repair rates 1s presented by El-Damcese and Temraz
(2010). The set of differential equations 1s solved
numerically and some estimates of the transient metrics
are shown graphically.

There 15 no formal proof however that under these
assumptions the model is suitable and applicable for the
steady-state probabilities. Moreover, an attempt to extend
the model to cover a large number of failure modes implies
enormously large number of system states. K-out-of N: G
system with warm and cold standby and multiple failure
modes 1s introduced m (Jain ef af., 2007). Both failure rates
and repair rates are exponentially distributed.

Closed solutions for a system without any repair are
derived and methodology for evaluation of a system with
repair is also presented. Research by Hajeeh (2004a, b) is
a study of the imperfect repair phenomena which often
occurs in real world situation. Two models are developed
for a system subject to multiple failure modes and having
distinet repair rates. Transient behaviour of a repairable
K-out-of N: G system with different multiple constant
failure rates received comprehensive consideration by
Moustafa (1996, 1998). Moustafa (2008) developed the
Mean Time to System Failure (MTSF).

Whereas the assumption of exponential failure
distribution 1s adequate for most practical applications
especially for electrical and electronic equipment, the
distribution of repair time is rather general. We consider
in this study K-out-of N: G system with exponential
multiple failures and multiple generally distributed repairs.
Since, the process (, t) (J-number of working umits, t-time)
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is  not markovian under these assumptions, a
supplementary variable x, elapsed time in repamr is

introduced to obtamn suitable equations.
SYSTEM DESCRIPTION AND NOTATION

The system studied 15 a K-out-of N: G system (at
least N-K+1 units must fail for the system to fail). In the
case of a failure m a unit it is considered a failed umt i.e.,
all failures are fatal ones for a single unit. A unit can fail in
one of M different modes of failure and times between
failures are exponentially distributed with constant rate
A (m =1, 2 . M). The failure modes are mutually
exclusive 1.e,, if one of the failure modes occurs it can only
be followed by the same failure mode.

We shall consider two repair policies. In the case of
the first of them, the failed unit is immediately sent to be
repaired and it is put into operation unmediately after
repair. When N-K+1 units are down the system 1s stopped
and becomes operational again when the repair of unit is
completed. In the case of the second policy, the repair 15
started after N-K+1 umts are down and the system
becomes operational after all N-K+1 units are repaired.
According to these two policies, we shall designate the
model related to the first repair policy as Model 1 and
the model related to the second policy as Model 2.
Throughout this study we use the following notations:

B
P .t.x)

= P [j units are operating at time t] K<j<N

P [j units are operating at time t, one unit 1s
under repair due to a failure of type m and
the elapsed repair time lies between x and
x+dx] K<j<N, Tem<M

P [N-K+1 units are failed due to a failure of
type m at time t, system is undergoing repair
and the elapsed repair time lies between x
and x+dx]

P [in equilibrium j units are operating, one
unit is under repair due to a failure of type m
and the elapsed repair time lies between x
and x+dx ] K<j<N-1, 1 «m=M

Peintx)=

Fia (x)



Asian J. Inform.

P, Lim Pu(t)
t—pee
Where:
P,. = Steady-state prebabilities
Pin = [Piax)dx K<j<N,1SmsM
o
Biw = 1A KgieN, lemzM
- T
Be = N30,
m=1
F. (%) = c.df of the service time of type m 1 <m <M

f, x) = p.d.f ofthe service time of typem 1 <m<M

1 = Txfm (x)dx
Ha g
_ s
h, ()= 1- Fu(x)

Repair rate for typem 1<m<M

Where:

fm{s) = Laplace Transform (LT) of £, (%)

£'(x) = (N-K+1)-th convolution of f, (x)

h'(x) = (N-K+1)-th convolution of h, (x)

P,{t) = Pomt wise (instantaneous, transient)
availability

R (1) = Point wise reliability

P, = Steady-state availability

MTSF = Mean Timne to System Failure

) = Kronecker delta

Ln
ANALYSIS OF MODEL 1

Viewing the nature of the system following set of
integro-differential equation is obtained:

(%+ BNJPN(t)_i.ui‘PN_l‘m(LX)m(X)dX (1)
d 9 e b -
EWL&JFBN—I,er {x) N71,m( X) = @)
1<m<M

d ¢
{E + g + Bl:m + h.m(X)} Pj,m(tax) = BJ+1,mR]+1,m(t7X) (3)

K€jEN-2,1€<m<M

{‘M 9, M(x)}PK_Lm(t,x) PPt ()

dt ox
l=m=<M
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Having the following boundary and initial conditions:

Py (0)=1 (3)
Pt =08, )[R atoh,dx s o
1]
8], N-1 BN,mPN(t) K_lgj SN—l,lngM
P, (0,0)=0, K-12j<N, lemzM (7)
Peim (t. 0y=0, T<m=zM (8)

By using Laplace transform and discrete transform
(Ito1 et al., 1978) the Eq. 1-4 are transformed as follows:

8+ By )P (8) =1+ iTPN cra(sXhe(x)dx (D)
EIv— 0
S+a}(+B],m+ ) |u;,6,x) = (10)
K=jsN-L1=m=M
9 hm P = P
S+£+ x) K—l,m(sax)*BK,m m (8,%) (1)
1=m=M
Where:
0,602 3 (P60
And:

H-1m

PLEx0= Y 71, , (5x)

n=j

K=jsN-,1l=m=M

Let v. (sx)= Beos,%)
» 1- Fm(X)
And:
P;(_Lm(S,X) _ P 1 m(8,X)
1- Fm(X)

Then from Eq. 10 and 11, we have after some
manipulations:

d
{S‘f’dx‘f’ B],m}vhm(s,x)—o (12)

K=jsN-L1sm=M
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{s + d} =P (5x)=P (8,%)
M

(13)

&

1<

IA

Hence, solutions of Eq. 9-11 are:

1+ if_m(s + P -Lmny (5,0

m=1

(14)

Py(s)=

S+BN

uj.m (3.X)=[1-F, (0Tu, , (5,0) e—(S+BJ,m)X

K<jsN-1L,1=sm=M

(13)

Py n(8x)=[1-F, ()P, &
N-1 K 1- eiB"’mX
20 G

,m

Un, m(8,0) (16)

l«=ms=M

By mtegrating Eq. 14 and 15, we obtain the LT of the
point wise (instantaneous, transient) probabilities:

=l H - fm n, m
Rm®2<W%ﬂF;ﬁ;$qum@m(”)

K<jsN-L1=m=sM

Pen® =B = 2 (3)
{1f_m(s)+1—ﬂn(s+ﬁmmq

] s+f, .

(18)

Un, m(5,0) l<m< M

Bn,m

Taking I.T of Eq. 6 and using Eq. 7, 8 and 12-15, we
get after some algebra the following system of linear
equations:

E(*l)n_j(ﬁ)un_m(s,O) = Nz‘j GO ) s+

a=j n=j-1 (19)
B, .Ju, . (s,0), K+1<j<N -1
> ()

X7 (%) (20)

,0 i n=K
B Y YT NN
Bn,m ' ’

1€m=M
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Coefficients u, , (s, 0) can now be determined from
the above equations and Eq. 14. The LT of the point wise
availability P,
probabilities of all non-failure states:

(s) can be found by summing the

M-l M

P(8)=PFy(s)+ > Y P (s

n=K m=1

(21)

We can apply the final-value theorem to Eq. 14, 17
and 18) to obtain the steady-state probabilities but it will
require use of L Hopital rule and seems difficult and
impractical. Instead we set the following differential
equations:

Py = iTPN 1 al(3)he(x)dx (22)
d —
< PR eGPy, (0 =0 (23)

lsm=M

d
{& +Pim+ hm(X)}P (20 =B Fia () (24)

K€jEN-2,1€m<M

{d‘i + M(X)}PK_L,,,(X) =By P (X)

l1<=m<M

(25)

Equations 25-29 are to be solved under the following
boundary conditions and normalizing condition:

P (0) = (1-8 ) Pie s nCohe ()

(26)
+8d,, BynPy  K<jSN-11<m<M
N-1 M
poe S S, @
=K-1m=1
Solutions of Eq. 30-32 are:
Tl
Ef_m(BN—l,m)uN—l,m(o) (28)
PN — m=l
Bu
— - n—jfn £ (Bn m)
P =201 L{ o M@ (g
n=j
KL€jEN-L1€m<sM



Asian J. Inform. Technol, 10 (2): 55-59, 2011

R
Pr.m| My,
Bo.m | 1= fum{Po )
Br

(30)

Pein= EH)H-K(;) u,,.(0)

For u , (0), we have:

E(—l)“ ()0, = X ()

n=3-1 (31)
f_m(Bn,m)un,m (0)+38, 1By Py
K+1€j€N-1, 1€<m<M
) (71)n_K ( Ill( )un,m(o) = BK m
o =66, 22
Z(—l)"*(z)%un,mm)

Coefficients u, , (0) can be determined from Eq. 28, 31
and 32. In order to determine, the point wise reliability we
drop Eq. 4 and set P, (t) = 0 m Eq. 6 then solve Eq. 1-3
and 5-7 simultaneocusly.

Expressions for the probabilities (K <j<N-1, 1 <m<M)
and coefficients u;, (s, 0) (K+1<7<N, 1 <m<M) are same as
m Eq. 14 and 17 and 19, respectively. Instead of Eq. 20
however, we have:

-1

P (R, @ =0

n=K

Thus, using the above solutions the LT of the point
wise reliability is given by:

M-l M

R(s)=Py(s)+ 3 ¥ P, (5

n=Km=1

(33)
Moreover, if we set 5 = 0 in Eq. 33, we obtain the
MTSF.
ANALYSIS OF MODEL 2

The set of integro-differential equations describing
the behaviour of the system 1s:

(im]‘}(t)—i] Pe-saltOhL00dx (3

m=1q

d
Lh"'ﬁj,m}’j,m(t)_ BiamPim(t) (35)

K=jsN-L1=m=M
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d 2 .
th + &'F hm(X)}PK_Lm(t,x) -0

lsm=M

(36)

With the following boundary and initial conditions:

P .(0)=8,, (37)
PK—Lm(t:O) = BK,mPK,m(t) (38)
1£m=<M
By taking LT of the above equations, we get:
Mo
(34 Bu)Pe = X [Pe - 1m(s, ), (x)dx (39)
m=lg
(S + Blm)Rm(t) = BJH,mPJH,m(S) (40)
K€jsN-1L,1€m<sM
4w lp =0
S+&+ m(X) Kil’m(S,X)— (41)
1€£m=M
Ba0)=8,, (42)
PK—1,m(3=0) = BK,mPK,m (s) (43)

l«=ms=M

After solving the above equations, we get the
following expression for the system availability:

N1 M-l
1+, m

s+f, .

S4B, - ZBK,mf;(s)ﬁBﬂ&

- n=kK 8 + Bn,m

M
1+

1 N—
11=K n=)

P,(s)= (44)

By putting £,(s) = 0 in Eq. 44, we obtain the LT of
the point wise reliability R(s):

N-1 M N-1 B "
1+ e
é; 2 s tB (45)
R(s)= =
s+ By
The mean time to system failure MTSF 1s now:
N-1 M B
1+ L
= ZT (46)

MTSF = — 2 Prn
§

N
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In order to determine, the steady-state availability we
set and solve a set of integro-differential equations
similarly to Model 1 and we obtain the following
eXpression:

HN-1 M BNm
Yy 5 '
n=Km=l My

L
N-1 M i
>

m=1

(47)

P, B
N,m

Moy

1+ H.m

>

n=K m=1l MK, m

CONCLUSION

The study presented models for a parallel system
with multiple failure modes with different repair policies.
The approach gives msight into the transient behaviour
of the system. Although, we started with farly
sophisticated set of integro-differential equations, the
output of the models is a set of linear equations. Whereas
point  wise probabilities might need specialized
softwarelike Mathematica, Maple or MatLab for the
mverse Laplace transform the steady state availabilities
and the mean times to system failure can be computed out
of very few linear equations or from closed selutions.
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