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Abstract: Urmary Tract Infection (UTI) 1s a serious health problem affecting millions of people each year and
it is significant to identify the causal agent prior to treatment. The bacteria typically associated with UTT include
shape Eschericha coli, shape Klebsiella, shape Profeus mirabilis, shape Citrobacter freundii and shape
Enterococcus sp. Inrecent years, a number of spectroscopic methods such as Fourler transform infrared
(FT-IR) spectroscopy have been used to analyse the bacteria associated with UTI which are generally described
as rapid whole organism fingerprinting. FT-TR typically takes only 10 sec per sample and generates holistic
biochemical profiles from biological materials. In the past, multivariate analysis and artificial neural networks
have been used to analyse and interpret the mformation rich data. In this study, The Support Vector Machine
(SVM) applied to the FT-IR data for the automatic identification of UTI bacteria. Cross-validation test results
indicate that the generalization performance of the SVM was over 98% to identify the UTI bacteria, compared
to neural network’s accuracy of 81%. Among the various multi-class SVM schemes tested, the Directed Acyclic
Graph (DAG) method gives the best classification results. A Principal Component Analysis (PCA) based
dimension-reduction could accelerate the training/testing time to a great extent, without deteriorating the
identification performance.
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infection, Fourier Transform Infrared (FT-IR) spectroscopy

INTRODUCTION

Urinary Tract Infections (UTIs) are one of the major
clinical problems which account for about 8.3 million
doctor visits each year. Women are especially prone to
UTIs for reasons that are not yet well understood. One
woman m five develops a UTT during her lifetime. Nearly
all UTIs are caused by bacteria that enter the wrethral
opening and move upward to the urinary bladder and
sometimes the kidneys. In clinics, the bacteria typically
associated with UTI are Escherichia coli  (causative
organism of 50% of the cases), Klebsiella species (14%),
other coliforms (4%), staphylococei (6%), Enterococcus
faecalis  (10%), Pseudomonas aeruginosa  (3%)
(Goodacre ef al., 1998; Jarvis and Goodacre, 2004).

The common method of diagnosing urmary tract
infections is based on the laboratory investigation of a
mid-stream specimen of urine, often referred to as an MSU
which usually comprises of microscopical exammation of
the urine sample followed by bactenial culture. A
quantitative result is often used to confirm the clinical
diagnosis and finding of 10° cfu mL.™" of urine is defined
as significant bacteruria (Morgan and McKenzie, 1993).
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Using conventional methods by laboratory examination
of urine, however is expensive, time-consuming and
labour-mtensive; approximately 24 h  incubation i1s
required to obtain an accurate colony count. An
additional 12-24 h 18 needed for orgamsm identification
and susceptibility testing, which may further delay
admimstration of the most appropriate marrow-spectrum
antibiotic.

With the developments in analytical instrumentation,
the requirements for microbial characterization of UTT
bacteria have been implemented by physico-chemical
spectroscopic methods (Magee, 1993) including Pyrolysis
mass Spectrometry (PyMS), Fourier-Transform Infrared
spectroscopy (FT-IR) and UV
spectroscopy. Often referred to as whole-orgamsm
fingerprinting, these methods measure primarily the bond
strengths of molecules and the vibrations of bonds within
Functional groups (FT-IR and Raman), thus offering
quantitative information about the total biochemical
composition of a sample. Among the three methods, the
FT-IR spectra of micro-organisms has been regarded as
robust and advantageous because it is reproducible and
distinct for different bacteria and fungi (Maquelin ef af.,

resonance Raman
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2002, Winder et al., 2004). Therefore, there are numerous
studies for applying the technique to classify or identify
Various micro-orgarnisims.

For the differences between FT-IR spectra to be
disclosed, proper pattern recognition systems should
be employed, since the FT-TR spectral data are complex,
nonlinear and overlapped. The interpretation of the high
dimensional FT-IR data has typically been performed by
multivariate analysis methods such as clustering, Principal
Components Analysis (PCA) or Discriminant Function
Analysis (DFA) (Goodacre et al., 1998, Jarvis and
Goodacre, 2004). These methods are featured by their
unsupervised learning characteristics by which the
investigator can group objects based on their perceived
closeness. While simple and convemient, this process
also has the limitattion of bemng subjective because it
mainly relies upon the interpretation of complicated
scatter plots and dendrograms. More recently, some
flexible supervised learming methods have been applied
to the analysis of these hyperspectral data for example,
the Multiple Layer Perceptron (MLP) neural networlk
model (Goodacre et al, 1998; Mouwen et al., 2006,
Wenmng et al., 2002). Newral networks have been largely
used in the past as pattem classifiers in many
applications.  Their learning and generalization
capabilities also make them as favourite options in the
biomedical applications.

Though efficient for some applications including the
identification of UTI bacteria, MLP classifier has been
shown the limitations due to the problems like local
minima in the optimization. Over the last few years,
another particular machine learning algorithm, Support
Vector Machines (SVMs) has shown promise in a variety
of classification tasks. SVM 1s based on a vanation of
regularization techniques for regression (Cristianini and
Shawe-Taylor, 2000). Because SVM secks a globally
optimized solution and avoids over-fitting, it has the
ability to construct predictive models with  larger
generalization power, thus obtaming extensive
applications mcluding medical diagnosis (Comak et al.,
2007) and bicinformatics (Furey et al., 2000). As compared
with probabilistic models and classical neural networks,
SVM provide a well-understood regularization mechamsm
which makes learming from few examples in ligh-
dimensional feature spaces possible. In that way, SVM
and related methods can effectively cope with the curse
of dimensionality which has been difficult for the more
traditional tools in machine learning.

In this study, it is proposed that to apply SVM
technicue for the automated identification of UTT bacteria
using the FT-IR spectra. Cross-validation test results
indicate that the generalization performance of the SVM
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was on average over 90% to identify the UTI bacteria,
compared to neural network’s accuracy of 80%. A number
of different multi-class SVM schemes have been studied
including using a direct multiclass SVM, Directed Acyclic
Graph (DAG) or combining multiple binary SVM
classifiers via the general ECOC scheme classification.
Among these methods, the DAG scheme offers the best
performance. A Principal Component Analysis (PCA)
based dimension-reduction could accelerate the
training/testing time to a great extent without deteriorating
the identification performance. The study provides the
foundation for successful applications of SVMs to many
real world microorganisms classification tasks.

FOURIER-TRANSFORM INFRARED (FT-IR)
SPECTROSCOPY FOR URINARY TRACT
INFECTION (UTT) BACTERTA

The FT-IR data for a group of 59 bacteria 1solated
from the urmne of patients with Urinary Tract Infection
(UTT) was provided by the researchers of (Goodacre et al.,
1998) which were collected from Bronglais General
Hosiptal, Alberystwyth. By conventional biochemical
tests, all 1solates were typed to belong to E. Coli, Pr.
mirabilis, Klebsiella sp. Ps. aeruginosa and
Eunterococcus sp. The cultivation details for the strains
have been described by Goodacre ef al. (1998).

For the completeness, briefly mtroduce FT-IR spectra
data collection process given by (Goodacre et al., 1998).
About 10 ul, of each bacteria sample was evenly applied
onto a sand-blasted alummum plate. Prior to the spectra
analysis, the samples were oven-dried at 50°C for 30 min.
Samples were then run in triplicate. The instrument used
was a Bruker IFS28 FT-IR spectrometer equipped with an
MCT detector cooled with liquid N,. The aluminum plate
was then loaded onto the motorized stage of a reflectance
TLC accessory. Spectra were collected over the wave
number range 4000-600 cm™'. The spectra were acquired
at a rate of 20 sec™" and the spectral resolution used was
4 ¢cm . Each sample was displayed in terms of abscrbance
as calculated from the reflectance-absorbance spectra.
The typical FT-IR spectra are shown in Fig. 1.

To mimmize the problems arising from baseline shufts,
the following procedure was implemented following the
steps in (Goodacre et al., 1998, Tarvis and Goodacre, 2004)
the spectra were normalized so that the smallest
absorbance was set to 0 and the highest to +1 for each
spectrum; the normalized spectra were detrended by
subtracting a linearly increasing baseline from
4000-600 cm™; finally the smoothed first derivatives of
these normalized and detrended spectra were calculated
using the Savitzky-Golay algorithm with 5 point
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Fig. 1: FT-IR spectra for UTI bacteria

smoothing. The multivariate analysis Matlab routines
provided by the researcher of (Goodacre et al., 1998)
are exploited.

SUPPORT VECTOR MACHINE: A SHORT
INTRODUCTION

Brief review: For bmary pattern classification, the
essence of SVM is to find the optimal separating
hyperplane that separates the positive and negative
examples with maximal margin (Scholkopf and Smola,
2000). Usually, the classification decision function for a
linearly separable problem can be represented by:

(1)

f =sign(w-x+b)

SVM is based on the structural risk minimization
principle (Cristianim and Shawe-Taylor, 2000) which
determines the classification decision function by
minimizing the empirical risk:

R:%Zl:|f(x1)—yl| (2)

where, | represent the size of examples. The optimal
separating hyperplane is determined by giving the largest
margin of separation between different classes. This
optimal hyperplane bisects the shortest line between the
convex hulls of the two classes. The optimal hyperplane

15 requied to satisfy the following constrained
minimization as:
Minimize : IWTW
2 3

subject to 1y (w-x, +b)=li=1..1
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The SVM classifier is then obtained by the inner
product x'x, where icS, the set of support vectors.
However, 1t 1s not necessary to use the explicit input data
to form the classifier. Instead, all that is needed is to use
this 1mmer products between the support vectors and

vectors of the feature space. That 1s by defimng the
kernel:

Kix,x)=x"x 4
And a nonlinear classifier can be obtained as:
f(x) = signfo,y,K(x,,)+b,} (5)

There are three most popular kernels, the polynomial,
Gaussian and the tanh kernel. The polynomial kernel of
degree d 1s given by:

kix,z)=(x-z+¢)" (6)
where, ¢ 13 a constant, d can be user defmed. When d
1s 1, the kemel becomes linear. The Gaussian kermnel 1s:

<7
plon

(7)

kix,z)=exp(- )]

Where the parameter ¢ controls the support region of
the kernel. The tanh kernel is given by:

k (x,z)=tanh (x-z+b)

Multi-class support vector machine: The aforementioned
support vector machines were primarily designed for
binary pattern classification problems. A variety of
schemes have been proposed in the literature for
solving multi-class problem (Hsu and Lin, 2002;
Franc and Hlavac, 2002). Commonly used techniques
include: one-against-all (OAA), one-agamst-one (OAQ);
the Directed Acyclic Graph (DAG);, Error Correcting
Output Coding (ECOC) and Multiclass objective function
by adding Bias to the objective function (BSVM). Their
brief description 1s given in the following.

One-against-all: In this approach, a SVM 1is constructed
for each class by discriminating that class against the
remaining (1-1) classes. The number of SVMs used in this
approach is 1. A test pattern x is classified by using the
winner-takes-all decision strategy, 1.e., the class with the
maximum value of the discrimmant function £ (x) 1s
assigned to it.

One-against-one: This strategy consists in constructing
one SVM for each pair of classes. Thus, for a problem
with 1 classes, 1 (1-1%/2 SVMs are trained to distinguish
the samples of one class from the samples of another
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Table 1: Code matrix for 5 class with 15 bits

Code matrix S S, S Sy S S; S; S S, Sin Sy S5 S Sy S
C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C, 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
C; 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1
Cy 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
cC 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

class. Usually, classification of an unknown pattern is
done according to the maximum voting where each SVM
votes for one class.

Directed acyclic graph: The Directed Acyclic Graph
(DAG) SVM was proposed 1n (Platt ef al., 2000). In the
training phase, it works as the one-against-one method
solving | (1-1)/2 bmary SVMs. However, in the testing
phase, it uses a rooted binary DAG which has 1 (1-1)=2
mternal nodes and | leaves. Given a test sample x, starting
at the root node, a pair-wise SVM decision is made and
either class is rejected. Then it moves to either left or right
depending on the result and continues until reaching to
one of leaves which indicates the predicted class. So the
DAG SVM requires -1 comparisons and hence 1s more
efficient than the one-against-one methaod.

Error correcting output coding: Error Correcting Output
Coding (ECOC) was proposed in (Dietterich and Bakiri,
1995) by decomposing the l-class problem mto a set of
binary subproblems, training the resulting base classifiers
and then combimng their outputs to predict the class
label. Each of the involved classes is assigned a binary
codeword following some specified coding scheme.
Several methods have been proposed to generate such
error correcting code. Among them the exhaustive coding
(Dietterich and Bakiri, 1995) was often utilized. For 1
classes, all the possible different classifier arrangements
are exhaustively used in the code matrix. For the FT-IR
spectra classification task, there are 5 classes, resulting in
2%1.1 = 15 different arrangements in total.

Table 1 shows the code matrix for a task with 5
classes (C) using 15 base classifiers (3). In the code
matrix above, each class C,is associated with a codeword
(i.e., the column vector). Each classifier 5, is then trained
to perform a binary classification task that is to
distinguish the two subsets of the classes labeled with 1
and 0, respectively. During testing, a vector of scores 1is
generated by the 5 binary classifiers for each test sample.
This vector is then compared to each codeword and the
one with the minimum distance is chosen as the
hypothesis.

Multi-class BSVM algorithm: Instead of creating many
binary classifiers to determine the class labels, this
method attempts to directly solve a multiclass problem
(Hsu and Lin, 2002; Weston and Watkins, 1998) by
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adding bias to the binary class objective fimction. The
modified objective function allows sumultaneous
computation of multiclass classification and is given by:

(w,b,8) = argmin,, ,

= 22 <

iel ye¥\{y}

LS [ tiree

Subject to the constraints,

T
W, X +b, =W X +b +2-¢

where, £(£>0)1s a vector of slack variables and 1= {1{..)1}
is set of indices.

SOME CONVENTIONAL MULTI-CLASS PATTERN
CLASSIFICATION METHODS COMPARED

In machine learning, there are some conventional
methods that have been extensively applied for multi-
class classification problems (Duda et «l, 2001;
Theodoridis and Koutroumbas, 2000) for example, the
k-Nearest Neighbor classifier (kNN), the Nearest Mean
Classifier (NMC) and artificial neural networks (e.g.,
Perceptron, multilayer Perceptrons). In the following we
briefly summarize a few of the most commonly used
methods for comparison purpose.

K-nearest neighbor classifier: KNN classifier is a
prototype-based classifier among the oldest types of
classification methods. It 1s based on a distance function,
for example, the Buclidean distance for pairs of data
samples.

The kNN classifies a test sample on the basis of the
traiming set by first finding the k closest samples in the
traiming set and then predicting the class by the majority
voting. In other words, the class that is most common
among those k neighbors is chosen as the predicted label.
Obviously the kNN classifier needs to access all learning
data at the ime when a new test case 1s to be classified.

Nearest mean classifier: The Nearest Mean Classifier 1s
another traditional prototype-based classifier (Duda et al.,
2001). Being different with kNN classifier which uses all
training data to label a test sample, the NMC abstract
traming data first by only storing the mean of each class,
le., one prototype per class. It then classifies a test
sample with the label of the nearest class prototype.
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Perceptron: The classical perceptron  algorithm
(Duda et al., 2001) is a very simple classification algorithm
which maps an input x to an output value f (x):

f(x)= {
Where:

w = Avector of real-valued weights
b = The bias, a constant term that does not depend on
any input value

1
0

if w-x+b=0

else

The value of f (x) (0 or 1) 1s used to classify x as either
a positive or a negative instance mn the case of a binary
classification problem.

There are several adaptations of the Perceptron
algorithm to multiclass settings (Haykin, 1998) for example
by the Kesler's construction which convert a multi-class
error-correction procedures to two-class procedures.

Multi-layer perceptron: The Multilayer Perceptrons
(MLP) is a common type of neural network classifier
which is often trained by the error back-propagation
algorithm (Haykin, 1998). Tt consists of a layer of input
nodes, each linked by weighted connections to every one
of a layer of hidden nodes, each of which 1s linked 1 tum
to a set of output nodes. It has been shown that MLPs
can virtually approximate any function with any desired
accuracy provided that enough hidden units and enough
data are given (Haykin, 1998). Therefore, it can also
inplement a discrimination function that separates input
data into classes. Such an ability of an MLP to leamn from
data makes it a practical classifier for many classification
tasks.

There are a number of articles where MLPs have been
employed in the identification of microorganisms using a
variety of data (Goodacre er «l., 1998; Jarvis and
Goodacre, 2004; Maquelin et af., 2002; Mouwen et al.,
2006, Oberreuter ef al, 2002, Rebuffo et ai, 2006,
Perkins et al., 2005; Timmins et al., 1998; Wenning et al.,
2002; Rosch et al., 2005; Lasch et al, 2006, Ellis and
Goodacre, 2006; Ellis et al., 2002). Though successful for
many applications, MLP classifier has several limitations
and traming an MLP network mvolves a considerable
degree of empiricism. And the performance often depends
on the nature and quality of the data on which it is trained
for example, the classification accuracies may be sensitive
for different class frequencies in the training set.

EXPERIMENTS

The FT-IR spectra data Eq. 1 belong to five isolates,
ie., E.coli, Pr. mirabilis, Klebsiella sp. Ps.aeruginosa
and Enterococcus sp. There are total 236 samples
available, each with 882 wave numbers. The distribution
of different isolates are shown in the Table 2.
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Table 2: Tsolate sarmple distributions

Species Values
E. coli 68
Pr.mirabilics 40
Klebsiella sp. 40
Ps. aeruginosa 40
Enterococcus sp. 48
Tatal 236

All of the data were pre-processed following the
steps by (Goodacre et «l, 1998), consisting of
normalization and smoothing. The experiment settings for
all the classifiers are summarized as follows. For MLP, we
experimented with a three-layer network with the same
structure and algorithm as used in (Goodacre et al., 1598).
Specifically, the number of mputs 13 the same as the
number of features (i.e., 882 for raw FT-TR spectra or the
first several PCA projections), one hidden layer with
20 units and a single linear umt representing the class
label. It 18 the experience that varying the number of
hidden wmits m such an MLP usually does not
significantly change the performance. All of the support
vector machine classifier were optimized by quadratic
programming (Dietterich and Bakiri, 1995). For kNN
classifier, chosen k = 3 after testing a range of different
values of k with the similar results.

In many applications, the number of varables in a
multivariate data set needs to be reduced due to the
existence of irrelevant, noisy and redundant information
in the data which has been proved to be the detrimental
elements leading to the inaccuracies m classification
performance. Moreover, as the number of features used
for classification increases, the number of traming
samples required for statistical modelling and/or learning
systems grows exponentially (Duda et al., 2001). Principal
Component Analysis (PCA) is an efficient dimensionality
reduction technique which carry out linear transformation
of data and project it to a lower dimensional subspace in
such a way that most of the information is retammed while
discarding the noisy component of data.

The use of PCA scores as inputs to MLP classifier
has been previously exploited for the identification of
bacteria from their FT-IR spectra (Goodacre et al., 1998,
Jarvis and Goodacre, 2004). Following the discussion in
(Goodacre et al., 1998) is chosen the first 20 PCs (96.88%
of total variance retained) for the FT-IR spectra data for
comparison purpose.

There are many standard procedures to test the
performance of a pattern classification scheme. The
commonly used ones are holdout and k-fold cross-
validation methods. The k-fold cross-validation is an
established technique for estimating the accuracy of a
classifier. In general, all of the examples are partitioned
1nto k subsamples of which the kth subsamples is retained
for testing the model while the remaining k-1 subsamples
are used as training data. The cross-validation is then
repeated k times with all of the k subsamples used exactly
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once as the validation data. The cross-validation
estimation of accuracy is the overall number of correct
classifications divided by the number of instances in the
data set. The holdout method 15 the simplest kind of
cross-validation (2-fold) with the data set being separated
mnto training set and testing set.

Classification performance from holdout experiment: In
the first experiment, we compared a SVM classifier with
several other methods including kNN, NMC, perceptron
and MLP based on the random divisions of the dataset
into a training set (80%) and a test set (20%). The SVM
applied is based on the DAG scheme with values of the
regularization parameter C = 10 and sigma paerameter
(0% = 1) when using the radial basis function kernel. The
values are from the so-called grid search (Cristianini and
Shawe-Taylor, 2000).

About 100 random splitting were repeated and the
classification results on the testing set were recorded and
averaged. For each random testing, the same set of
traiming/testing were applied to the five classifiers. The
experiments were conducted independently with original
FT-IR spectra data and the first 20 PCA scores,
respectively. The results are displayed in the boxplots as
shown in Fig. 2 which gives the statistical means and
standard deviations of accuracy over the 100 repeated
random sampling.

Tt can be observed that for both of the original UT-TR
spectra data and the PCA scores, support vector machine
gives the best classification performance with regard to
the accuracy and the standard deviation. With both of
the original data and the PC scores, the nearest mean
classifier gives the worst result (65%).

The benefit of applying PCA projection is obvious
that all the classifiers applied produce improved
classification accuracies and gap between SVM and MLP
become narrowed. Without PCA projection, the mean
classification accuracies from MLP and SVM are 81 and
98%, respectively. With PCA preprocessing, the
aceuracies are 97 and 99.2%.

We also numerically studied the performance of the
five different multi-class SVM methods discussed in the
previous section namely, DAG, ECOC, OAA, OAO and
BSVM. For all these methods, the RBF kernel is employed.
Each classifier requires the selection of two
hyperparameters: a regularization parameter C and a kernel
parameter @”. the procedure made by Hsu and Lin is
followed (Hsu and Lin, 2002) and take the C =10and
o’ = 1 of all the binary classifiers within a multiclass
method to be the same.

From Fig. 3 it 1s shown that DAG SVM gives the best
classification results. For DAG appreach, an accuracy of
97% 1s achieved. The OAA method 1s very close to the
BSVM with accuracy of 90% which are all better than the
OAQ SVM. Further, results using exhaustive technique
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Fig. 2: Boxplots of the classification accuracies from the
five different classifiers. About 80% of data were
used for training while the remaimng for testing.
The results were from the average of 100 tests. The
SVM used 1s based on DAG scheme. (a) Results
from original UTI data and (b) Results from using
first 20 PCA projections

based ECOC approach are not significantly better in
comparison to OAA or BSVM in terms of classification
accuracy. The results from applying PCA projections are
consistent with that of applying raw data as 1llustrated in
Fig. 2.

The confusion matrices that summarize the details of
comparisons of MLP and SVM from the above experiment
are shown in Table 3 and 4. SVM model selection: Tuning
the hyperparameters of a Support Vector Machine (SVM)
classifier 1s a crucial step in order to establish an efficient
classification system. Generally, at least two parameter
values have to be chosen carefully in advance. They
concern respectively the regularization parameter C which
sets the trade-off cost between the training error and the
complexity of the model and the kernel function parameter
(s), reduced to the bandwidth in the classical case of a
radial basis function kernel (0). The problem of choosing
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these parameters values is called model selection in the
literature and its results strongly impact the performance
of the classifier. Cross-validation has often been applied

m+
--q +
-
-4

' to SVM meodel selection with the guideline that the

0854 . . average cross-validation error is minimum. In the study we

Y : . ' - ' followed the conventional grid search method which

% ' - | e select the parameters empirically by trying a fimite number

> 0739 £ : of values and keeping those that provide the least test
0.79 + *

error. The next experiment applied the k-fold cross-
0.65+ validation for two multi-class SVM schemes, 1.e., DAG
SVM and BSVM with different kernels and regularization

- I

0(::_ L parameter C are compared.
) DAG ECOC OAA OAD BSVM As explained earlier, k-fold cross-validation describes
o) the performance of a give SVM model with the chosen
11 regularisation parameter with a separate test set that 1s not

+ + + . .. . .
0951 used during training. Figure 4a, b display the boxplots of
T + classification results from 10-fold cross-validation and 5
0.9 ! fold cross-validation of the support vector machines with
2 0.851 T different kernel and regularization parameters. The
é 0 : abbreviations are: DAG1, BSVMI-RBF kernel with
' 1 0=0.5,C=10,DAG2, BSVM2-- RBF kernel with o = 0.5,
0.751 . C = 100, DAG3, BSVM3-polynomial kernel withd = 2,
07 : C =10, DAG4, BSVM4-polynomial kernel withd = 2,
! . C=100.

0.657 -+ ! In the implementation of a k-fold cross-validation of

-t

' T 236 samples, the mdices containing approximately equal
DAG ECOC OAA 0AO BSVYM

proportions of the mtegers 1 through k were first
generated n each test, which define a partition of the 236
Fig. 3: Boxplots of classification accuracies from the samples mto k disjoint subsets. Thus for 10 fold
different multiclass SVM schemes: DAG, ECOC, cross- validation for each division of the samples, a model
OAA, OAO and BSVM. About 80% of data were is developed with 213 samples and tested in the rest 23
used for traimng while the remaining for testing.  samples. This process of randomly generated partitions
The results were from the average of 100 tests. (a). is repeated 20 times with randomly chosen training
Results are from original UTI data; (b) Results from  and testing sets giving up 200 unbiased estimates
using first 20 PCA projections of discriminant ability. As the test samples are

Table 3: Confusion matrix from the classification by MPL using the original data
Predicated class

Actual class E. coli Pr. mirabilies Klebsiella sp. Ps. aeruginosa Enterococcus sp. Accuracy (%0)
E. coli 49 1 2 1 1 89.1
Pr. mirabilies 2 27 1 2 2 79.4
Klehsiellasp. 3 1 25 2 2 75.8
Ps. aeruginosa 4 2 2 24 1 727
Enterococcus sp. 1 0 2 0 36 92.3

Table 4: Confusion matrix from the classification by DAG SVM using the original UTI data
Predicated class

Actual class E. coli Pr. mirabilies Klebsiella sp. Ps. aeriginosa Erterococcus sp. Accuracy (%4)
E. coli 54 0 1 0 0 98
Pr. mirabilies 1 31 0 1 0 94
Klebsiella sp 2 0 29 0 1 90
Ps. aeruginosa 1 2 1 29 0 85
Enterococcus sp. 1 0 0 0 37 97

202
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Fig. 4: Boxplots for comparing classification accuracies
m terms of kernel functions and regularization
parameter. (a) From 10 fold cross-validation; (b)
From 5 fold cross-validation

mdependent of the traimng data, the results derived from
this 10-fold cross-validation are reliable. The experunents
demonstrated that with all of the original features, the
polynomial kernels showed better performance compared
to the RBF kernel and the regularization parameter C can
be chosen in a wide range without obvious change of the
performance.

CONCLUSION

The ability to identify pathogemc orgamsms rapidly
provides significant benefits to clinicians for example it
may help to give better prescription practices and tracking
of recurrent infections. Conventional bioassays require a
long peniod (35 days) before identification of an organism
can be made, thus compromising the effectiveness with
which patients can be treated for bacterial infections.

In this study we have investigated utilizing SVMs for
multiclass UTT bacteria classification. Various multi-class
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SVM techniques have been studied, including one-
agamst-one, one-against-all, direct multiclass SVM
objective function (BSVM), the Directed Acyclic Graph
and the combination of multiple binary SVM classifiers via
the general ECOC scheme. Experiment results
demonstrated that the DAG SVM is much better than the
other SVM schemes. The study confirmed that SVM as
an advanced machine learming system can deliver state-
of-the-art performance in the rapid identification of FT-IR
based UTI bacteria.
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